Integrate: (. ) ( ). 1. 1. 1. ,. ,. ,. ,. 0. 0. 0. ( ) v v v x x x x au u dx au u dx fu x dx. â. â. â. = â«. â«.
Strong, Weak and Finite Element Formulations of 1-D Scalar Problems ME 964; Krishnan Suresh 1. From Strong to Weak Strong statement:
d du −a = f dx dx
u(0) = 0; −au,x (1) = −Q
(1.1)
To convert into weak form: 1. Multiply ODE by a virtual function u v (x ) satisfying u v (0) = 0 :
(−au,x ),x u v
= fu v
(1.2)
2. Shift Derivatives: Recall that
(−au,x u v ),x
≡ (−au,x ),x u v + (−au,x ) u,vx
(1.3)
Thus, replacing LHS
(−au,x u v ),x − (−au,x )u,vx
= fu v
(1.4)
3. Integrate: 1
1
1
∫ (−au u ) dx − ∫ (−au )u dx = ∫ fu (x )dx v
,x
v ,x
,x
,x
0
v
0
(1.5)
0
i.e., 1
−au,x u v + au,x u,vxdx = 0 ∫ 1
0
1
∫ fu (x )dx v
(1.6)
0
4. Apply boundary conditions: 1
−Qu v (1) + ∫ au,x u,vxdx =
1
∫ fu (x )dx
0
v
(1.7)
0
i.e., 1
∫ au
1
u dx =
v ,x ,x
0
∫ fu (x )dx + Qu (1) v
v
(1.8)
0
5. Arrive at weak statement:
Find u(x ), where, u(0) = 0, s.t. 1
∫ au
1
u dx =
v ,x ,x
0
∫ fu (x )dx + Qu (1) v
v
0 v
∀u v (x )where, u (0) = 0
2. Graphical Interpretation of Strong & Weak Forms Strong form:
(1.9)
Strong Form du dx du Fourier Law : q( x) = − a dx Balance Law : Heat balance in x
f ( x)
u ( x) Kinetic Law
Kinetic Law : g ( x ) = −
Balance Law
q ( x)
g ( x)
q( x + dx) − q ( x ) = f ( x )dx dq = f dx d du −a = f dx dx
Material Law
d du −a = f dx dx
Differential Equation :
4
Weak Forms f ( x)
u ( x)
u v ( x)
Kinetic Law
g v ( x)
q( x)
g ( x) Material Law
v
du du & gv = − dx dx du Fourier Law : q = − a dx Kinetic Law : g = −
1
1
0
0
Virtual Work Law: ∫ qg v dx = ∫ fu v dx 1 v du du v − a − dx = ∫0 dx dx ∫0 fu dx 1 1 v du du v ∫0 a dx dx dx = ∫0 fu dx 1
7
3. Equivalence Equation (1.1) is 'equivalent' to Equation (1.9). Consider the example:
d du − = 1 u(0) = 0; u,x (1) = −1 (1.10) dx dx i.e., f = 1 & Q = −1 The exact solution is u(x ) = −x 2 / 2 as one can easily verify. Let us find the same solution via Equation (1.9). Search for a solution of the form u(x ) = Ax + Bx 2 (satisfies the essential boundary condition). Similarly, let
u v (x ) = Av x + B v x 2 . Substituting in Equation (1.9): Find A & B, s.t. 1
∫ (A + 2Bx )(A
v
1
+ 2B x )dx = v
0
∫ (A x + B x v
v
2
)dx − (Av + B v )
(1.11)
2
)dx − (Av + B v )
(1.12)
0
∀Av & B v i.e., 1
1
∫ (A
v
+ 2B x )(A + 2Bx )dx = v
0
∫ (A x + B x v
v
0
i.e., 1
∫ {A
v
B
0
v
}
1 1 2x 2x
{
}
A dx = B
1
∫ {A
v
B
v
0
}
1 B v 1
x v 2 dx − A x
{
}
(1.13)
i.e.,
{
v
A
B
v
}
1 ∫ 0
1 A v 1 2x dx = A 2x B
1 ∫ 0
1 2x
{
}
1
{
B
v
}∫ 0
1 B v 1
x dx − Av 2 x
{
}
(1.14)
1 1
(1.15)
i.e.,
{A
v
B
v
}
2x A dx = Av 2 4x B
{
1
B
v
}∫ 0
x v 2 dx − A x
{
B
v
}
i.e.,
1 1 A = Av B v B 1 4 / 3 Find A & B, s.t.
1/ 2 − Av B v 1/ 3
1 1 A = Av B v B 1 4 / 3 ∀Av & B v
−1/ 2 B v −2 / 3
{
Av
{
Av
}
}
{
{
}
{
1 B v 1
}
}
(1.16)
(1.17)
This is true if and only if:
1 1 A −1/ 2 1 4 / 3 B = −2 / 3 i.e., A = 0, B = −1/ 2 , i.e., u(x ) = −x 2 / 2 . We obtain the same solution.
(1.18)
4. Why Weak Formulation? Consider the example:
d du −1 − = dx dx 1 + x 2
u(0) = 0; u,x (1) = 0
(1.19)
It is difficult to integrate Equation (1.19) to obtain the exact solution. So, let us try an approximate solution: u(x ) = Ax + Bx 2 where A and B are constants (satisfies the essential boundary condition). Substituting in Equation (1.19), we have:
−B =
−1 1 + x2
A + 2B = 0
(1.20)
The above suggests that B is not a constant (that's about it!!). Now consider the weak formulation. As before, let u(x ) = Ax + Bx 2 and
u v (x ) = Av x + B v x 2 . Substituting: Find A & B, s.t.
{A
v
B
v
}
1 1 A 1 4 / 3 B =
1
∫ 0
−1 (Av x + B v x 2 ) dx 1 + x 2
(1.21)
∀Av & B v Evaluate right hand side numerically, we have:
1 1 A −0.3469 1 4 / 3 B = −0.21439 i.e., u(x ) ≈ −0.75x + 0.4x 2
(1.22)
Weak formulations naturally promote computing approximate solutions to challenging problems, and are 'equivalent' to strong forms.
5. Finite Element Solutions of Weak Formulation Consider the model problem:
Find u(x ), where, u(0) = 0, s.t. 1
∫ au
1
u dx =
v ,x ,x
0
∫ fu (x )dx + Qu (1) v
v
(1.23)
0
∀u v (x )where, u v (0) = 0 Break up the domain into finite elements; thus: x i +1
∑∫ e
xi
x i +1
au,x u,vxdx = ∑ ∫ fu vdx + Qu v (1) e
(1.24)
xi
Define linear shape functions:
1 − ξ 1 + ξ L1(ξ ) = ; L2 (ξ ) = , −1 ≤ ξ ≤ 1 2 2 Now, let (over a single element):
(1.25)
x = L1 (ξ )x i + L2 (ξ )x i +1 u = L1(ξ )ui + L2 (ξ)ui +1
(1.26)
u v = L1(ξ )uiv + L2 (ξ )uiv+1 Note that:
x − xi dx h = L1,ξ x i + L2,ξ x i +1 = i +1 = 2 2 dξ
{
u,x =
2 2 L1,ξui + L2,ξui +1 ) = L1,ξ ( h h
u,vx =
2 2 v L1,ξuiv + L2,ξu,vi +1 ) = ui ( h h
{
ui L2,ξ u i +1 L1,ξ u,vi +1 L2,ξ
}
(1.27)
}
Considering integration over a single element:L
L1,ξ 2 u,vi +1 L1,ξ L2,ξ L2,ξ h −1 1 L1,ξ L1,ξ L1,ξ L2,ξ ui a d ξ ui +1 ∫ L L L L 2,ξ 2,ξ −1 2,ξ 1,ξ
x i +1
∫
1
∫a
au,x u,vxdx =
xi
=
{
2 v ui h
u,vi +1
{
}
2 v ui h
{
}
ui h u d ξ i +1 2
}
(1.28)
and x i +1
∫
L1 h u,vi +1 d ξ L2 2
1
fu vdx =
∫ {
}
f uiv
−1
xi
Thus, from Equation (1.24) and Equation (1.28), we have:
{
2 v ui ∑ e h 1
1 L1,ξ L1,ξ u,vi +1 ∫ a −1 L2,ξ L1,ξ
}
{
= ∑ ∫ f uiv e
u,vi +1
}
−1
L1,ξ L2,ξ ui d ξ L2,ξ L2,ξ ui +1
L1 h d ξ + Qu v (1) L2 2
(1.29)
The element stiffness matrix and element forcing vector are : 1 L1,x L1,x h Ke = ∫ a 2 −1 L2,x L1,x 1 L1 h fe = ∫ f d ξ L2 2 −1
L1,x L2,x d ξ L2,x L2,x
(1.30)
After assembly, and eliminating the virtual variables, we have:
Ku = f
(1.31)
where
K = ∑ Ke e
f = ∑ fe + fQ e
(1.32)
The essential (Dirichlet) boundary conditions are imposed via the Lagrange multiplier method:
Ku = f
(1.33)
where
K C T f u , u = , f = K = (1.34) λ b 0 C where C & b capture the boundary condition at x = 0 . The variables λ are the Lagrange multipliers that contain useful information about the sensitivity of the essential boundary conditions.
6. Non-Linear Problems Equations (1.31) and (1.33)is valid for both linear and non-linear problems. For linear problems, the equation is solved once since the stiffness matrix and forcing vector are independent of u . On the other hand, for non-linear problems, either the stiffness matrix or the forcing vector or both is dependent on u . So, Equation (1.31) reads: (1.35) [K (u )]u = f (u ) where:
K (u ) = ∑ Ke (u ) e
(1.36)
f (u ) = ∑ fe (u ) + fQ e
and 1 L1,ξ L1,ξ 2 Ke (u ) = ∫ a(u ) h −1 L2,ξ L1,ξ 1 L1 h fe (u ) = ∫ f (u ) d ξ L2 2 −1
L1,ξ L2,ξ d ξ L2,ξ L2,ξ
(1.37)
while Equation (1.33) reads
K (u )u = f (u )
(1.38)
i.e., a non-linear problem. We will consider two different methods of solving Equation (1.38): 1. Picard iteration 2. Newton Raphson iteration
6.1 Picard Iteration Theorems (for Picard's Method) Theorem 1: (Banach's Fixed Point Theorem) If ϕ(x ) : ℜn → ℜn is a continuous function such that: d (ϕ(x ), ϕ(y )) < d (x , y ), ∀x , y (1.39) n where d (.,.) is an appropriate metric defined in ℜ , then the iteration:
x n +1 = ϕ(x n )
(1.40)
will converge (to a fixed point of ϕ(x ) ). Theorem 2: If ϕ(x ) is a differentiable function in a range [a, b ] , then ϕ(x ) has a unique fixed point if ϕ,x (x ) < 1 for all x ∈ [a, b ] . Proof: Mean Value Theorem. From Equation (1.38), ϕ(u ) : K (u )
−1
f (u )
Suppose:
K (u )
−1
f (u ) − K (v )
−1
f (u ) < u − v , ∀u, v
(1.41)
then the Picard iteration for Equation (1.35) will proceed as follows: 1. Guess u 0 (say 0). Set n = 0. 2. Assemble K (u n ) & f (u n )
−1
= K (u n ) f (u n ) 4. Stop when u n +1 − u n < ε , else go to step 2. 3. Compute u
n +1
Of course, establishing Equation (1.41) is not easy … a case-by-case analysis at best! We will later consider stiffening versus softening non-linear problems, and study the convergence of Picard iteration.
6.2 Newton-Raphson Iteration Theorem (for N-R Method): If h(x ) is a second order differentiable in [a, b ] , and if
h(x * ) = 0 where x * = [a, b ] , and h,x (x * ) = 0 then the sequence:
x n +1 = x n − h(x n )/ h,x (x n )
(1.42)
*
will converge to x Proof: See popular text-books on numerical methods. Derivation of the Tangent Matrix The non-linear equation that we must solve is:
R(u ) = [K (u )]u − f = 0
(1.43)
Applying Equation (1.42): −1
u n +1 = u n − [T (u n )] R(u n ) where T (u n ) is the tangent or Jacobian matrix given by: ∂ ∑ K im um m ∂Ri Tij = = ∂u j ∂u j Considering a single element (for linear shape functions m = 1, 2 ): 2 e ∂ ∑ K im um e e 2 2 2 ∂ (K im um ) ∂K im e ∂um Tije = m =1 =∑ =∑ um + ∑ K im ∂u j ∂u j ∂u j m =1 m =1 ∂u j m =1
(1.44)
(1.45)
(1.46)
Considering the definition of element stiffness matrix in Equation (1.30), we have: 1 h 1 ∂u h a ( x , u ) L L d ξ = a ( x , u ) L L d ξ i , x m , x , u i , x m , x 2 ∫ 2 ∫ ∂u j −1 −1 Further, since u = L1u1 + L2u2 , we have: e h 1 ∂K im = ∫ a,u (x , u )Lj Li,x Lm,xd ξ ∂u j 2 −1 e ∂K im ∂ = ∂u j ∂u j
(1.47)
(1.48)
The second term in Equation (1.46):
∂ um = K ije ∂u j
2
∑K
e im
m =1
(1.49)
Thus, substituting Equation (1.48) and Equation (1.49) in Equation (1.46), we have:
h 1 T = ∑ ∫ a,u (x , u )Lj Li,x Lm ,xd ξ um + K ije m =1 2 −1 h 1 2 e Tij = ∫ a,u (x , u )Lj Li ,xd ξ ∑ Lm ,x um + K ije m =1 2 −1 2
e ij
(1.50)
(1.51)
Thus, Equation (1.51) is used to assemble the tangent matrix. Applying zero boundary conditions on ∆u n , we have:
T (u n ) C T ∆u n R(u n ) = C ζ 0 0
(1.52)
Thus, we must assemble both the stiffness matrix and the tangent matrix T (u n ) defined via Equation in each step. Thus, the Newton-Raphson iteration will proceed as follows: 1. Guess u 0 (say 0). Set n = 0. 2. Assemble [K (u n )] & f (u n ) 3. Assemble/ compute [T (u n )] & R(u n ) −1
4. Compute ∆u n +1 = T (u n ) R(u n ) per Equation (1.52) 5. Compute u n +1 = u n + ∆u n +1 6. Stop when u n +1 − u n < ε , else go to step 2.