Studies in Devonian Stratigraphy: Proceedings of the

0 downloads 0 Views 2MB Size Report
Espanola de Paleontologia, vol. Extraordinario: 161-172. Gedik, I. 1969. Karnik Alpler'den Alt Karbonifer'e ait conodont- lar. Bulletin of the Mineral Research and ...
Studies in Devonian Stratigraphy: Proceedings of the 2007 International Meeting of the Subcommission on Devonian Stratigraphy and IGCP 499 D. Jeffrey Over, editor

Palaeontographica Americana Number 63, December 2009

2

Palaeontographica Americana, No.  ISSN 0078-8546 ISBN 978-0-87710-490-2 Library of Congress Catalog Card Number 2009940677 © 2009, Paleontological Research Institution, 1259 Trumansburg Road, Ithaca, New York 14850, U. S. A.

On the Cover: Guilmette Formation (Upper Devonian, Frasnian) on the southern flank of Mt. Irish, Mt. Irish Range, Lincoln County, Nevada (Stop 3 in guidebook). In the foreground are the slope-forming lower member, slope and ledge forming Alamo Breccia Member, vertical cliffs and gray cap formed by the upper member, including stromatoporoid reef and mud mound facies. Photograph by Jared R. Morrow.

Printed in the United States of America Allen Press, Inc. Lawrence, Kansas 66044, U. S. A.

3 CONTENTS Contributors and Reviewers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 David J. Jacobi, James E. Barrick, Mark A. Kleffner, & Haraldur R. Karlsson Stable

isotope

chemostratigraphy

and

conodont

biostratigraphy

across

the

Silurian-Devonian

boundary

in

southwestern

Laurentia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-31 Charles R. Ver Straeten Devonian T-R cycle IB: the “lumping” of Emsian sea level history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33-48 James J. Zambito IV, Gordon C. Baird, Carlton E. Brett, & Alexander J. Bartholomew Depositional Sequences and Paleontology of the Middle-Upper Devonian Transition (Genesee Group) at Ithaca, New York: a Revised Lithostratigraphy for the Northern Appalachian Basin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49-69 Sven Hartenfels & R. Thomas Becker Timing of the global Dasberg Event: implications for Famennian eustasy and chronostratigraphy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71-97 Sandra I. Kaiser, R. Thomas Becker, Claudia Spalletta, & Thomas Steuber High-resolution conodont stratigraphy, biofacies, and extinctions around the Hangenberg Event in pelagic successions from Austria, Italy, and France . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99-143 Claudia Dojen, José Ignacio Valenzuela-Ríos, & Peter Carls Ostracodes of Spain (Pyrenees, Celtiberia) and Early Devonian biostratigraphy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145-155 Mena Schemm-Gregory & Ulrich Jansen New implications on the Upper Givetian “Stringocephalus bed” in central Nevada (Brachiopoda, Middle Devonian) . . . . . . . 157-165 Judith Nagel-Myers, Michael Amler, & R. Thomas Becker The Loxopteriinae n. subfam. (Dualinidae, Bivalvia): review of a common bivalve taxon from the Late Devonian pelagic facies . . 167-191 Abstracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193-233 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234-239 Electronic supplement: SDS 2007 Field Trip Guidebook: Devonian Shelf-to-Slope Facies and Events, Central Great Basin, Nevada and Utah, U.S.A., compiled by Jared R. Morrow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CD-ROM

HIGH-RESOLUTION CONODONT STRATIGRAPHY, BIOFACIES, AND EXTINCTIONS AROUND THE HANGENBERG EVENT IN PELAGIC SUCCESSIONS FROM AUSTRIA, ITALY, AND FRANCE Sandra I. Kaiser, R. Thomas Becker, Claudia Spalletta, and Thomas Steuber 1

Steinmann Institute (Paleontology), Rheinische Friedrich-Wilhelms-Universität, Nussallee 8, D-53115 Bonn, Germany, email [email protected]; 2Geologisch-Paläontologisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 24, D-48149 Münster, Germany, email [email protected]; 3Dipartimento di Scienze della Terra e Geologico Ambientali, Università di Bologna, via Zamboni 67, I-40126 Bologna, Italy, email [email protected]; 4The Petroleum Institute, P. O. Box 2533, Abu Dhabi, United Arab Emirates, email tsteuber@ pi.ac.ae.

ABSTRACT Based on high-resolution correlation of condensed pelagic successions of the Carnic Alps (northern Italy), Graz Palaeozoic (Austria), Montagne Noire (southern France), and French Pyrenees, conodont stratigraphy, extinctions, and biofacies changes were studied around the Devonian/ Carboniferous boundary and compared regionally and internationally. The new and previous results allow us to distinguish 11 conodont biozones from the Lower expansa Zone (upper Famennian) to the quadruplicata Zone (= Upper sandbergi Zone, top of lower Tournaisian). Fifty-six conodont taxa are documented and assigned to conventional platform element genera. Their relative distribution is used to describe the vertical biofacies evolution. The ranges of several species are extended and, in comparison with previous investigations, many new local records are added. Some new ammonoid data from the Carnic Alps allow a correlation of cephalopod and conodont zones. The latter are partly (e.g., Lower and Middle expansa zones) difficult to recognize because the defining index species are rare or locally absent; a revision of the zonal scheme is desirable. New evidence confirms that the disappearance of Palmatolepis gracilis gonioclymeniae Müller, 1956, is locally very diachronous and not a meaningful level for correlation. Hence, the Middle praesulcata Zone is abandoned. Some additional conodont species disappear gradually before the main extinction of the Hangenberg event. Palmatolepis and some dominant Famennian lineages of Bispathodus and Pseudopolygnathus died out in all sections at the base of the Hangenberg Shale equivalent, at the same level as most ammonoids and benthic faunas of the pelagic realm. The global pelagic conodont extinction rate was ca. 38%, but locally much higher rates are observed in the Prototethys realm. We suggest using the significant conodont extinction as a zonal boundary; the main part of the Hangenberg Event interval falls in a Bispathodus costatus – Protognathodus kockeli Interregnum (CKI) that locally can have common Polygnathus inornatus Branson, 1934, or some Protognathodus meischneri Ziegler, 1969. The former Upper praesulcata Zone is renamed the Protognathodus kockeli Zone. Due to the episodic rarity or absence of siphonodellids close to the boundary, the base of the Carboniferous is alternatively drawn with the entry of Protognathodus kuehni Ziegler & Leuteritz, 1970.

INTRODUCTION Devonian/Carboniferous (D/C) boundary sections have been intensively investigated in recent decades in different palaeogeographical settings and in relation to the major Hangenberg Mass Extinction at the end of the Devonian (e.g., Paproth & Streel 1984a; Wang 1987; Flajs et al., 1988; Korn et al., 1994a; Kaiser 2005). The causal factors that triggered this severe biotic crisis, which comprised a total time span of several hundred thousand years for the complete event interval (Trapp et al., 2004), are related to the Hangenberg Black Shale Event, a sudden anoxic and transgressive event, followed by rapid climatic cooling and a glaciation pulse on Gondwana leading to global regression (e.g., Caputo, 1985; Becker, 1996; Streel et al., 2000). Most recent geochemical studies in the Carnic Alps and Chapter 5, in Studies in Devonian Stratigraphy: Proceedings of the 2007 International Meeting of the Subcommission on Devonian Stratigraphy and IGCP 499, edited by D. Jeffrey Over, Palaeontographica Americana, 2009, (63): 99-143.

Rhenish Massif indicate an enhanced organic carbon burial during the initial extinction phase and time of widespread black shale deposition, which, via a fast and significant drawdown of the atmospheric CO2 level, could have triggered climatic changes at the end of the Famennian (Kaiser et al., 2006; 2008). The precise dating and correlation of the event beds are often influenced by strong condensation, biofacies patterns, hiati (Kaiser et al., 2004), or the lack of fossils in black shales and sandstones (e.g., Kaiser et al., 2007) accompanied by the global disappearance of cephalopod limestones (Becker, 1993a, b; Korn et al., 1994a) in outer shelf settings. Furthermore, the lack of siphonodellids in protognathodid faunas at the D/C boundary German Stockum Limestone and equivalents (Alberti et al., 1974), especially of the index fossil Siphonodella sulcata (Huddle 1934), hampered the search for successions where the Si. praesulcata Sandberg, 1972 – Si. sulcata lineage is represented.

100

Palaeontographica Americana, No. 

Text-fig. 1. Location of investigated sections in the (A) Carnic Alps (map modified from Perri & Spalletta 1998a) and (B) Graz Paleozoic.

This study focuses on the high-resolution conodont biostratigraphy from the upper Famennian Lower expansa Zone to the lower Tournaisian quadruplicata (Upper sandbergi) Zone. The sampling of condensed pelagic limestones from seven sections in the Carnic Alps (Italy), Graz Palaeozoic (Austria), Montagne Noire (France), and Pyrenees (France) was carried out to allow a precise correlation of beds around the D/C boundary, and to document the regional conodont distribution and biofacies evolution around the highest Famennian Hangenberg Event interval. Our conodont data update and refine previous investigations of sections, include many new local records of species, and, through comparison with the international record of pelagic successions, provide important data on the conodont extinction caused by the global Hangenberg Event. We propose to use this significant extinction, not the irregular last occurrence of Pa. gracilis gonioclymeniae Müller, 1956, to subdivide the praesulcata Zone.

MATERIAL AND METHODS The following abbreviations of conodont genera are used throughout the manuscript: Bi., Bispathodus; Br., Branmehla; Me., Mehlina; Pa., Palmatolepis; Po., Polygnathus; Pr., Protognathodus; Ps., Pseudopolygnathus; Si., Siphonodella. Ammonoid zonal keys follow Becker & House (2001). Conodonts are stored at the State Museum of Natural History Stuttgart; all mentioned ammonoids are stored in the collection of the Geomuseum of the Westfälische WilhelmsUniversität, Münster.

GEOLOGICAL SETTING The studied sections (Großer Pal, Casera Malpasso, Rio Boreado, Plan di Zermula) are located in the Carnic Alps (Text-fig. 1), between Kötschach-Mauthen in the north and Paluzza in the south. The sections are composed of pelagic cephalopod limestone, the Pal and Kronhofgraben Limestone of Austrian lithostratigraphy, and the Pramosio Limestone of Italian nomenclature (Venturini et al., in press). Deposition started locally in the upper Frasnian and lasted, with interruptions, at least until the lower Viséan (Perri & Spalletta, 1998a). Coarse carbonate detritus, driven mainly by tectonics, was shed basinward until the middle Famennian (transitional facies of Perri & Spalletta, 1998a). Uplift, up to emersion at places, of small submarine areas or of tectonic blocks in the subsiding basin (Venturini & Spalletta, 1998) led to shallowwater carbonate accumulation on distal submarine rises during the Visean. Equivalents of the Hangenberg Black Shale are locally preserved (Perri & Spalletta, 2001). The Graz Palaeozoic (eastern Alps) is part of the Upper Austroalpine Nappe System (Flügel & Neubauer, 1984), and is exposed in the surroundings of Graz (Austria/Styria). The studied locality (Trolp; Text-fig. 1) is situated in the Steinberg area in the western Graz Palaeozoic. The sediments belong to the Rannach facies (Ebner, 1998), which indicates pelagic depositional environments of a distal shelf region (Ebner et al., 2000) and ca. 200 m water depths (e.g., Ebner & Prochaska, 1989). Famennian micritic limestones are included in the Steinberg Formation, beds above Hangenberg Shale equivalents in the Sanzenkogel Formation.

Kaiser ET AL.: Conodonts Around the Hangenberg Event

101

Text-fig. 2. Location of the (A) Milles section in the French Pyrenees (Ariège area) and (B) the Puech de la Suque section in the Montagne Noire.

The Puech de la Suque section is located in the southwesternmost part of the French Central Massif, Mont Peyroux Nappe area, of the southern Montagne Noire (Text-fig. 2), which is formed by south-facing folds and nappes with low grade or nonmetamorphic Paleozoic rocks (Feist, 2002). Distal pelagic outer platform "griotte" facies, nodular cephalopod limestones of the Griotte Limestone Formation, with three members (Feist, 1985), characterize the Famennian and lower Tournaisian of the Mont Peyroux Nappe area. Hangenberg Blackshale equivalents interrupt the carbonate succession (Boyer et al., 1968; Lethiers & Feist, 1991). The Milles section is located in the western part of the Arize Massif, Ariège Pyrenees, southern France, between Foix in the east and Saint-Girons in the northwest. The uppermost Famennian to lowermost Tournaisian deposits in this area belong to the Barousse Formation (Perret, 1993) and are mainly composed of micritic, often nodular, cephalopod limestones, briefly interrupted by fine siliciclastics during the Hangenberg Event interval (Perret, 1988). The pelagic litho- and biofacies of all studied sections is comparable. They belonged to the continuous northern outer shelf of the narrow Prototethys that allowed a free lateral faunal exchange. No palaeobiogeographical differences between the studied conodont successions were found and the faunas allow high-resolution correlations. Small-scale differences of faunal compositions and species abundances reflect still poorly understood local and episodic paleoecological fluctuations that are not recorded in the lithology.

SECTION DESCRIPTIONS GROSSER PAL In the area around the Großer Pal section, the pelagic facies with ammonoids was first recognized and studied by Frech

(1887, 1894, 1902). Subsequently, Gaertner (1931), House (unpubl. report), House & Price in Schönlaub (1980), and Korn & House (1997) recorded ammonoid faunas of different successions, which crop out at the Großer Pal Mt. The conodont and trilobite faunas were previously investigated by Schönlaub (1980) and Perri & Spalletta (unpubl. data). Following the unpublished numbers of M. R. House, we sampled the uppermost Famennian at Section II at Großer Pal. In comparison with the limited data by Schönlaub (1980), we recorded more than a dozen additional taxa (Text-fig. 3, Table 1). Schönlaub (1980) found the first evidence of the Upper expansa Zone, Branmehla suprema (Ziegler, 1962), in a sample 2.25 m below the top of the Pal Limestone in his section II. This is confirmed by our lowest sample from Bed 1, which yielded Bispathodus ultimus (Bischoff, 1957) and a typical Upper expansa conodont Zone assemblage, including Palmatolepis gracilis expansa Sandberg & Ziegler, 1979, Pa. gracilis gonioclymeniae, Br. suprema, and Pseudopolygnathus marburgensis trigonicus Ziegler, 1962. The last occurrence of Ps. marburgensis marburgensis Bischoff & Ziegler, 1962, in Bed 1 confirms that it does not reach the praesulcata Zone (see upper range by Ziegler & Sandberg, 1984). The base of the Lower praesulcata Zone has been fixed, based on Spalletta & Perri (unpubl. data), at the base of Bed 2d. This is supported by the ammonoid fauna of Bed 2f with Effenbergia lens (Korn, 1992) and E. falx (Korn, 1992), previously included in Balvia or Mayneoceras, Cyrtoclymenia sp., Kosmoclymenia sp., and Cymaclymenia cf. striata (Münster, 1832); the first two species document the Effenbergia Zone (UD VI-B) that starts low in the praesulcata Zone (Kürschner et al., 1993; Becker, 1996). The lack of Si. praesulcata in our samples below Bed 4c shows that it is locally rare and this illustrates the difficulties to correctly place the base of the praesulcata Zone. The ammonoid

102

Palaeontographica Americana, No. 

Text-fig. 3. Lithological log of Großer Pal, Section II (Carnic Alps), with the position of conodont and ammonoid faunas, conodont ranges, and zonation. Triangle = record of Perri & Spalletta (unpubl. data). For legend of lithological sections, see Text-fig. 8.

Kaiser ET AL.: Conodonts Around the Hangenberg Event

103

Großer Pal

bed number

Upper expansa

Table 1. Conodont distribution at Großer Pal. First record of Si. praesulcata at the base of Bed 2 d was recorded by M. C. Perri & C. Spalletta (unpubl. data).

praesulcata

4a

5a Base

5a Top

5b

5Top (5c)

Sum

1

4

---

---

---

25

---

---

---

---

---

3

1 Top

2e

3a

3b

3c

4c

Bi. a. aculeatus

15

---

---

4

---

1

Bi. a. anteposicornis

2

---

---

1

---

---

Bi. bispathodus

2

5

---

1

---

1

---

---

---

---

---

9

Bi. costatus M1

8

4

1

3

3

31

32

48

23

66

25

244

Bi. costatus M2

1

---

---

3

---

1

7

---

1

3

---

16

Bi. stabilis M1

3

6

---

---

---

---

---

---

---

---

---

9

Bi. stabilis M2

11

---

---

---

---

---

2

---

---

---

---

13

Bi. ultimus M1

1

1

1

12

11

4

9

27

22

32

10

130

Br. suprema

11

10

3

53

4

16

25

61

250

320

40

804

Pseudopolygnathus sp.

4

5

1

7

2

---

---

---

---

---

---

19

Me. strigosa

11

5

---

5

2

11

2

---

---

---

---

36

Pa. gr. expansa

1

---

5

---

4

9

4

15

3

12

2

55

Pa. gr. gonioclymeniae

10

8

2

1

---

---

---

---

---

---

---

21

Pa. gr. gracilis

12

5

7

15

4

7

48

48

33

48

9

236

Pa. gr. sigmoidalis

20

33

3

1

4

32

29

14

23

40

Po. c. communis

2

1

---

---

1

1

---

---

---

---

---

Ps. m. marburgensis

3

---

---

---

---

---

---

---

---

---

---

3

Ps. m. trigonicus

6

---

---

14

6

10

31

42

13

18

2

142

2

20

1

---

---

---

---

---

---

23

Po. vogesi

199 5

Bi. cf. spinulicostatus

21

---

2

---

---

4

11

---

38

Br. inornata

21

---

---

---

---

---

---

---

21

Branmehla sp.

2

---

1

1

---

---

---

---

4

1

3

---

2

---

---

6

Br. disparilis

2

---

---

---

---

2

Si. praesulcata

1

---

---

Po. inornatus

---

---

1

Po. symmetricus

1

---

1

Polygnathus sp.

2

---

2

fauna of Bed 4c, with Parawocklumeria paradoxa (Wedekind, 1918), questionable Kenseyoceras biforme (Schindewolf, 1937), and Lissoclymenia wocklumeri (Wedekind, 1914), marks the paradoxa Zone (UD VI-C2). The last occurrence of Pa. gracilis gonioclymeniae in Bed 3b is significantly older than its youngest range at Oberrödinghausen (Rhenish Massif ) or La Serre, where it was found together with Wocklumeria (see discussion by Kürschner et al., 1993). It seems that the Wocklumeria Zone (UD VI-D) is missing at Großer Pal. Branmehla disparilis (Branson & Mehl, 1934a) and Polygnathus vogesi Ziegler, 1962, do not reach the top of the section.

RIO BOREADO At Rio Boreado, the conodont distribution and lithology were previously studied by Spalletta et al. (1998). They documented rather diverse assemblages with 35 taxa, some of which were not found in our new samples. These, however, include the record of five additional taxa: Po. extralobatus Schäfer, 1976, Bi. spinulicostatus (Branson, 1934), Po. symmetricus Branson, 1934, Po. inornatus Branson, 1934, and Po. aff. experplexus (Text-fig. 4, Table 2) and extend some of the local ranges. The Lower expansa Zone was recognized in Bed 0 based on Po. extralobatus and Bi. stabilis M2 (see Ziegler & Sandberg, 1984), whereas Pa. gracilis expansa, the zonal marker, is absent

104

Palaeontographica Americana, No. 

Text-fig. 4. Lithological log of Rio Boreado (Carnic Alps), with the position of conodont and ammonoid faunas, conodont ranges, and zonation. Triangle = record of Spalletta et al. (1998). For legend of lithological sections, see Text-fig. 8.

Kaiser ET AL.: Conodonts Around the Hangenberg Event

105

bed number

Middle expansa

Upper expansa

Rio Boreado

Lower expansa

Table 2. Conodont distribution at Rio Boreado. x = record of Spalletta et al. (1998).

praesulcata

0

1c

2b

3e

4c

5b

6a

6b

6c

6d

6e

7a

7b1

7b2

7b3

7c

Sum

Bi. stabilis M2

3

16

20

55

4

3

---

2

---

---

7

---

---

---

---

---

110

Br. inornata

5

15

12

9

15

7

1

12

9

---

1

1

3

10

20

2

122

Br. inornata-suprema

1

2

---

1

---

---

---

---

---

---

1

---

---

---

---

---

5

Me. strigosa

2

1

4

---

---

---

---

---

---

---

---

---

---

---

---

---

7

Pa. gr. gracilis

4

7

35

65

2

13

35

19

12

1

10

26

24

92

80

15

440

Pa. gr. sigmoidalis

14

41

48

5

17

7

12

8

10

13

40

25

26

68

105

5

444

Po. c. communis

2

3

15

7

---

---

1

2

---

---

---

---

---

---

---

---

30

Po. extralobatus

51

---

---

---

---

---

---

---

---

---

---

---

---

---

---

---

51

Bi. stabilis M1

2

---

---

---

---

---

---

---

---

5

2

1

3

---

---

13

Pa. p. schindewolfi

1

---

---

---

---

---

---

---

---

---

---

---

---

---

---

1

Pa. gr. expansa

2

---

4

---

7

---

3

4

---

4

6

4

10

5

49

Po. cf. homoirregularis

1

---

---

---

---

---

---

---

---

---

---

---

---

---

---

1

Po. znepolensis

5

---

---

---

---

---

---

---

---

---

---

---

---

---

---

5

15

---

4

5

5

15

5

45

10

25

120

222

16

487

Bi. costatus M1 Bi. a. aculeatus

3

---

2

---

---

---

---

---

---

---

---

---

---

5

11

8

1

1

5

13

5

1

11

9

10

7

11

93

Ps. bevipennatus

2

---

---

---

---

---

---

---

---

---

---

---

---

2

Ps. m. marburgensis

9

---

---

---

---

---

---

---

---

---

---

---

---

9

Ps. m. trigonicus

3

5

19

9

15

18

26

34

14

49

70

20

282

Bi. jugosus

1

---

---

---

---

---

---

---

---

---

---

---

1

Pa. gr. gonioclymeniae

6

13

---

---

---

---

---

---

---

---

---

---

19

Po. vogesi

1

16

---

---

---

---

---

---

---

---

---

---

17

Bi. ultimus M1

6

6

26

9

3

1

---

52

33

372

200

24

732

1

---

---

---

---

---

---

---

---

4

---

5

2

---

3

5

7

12

58

80

510

580

275

1532

x

2

---

3

---

2

2

1

2

4

2

18

Bi. spinulicostatus

3

---

2

1

---

---

2

---

8

Po. symmetricus

1

---

---

---

---

---

3

---

4

1

15

2

---

2

2

---

22

1

---

---

3

---

4

1

---

1

Bi. costatus M2

x

Bi. bispathodus Br. suprema Si. praesulcata

x

Br. disparilis Po. inornatus Branson Po. aff. experplexus

at this level, as is Po. styriacus Ziegler in Ziegler & Flügel, 1957, that elsewhere ranges very high in the Lower expansa Zone (Hartenfels & Becker, 2009). The Middle expansa Zone is indicated by Po. znepolensis Spassov, 1965, and Bi. costatus (Branson, 1934; record of Spalletta et al., 1998) in Bed 1c. Several palmatolepids and polygnathids are locally restricted to the basal part of this

zone. The Upper expansa Zone begins with the joint first occurrences of Bi. ultimus (Bischoff, 1957), Ps. marburgensis trigonicus, Pa. gracilis gonioclymeniae, and Br. suprema (record of Spalletta et al., 1998) in Bed 4c. A large Kosmoclymenia embedded at the top of Bed 4 is not stratigraphically useful. The Lower praesulcata Zone has been placed by Spalletta et al. (1998) at the base of Bed 5, which we did not resample.

106

Palaeontographica Americana, No. 

Text-fig. 5. Lithological log of Casera Malpasso (Carnic Alps), with the position of conodont and ammonoid faunas, conodont ranges, and zonation. Triangle = record of Perri & Spalletta (1998c). For legend of lithological sections, see Text-fig. 8.

1 2 4 15 6 1 8 5 3 5 6

Bi. stabilis M2

Bi. ultimus M1

Br. inornata

Br. suprema

Me. strigosa

Pa. gr. expansa

Pa. gr. gonioclymeniae

Pa. gr. gracilis

Pa. gr. sigmoidalis

Po. c. communis

Ps. m. trigonicus 1

14

1

---

---

1

3

1

1

2

5

1

---

---

1

---

1

---

3

12 12

1

---

6

4

---

1

1

4

2

5

2

10

4

---

---

2

---

6

---

2

12.1 12.1

1

---

---

3

3

---

---

1

6

1

5

---

26

5

---

---

10

---

2

1

2

12.2 12.2

---

1cf.

---

12

5

---

---

3

2

3

5

35

---

7

---

---

1

---

---

---

---

12.3 12.3

1

---

---

---

7

1

---

---

2

1cf.

---

2

---

6

3

---

---

3

---

5

---

---

13 12.4

---

---

---

---

1

25

---

1

3

1

3

3

2

7

18

---

---

---

---

6

---

---

13.1 13

Pseudopolygnathus sp.

Po. symmetricus

1

19

2

---

1

2

3

1

---

9

1

4

---

---

---

---

1

---

1

11 11

1

1

3

---

1

1

2

3

3

33

3

6

---

---

---

---

4

1

---

10T 10

Br. disparilis

11

8

2

19

88

22

7

24

---

5

---

---

---

2

12

64

---

10

10B 9.1

Upper expansa

Si. praesulcata

Bi. costatus M2

Bi. a. anteposicornis

Po. inornatus

Ps. controversus

Po. vogesi

1

2

Bi. jugosus 3

14

Bi. costatus M1

Bi. stabilis M1

1

Bi. spinulicostatus

3

Bi. bispathodus

9 9

Bi. a. aculeatus

new bed number old field number

Casera Malpasso

Table 3. Conodont distribution at Casera Malpasso.

2

---

2

---

8cf.

---

---

7

---

1

5

1

10

4

28

2

16

---

---

---

---

8

---

---

14B 13.1

1

---

1

2

---

---

---

---

23

---

1

1

---

2

---

70

---

20

---

---

1

---

11

---

---

14T 13.2

1

---

---

---

---

---

---

---

18

---

3

10

---

3

---

126

---

15

---

---

2

---

19

---

---

15 15

praesulcata

-----

1

---

14

---

1cf.

---

---

11

---

16

11

---

1

4

88

28

---

---

7

---

12

1

1

16.1 15.2

---

---

1

2

---

---

---

---

7

---

5

21

---

4

2

18

1

28

---

---

2

---

29

---

---

16 15.1

1

2

3

3

21

1

11

1

74

124

7

52

155

53

45

61

428

70

158

1

3

32

14

182

4

22

Sum

Kaiser ET AL.: Conodonts Around the Hangenberg Event 107

108

Palaeontographica Americana, No. 

Pa. gracilis gonioclymeniae has its last local occurrence in Bed 5, well below the onset of Parawocklumeria paradoxa, juvenile Finiclymenia, and Mimimitoceras cf. trizonatum Korn, 1988, in Bed 7b-c, which indicate the paradoxa Zone (UD VI-C2), and thus an age older than the "Middle praesulcata Zone" elsewhere (Kürschner et al., 1993). CASERA MALPASSO Casera Malpasso has become famous for the abundant ammonoids (Korn, 1998; Korn & House, 1997), trilobites, and conodonts. Perri & Spalletta (1991, 1998b) studied the complete exposed succession that starts in the middle Famennian Upper trachytera Zone. Our resampling commenced much higher and covers only the uppermost Famennian (Text-fig. 5, Table 3), where we recovered additional taxa, such as Bi. bispathodus Ziegler, Sandberg & Austin, 1974, Bi. jugosus (Branson & Mehl, 1934a), Bi. spinulicostatus, Bi. aculeatus anteposicornis (Scott, 1961), Br. inornata (Branson & Mehl, 1934a), and Po. symmetricus. However, we did not retrieve Br. fissilis and Bi. ultimus M2. In accordance with Perri & Spalletta (1998b), a typical conodont assemblage of the Upper expansa Zone, with Bi. ultimus, Br. suprema, Ps. marburgensis trigonicus, and Pa. gracilis gonioclymeniae, was found in Beds 9-13. Pseudopolygnathus controversus Sandberg & Ziegler, 1979, from Bed 12 confirms a previous (Sample 13) very high range of the species that Ziegler & Sandberg (1984) last noted in the middle of the Middle expansa Zone. The Lower praesulcata Zone starts in Bed 13.1, which is in accordance with the ammonoid fauna, Effenbergia sp. and "Mimimitoceras" cf. geminum Korn, 1992, that indicates zone UD VI-B. This level could also correlate with the ammonoidbearing Bed 3c of Korn (1998). Ammonoids of Bed 15, Kalloclymenia cf. subarmata (Münster, 1832), Finiclymenia sp., Parawocklumeria paprothae Korn in Clausen et al. (1990), and Cymaclymenia cf. costellata (Münster, 1832), suggest an age no older than early UD VI-C2, which in the Rhenish Massif (Becker, 1996) correlates with a level high in the Lower praesulcata Zone. Perri & Spalletta (1991, 1998c) correspondingly found the last Pa. gracilis gonioclymeniae in Bed 15. Korn (1998) reported Mayneoceras nucleus (Schmidt, 1924), another VI-C2 marker, from ca. 40 cm below the top of the section. As in other sections, Po. vogesi and Br. disparilis last occur before or within the Lower praesulcata Zone. PLAN DI ZERMULA The sections at Plan di Zermula are affected by complex tectonics from the Hercynian and Alpine deformations (e.g., Venturini & Spalletta, 1990). Faulting led to the tectonic suppression of some lower Tournaisian zones whereas others have been repeated. The overall succession records continuous

carbonate deposition from the Frasnian to the Visean, and intercalated black shales were interpreted as an equivalent of the Hangenberg Black Shale (Perri & Spalletta, 2001). Conodont investigations around the D/C boundary started in the Monte Zermula area with Manzoni (1966). Our investigations at Plan di Zermula, Section A (Text-fig. 6, Table 4), started lower than shown by Perri & Spalletta (2000a) in the Lower expansa Zone with biostratigraphically significant taxa such as Pa. gracilis expansa, Pa. rugosa rugosa Branson & Mehl, 1934a, and Bi. stabilis M2. Generally, we could confirm the results of Perri & Spalletta (2000a, b) but added some taxa in the uppermost Famennian and had some different forms in the basal Carboniferous, whereas several others, Pr. meischneri Ziegler, 1969, Pinacognathus valdecavatus Gedik, 1969, Vogelgnathus sp., Po. fornicatus Ji, Xiong, & Wu, 1985, Po. longiposticus Branson & Mehl, 1934b, Po. perplanus Branson, 1934, Ps. fusiformis (Branson & Mehl, 1934b), and Si. duplicata (Branson & Mehl, 1934b) sensu stricto, did not show up in our samples. The Middle expansa Zone is indicated by Bi. costatus M2 in Bed -5. With respect to its unusually thin representation, the delayed entry of Bi. aculeatus aculeatus (Branson & Mehl, 1934a) in the next zone, and the complete lack of Po. styriacus, it is possible that the zonal base lies lower. Only Bed -12, the lowest in the section, contains Po. granulosus Branson & Mehl, 1934, that does not range much above the Lower expansa Zone. Pseudopolygnathus micropunctatus Bischoff & Ziegler, 1956 from Bed -5 is among the youngest records of the species (Perri & Spalletta, 1991) but Corradini (2008) found it even higher in Sardinia. The Upper expansa Zone has been recognized by the occurrence of Bi. ultimus in Bed -4, together with Pa. gracilis gonioclymeniae, Br. suprema (Bed -3), and Ps. marburgensis trigonicus (Bed -2). Palmatolepis gracilis gonioclymeniae disappears in the late Upper expansa Zone, with the last occurrence of transitional morphotypes between Pa. gracilis gonioclymeniae and Pa. gracilis expansa in Bed -2. The base of the Lower praesulcata Zone was lowered from Bed 1b (Perri & Spalletta, 2000b) to Bed 1a1. At the top of the limestone, before the deposition of the equivalent of the Hangenberg Black Shale, nine out of 13 taxa (64.3%), counting formally recognized morphotypes as subspecies, disappear locally, including the last Palmatolepis, the Bi. costatus/ultimus lineage, and Ps. marburgensis trigonicus. Above the equivalent of the Hangenberg Black Shale (Bed 1e), Siphonodella sulcata (Huddle, 1934) is recorded in Bed 2aI (Perri & Spalletta, 2000b), which lacks the protognathodids of the basalmost Carboniferous of other sections in this and previous studies. The absence of the Lower and Upper Protognathodus faunas reveals that the kockeli (= Upper praesulcata) Zone and the lower part of the sulcata Zone (Upper Stockumites level) are not preserved due to local nondeposition of carbonates in

Kaiser ET AL.: Conodonts Around the Hangenberg Event

109

Text-fig. 6. Lithological log of Plan di Zermula, Section A (Carnic Alps), with the position of conodont faunas, conodont ranges, and zonation. HBS = Hangenberg Blackshale equivalent; triangle = record of Perri & Spalletta (2000b). For legend of lithological sections, see Text-fig. 8.

a deep depositional environment (Perri & Spalletta, 2000b). Based on Si. bransoni Ji, 1985 (= Si. duplicata M1), the bransoni Zone (Ji, 1985; = lower part of Lower duplicata Zone) was recognized in Bed 2ax. Bed 2ay yielded Si. quadruplicata (Branson & Mehl, 1934b) and Si. cf. lobata (Branson & Mehl, 1934b), characterizing the quadruplicata Zone (= upper part of the sandbergi Zone). However, several faults cause repetition of beds (Beds 2aII, 2ay) at this level. The top of

the section comprises again the Upper sandbergi Zone, which was identified by Si. quadruplicata, but Si. sandbergi Klapper, 1966, was not recorded. TROLP The eastern part of the Trolp Quarry at Steinberg consists of well-exposed Lower Carboniferous beds of the Sanzenkogel Formation, with thin-bedded limestones interrupted by

110

Palaeontographica Americana, No. 

Table 4. Conodont distribution at Plan di Zermula A. x = record of Perri & Spalletta (2000b) Plan di Zermula A bed number Br. bohlenana Bi. stabilis M2 Me. strigosa Pa. gr. expansa Pa. gr. gracilis Pa. gr. sigmoidalis Pa. p. schindewolfi Pa. r. rugosa Po. marginvolutus Po. granulosus Ps. brevipennatus Ps. controversus Ps. micropunctatus Po. hassi Po. obliquicostatus Pa. r. ampla Polygnathus sp. Pseudopolygn. sp. Br. inornata Po. extralobatus Bi. costatus M1 Bi. costatus M2 Bi. a. aculeatus Bi. ultimus M1 Bi. ultimus M2 Pa. gr. gonioclym. Po. vogesi Br. suprema Ps. m. trigonicus Bi. jugosus Bi. spinulicostatus Si. praesulcata Po. inornatus Po. p. purus Po. p. subplanus Pr. kockeli Po. c. carina Po. symmetricus Pr. collinsoni Pr. kuehni Ps. primus Si. bransoni Si. sulcata Po. sp. Ps. marginatus Ps. triangulus Si. cooperi M1 Si. hassi Si. lobata Si. quadruplicata Ps. multistriatus Po. c. communis Si. obsoleta

Middle expansa

Lower expansa -12 39 6 10 8 23 8 7 4 34 1 3 17 11

-11 13 2 ----2 --1 1cf. 1 ----6 ---

-10 1 55 9 3 60 26 57 4 58 ------26 4 2 7 3 1

-9 --16 --1 9 4 12 4 --------1cf. 1 20 ------1 110

-8 2 15 1 --12 1 6 ---------------------------

-7 2cf. 2 1 --4 1 2 ----------2 --------4 4 7

-5 --4 10 1cf. 15 2 6 --2 ----4 20 ----------17 20 1 5

Upper expansa -4 --1 --1 8 ------------------------------5 --3 1 1 8 1

-3 --1 2 --7 ------------------------------4 --2 ----1 --1

-2 --2 3 --1 1 ----------------------------5 --3 3 1cf. 3cf. --1 1

praesulcata 0 ----2 --3 4 ----------------------------6 3 --1 ------6 2 1 4

1a1 ----2 ----1 --------------------1 --------------------2 ------1

1a2 ------4 3 11 --------------------1 --1 --5 ----12 ------11 5 ----1

1a3 ----4 5 20 19 ----------------------------20 ----32 4 ----60 10 --3 1 2cf.

1bTop ----7 29 23 36 ----------------------------51 ----43 ------70 28 --5 -----

1c ------6 15 69 --------------------------------2 9 ------75 25 ---------

1d ----2 5 7 22 ----------------------------1 8 --16 ------185 60 ----1 ---

sulcata

bransoni

quadruplicata

sulcata

sandbergi

Kaiser ET AL.: Conodonts Around the Hangenberg Event

2aI ------------------------------------------------------------------2 4 1

2ax --------------------------------------------------------------1cf. --12 21 3 2 1cf. 1 3 5 2 2

2ay ----1cf. ----------------------------------------------------------1 ------------------1 1 1 21 130 15 1cf. 11

2aII ------------------------------------------------------------------8 35 ----------1 --2cf. --1 ----------2

2aIII ----18 ------------------------------------------------------------------------------------23 68 15 -------

x

quadruplicata 2aIV ----5cf. --------------------------3 --------------------------------------------------------18 148 ----56 --2

2aV ----26 --------------------------6 --4cf. ----------------------------------------------7 2 --54 19 3 2 49 --5cf.

2aVI --------------------------------9 ----------------------------------------------------10 7 6 25 12 --75 ----70

Sum

57 104 103 63 212 205 91 13 95 1 3 27 60 5 22 7 23 5 27 137 98 16 10 117 6 12 1 411 131 1 12 4 3 22 60 4 2 1 1 3 6 2 12 13 9 122 390 45 3 191 2 7 70

111

a phosphorite/lydite horizon ("Trolp-Phosphorit-Bank," Buchroithner et al., 1979; Ebner, 1980) bearing Si. crenulata (Nössing, 1975), an index fossil for the basal middle Tournaisian. In the northern and western parts, upper Famennian successions of the Steinberg Formation are disturbed by a NE-SW striking fault. Previous conodont studies of the Rannach facies (e.g., Kodsi, 1967; Ebner, 1973, 1978) revealed that the Upper Devonian and Lower Carboniferous are locally separated by an unconformity related to sea-level changes (Ebner, 1991), synsedimentary tectonics (Ebner & Prochaska, 1989), and in part, strong emergence during the Variscan orogeny. The first detailed conodont sampling around the D/C boundary (Ebner, 1980) started just below the top of the Steinberg Limestone and proved the presence of the Protognathodus fauna and a delayed entry of Si. sulcata in the basal Carboniferous. This is substantiated by our more detailed sampling, which produced a dozen additional taxa that were not previously recorded (Text-fig. 7, Table 5). The Lower praesulcata Zone was recognized by Si. cf. praesulcata (juvenile form) in the lowest sampled Bed 1. Pa. gracilis gonioclymeniae disappears in our samples above Bed 1 but it was recorded by Ebner (1980) up to the top of the Steinberg Limestone, giving a large upper range uncertainty. A lithological and faunal change is marked by a 1 cm-thick argillaceous layer (Bed 9 Top), which correlates with the siliciclastic Hangenberg Event interval. Ten out of 18 taxa disappear below the thin shale, giving a 55.6% local conodont extinction rate at the base of the Hangenberg Event. As in the Carnic Alps, Palmatolepis, the Bi. costatus-ultimus lineage, and Ps. marburgensis trigonicus are the most prominent event victims. Thin-bedded (ca. 1-2 cm) marly mud- to wackestones (Beds 10-15) that reflect a low-energy environment and, perhaps, an increase in water depth follow. The lowest unit (Bed 10) represents the only limestone in this study that falls in the interval between the main extinction and the appearance/ radiation of Protognathodus faunas. Po. inornatus is the dominant species, followed by some Bispathodus, Mehlina, and Po. communis communis Branson & Mehl, 1934b. Also, very small specimens of Si. cf. praesulcata were identified. A faunal assemblage characterizing the Lower Protognathodus fauna (Alberti et al., 1974) or the kockeli (= Upper praesulcata) Zone enters in Bed 11, with Pr. kockeli (Bischoff, 1957), Pr. collinsoni Ziegler, 1969, and abundant Pr. meischneri. There are also many transitional morphotypes between Pr. kockeli and Pr. kuehni Ziegler & Leuteritz, 1970, indicating the proximity of the D/C boundary. In contrast to many other D/C boundary sections, relatively small specimens of Si. praesulcata occur in the kockeli Zone. A resampling of the thin-bedded limestones indicate that the D/C boundary can be fixed between Beds 15 and 16 due to the record of Si. sulcata together with Pr. kuehni

112

Palaeontographica Americana, No. 

Text-fig. 7. Lithological log of Trolp (Graz Paleozoic), with the position of conodont faunas, conodont ranges, and zonation. Triangle = record of Ebner (1980). For legend of lithological sections, see Text-fig. 8.

Kaiser ET AL.: Conodonts Around the Hangenberg Event in Bed 16. Also, other Carboniferous taxa, such as Ps. primus (Branson & Mehl, 1934b), and a rich Po. purus Voges, 1959, fauna occur at this level. Our sampling seems to have stopped slightly below the Si. sulcata level of Ebner (1980), which falls in the top part of the sulcata Zone. PUECH DE LA SUQUE The conodont fauna of the D/C boundary section at the southeastern slope of Puech de la Suque, 2.2 km southeast of St. Nazaire de Ladarez, was first studied in detail by Boyer et al. (1968), subsequently by Girard (1994a, b, 1996), whose faunal lists, however, remained undocumented. Ostracods were described by Lethiers & Feist (1991) and Casier et al. (2001). Some ammonoid data were given by Feist (2002) and Korn & Feist (2007), which, apart from Wocklumeria, do not mention the poorly preserved but moderately diverse uppermost Famennian assemblage. The tectonically inverted outcrop is composed of partly nodular bioclastic mudstones and wackestones, which belong to the Middle Member of the Griotte Formation ("supragriotte" of Boyer et al., 1968). According to Casier et al. (2001), the microfacies mirrors deposition on a distal carbonate ramp in ca. 100 m water depth. The pelagic limestone succession is suddenly interrupted by the equivalent of the Hangenberg Black Shale (Lethiers & Feist, 1991; Feist, 2002), a 25 cm-thick, dark-gray, silty shale layer (Bed 10a) with bivalves (Guerichia) and intercalated thin, reddish limestone nodules, indicating eutrophic and dysaerobic conditions (Préat et al., 1999). The inversion-controlled underlying lower Tournaisian Upper Member of the Griotte Formation resembles the Middle Member but gradually the solid limestones change into limestone nodule layers, eventually into reddish shales without nodules, followed by first chert layers of the middle/upper Tournaisian Lower Member ("Lydiennes") of the St. Nazaire Formation. Our sampling (Text-fig. 8, Table 6) started in the upper part of the Middle Member of the Griotte Formation. Apart from some unusual records of early Ps. primus and very late Br. ampla Branson & Mehl, 1934, and Br. bohlenana Helms, 1959 (Boyer et al., 1968), our uppermost Famennian faunas resemble the previous investigations, with the addition of Si. praesulcata, Pa. gracilis expansa, and Br. suprema, but Bi. stabilis, Bi. jugosus, and Po. delicatulus Ulrich & Bassler, 1926, were not recovered. Beds 3-9b in the lower part of the section contain Si. praesulcata, but lack Pa. gracilis gonioclymeniae. Boyer et al. (1968), however, recorded the latter from a single sample at the top of the Famennian limestone, producing extreme uncertainty concerning its upper range. Loose ammonoid material from the upper part of the Middle Griotte Member includes Cymaclymenia striata, Mimimitoceras liratum (Schmidt, 1924), Mim. geminum, and Wocklumeria denckmanni Wedekind, 1914. The last species was recorded

113

by Feist (2002) and Korn & Feist (2007) in place from the last limestone, proving a Wocklumeria Zone (UD VI-D) age. More ammonoid data are available for a lateral section at the Mont Peyroux (Col de Tribes; Becker & Weyer, 2004). At the top of the Middle Member, ten out of 15 conodont taxa disappear, which gives a local 66.7% extinction rate. New collections from Bed 10a, the equivalent of the Hangenberg Black Shale, include bivalves and rare last Cymaclymenia sp., which correlate with the last cymaclymenids in the Hangenberg Black Shale (UD VI-E) of the Rhenish Massif. The following Bed (10b) contains one specimen of Pr. cf. kockeli, which confirms the record of Boyer et al. (1968) and gives a kockeli (= Upper praesulcata) Zone age for the goniatite fauna of UD VI-F with Acutimitoceras (Stockumites) subbilobatum (Münster, 1839) and Ac. (St.) intermedium (Schindewolf, 1923) that was recently described by Korn & Feist (2007). An abundant Lower Protognathodus faunal assemblage occurs in Bed 11, whereas the typical Upper Protognathodus fauna is absent at Puech de la Suque. Our sample confirms that Po. purus purus enters in the topmost Devonian kockeli Zone, as part of the initial post-event radiation during the terminal Devonian transgression. Siphonodella sulcata occurs in Bed 12a1 together with other typical Carboniferous species, such as Ps. multistriatus Mehl & Thomas, 1947; Ps. primus enters locally, too. In accordance with Lethiers & Feist (1991), the D/C boundary can be fixed at the base of Bed 12a1, whereas Girard (1994a) placed the boundary higher, at the base of Bed 15. Korn & Feist (2007) found Gattendorfia subinvoluta (Münster, 1832), the index of the basal Carboniferous subinvoluta Zone (LC I-A2) and of the basal Hangenberg Limestone, already in their Bed 11 but a comparison of unit thicknesses shows that Gattendorfia occurs above our conodont sample 11. Therefore, there is no contradiction between the ammonoid and conodont data. Our samples provide a revision of zonal ages for the main part of the Lower Tournaisian by changing all zonal boundaries. The first Si. bransoni (= Si. duplicata M1) was found in Bed 16, marking the base of the bransoni (Lower duplicata) Zone, whereas Lethiers & Feist (1991) recognized this level higher in Bed 18, and Girard (1994a) even higher in Bed 19. The occurrence of Si. duplicata sensu stricto (Morphotype 2) in Bed 21 allows a dating as duplicata Zone sensu Ji (1985; = upper part of classical Lower duplicata Zone). The first Si. hassi Ji, 1985 (= duplicata sensu Hass), indicating the hassi (Upper duplicata) Zone, enters the section in Bed 23, well below the record of Si. cooperi Hass, 1959, recognized by Lethiers & Feist (1991) in Bed 25 or by Girard (1994a) in nodules of Bed 27. We cannot identify the base of the (Lower) sandbergi Zone but Si. quadruplicata (Branson & Mehl, 1934b) in Bed 25 indicates the quadruplicata (Upper sandbergi) Zone. Therefore, the limestones of the Upper Member of the Griotte

Bi. costatus M2 Po. c. communis Po. inornatus Po. symmetricus Bi. a. aculeatus Bi. a. anteposicornis Bi. spinulicostatus Bispathodus sp. Pa. gr. sigmoidalis Bi. stabilis M2 Me. cf. strigosa Pr. collinsoni

Si. praesulcata

Pa. gr. gracilis Po. vogesi Ps. m. trigonicus Pseudopolygn. sp.

Pa. gr. gonioclymeniae

Bi. costatus M1 Bi. ultimus M1 Bi. ultimus M2 Br. inornata Br. suprema Me. strigosa Pa. gr. expansa

bed number

Trolp

old bed no.

---

2

1

3

-----

1 ----2

2

2

2

---

4

11

2

---

---

---

1

---

2

---

2

2

---

13

2

4

1

---

---

---

---

5

2

---

64

3cf. --4 ---

3 9 8

---

---

---

1

4

---

1

---

9

---

1

5

20

---

---

4

4

6

E

5

1

2

---

7

2

---

1

---

5

---

7

5

---

---

---

6

2

5

praesulcata

100 unten

7

4

1

4

1cf.

4

---

17

---

---

8

5

2

---

---

4

1cf.

2

26

49

---

4 1

6

---

---

3

158

12

2

160 oben

34

1

170 oben

---

---

---

---

---

2

---

---

2

---

1

---

7

---

6

4

10

---

---

3

6

7

B

---

---

---

---

2

---

---

3

2

---

2

---

8

---

6

1

14

---

1

10

---

8

0 oben

--3

2 5 3

6

---

---

--2

4 ---

6

---

---

---

---

---

5

---

---

---

---

5

---

15

7

---

---

---

---

---

---

---

1

---

---

---

---

---

11

2

3

---

1cf.

1

---

15

4

---

3 ---

1cf.

3 cf.juv

---

---

---

---

---

---

5

---

---

---

---

1011

2.1/2.2

---

---

---

---

---

---

---

2cf.

1

---

---

---

10

CKI

2.1

6

1

---

---

---

2

---

---

---

---

1

---

10

---

4

1

23

---

1cf.

4

11

9

0 unten 2.3

12

---

2

---

2

---

---

1

---

1

15

---

3cf.

1

---

---

---

---

---

2

1cf.

---

---

---

---

1115

3

---

1

---

2

---

---

---

---

---

---

---

3cf.

---

---

---

---

---

---

---

---

---

---

---

---

12

kockeli

2.22.6

Table 5. Conodont distribution at Trolp; beds 10-11, 11-15, and 13-14 were collected as one sample during the first sampling.

5

---

---

---

---

---

---

---

---

---

14

---

---

---

---

---

---

---

---

8

---

2

---

---

---

13

1b

1

1

3

---

1 cf.

---

---

1 cf.

---

1

6

---

---

---

---

---

---

---

---

---

---

---

---

---

---

1314

2.4/2.5

21

8

2

---

---

---

1

4

---

---

10

---

1

2

---

---

---

---

---

18

1cf.

---

---

---

---

16

10 cm/ 1+1a

10

---

2

---

---

---

---

2

---

---

8

---

1

---

---

---

---

---

---

5

---

---

---

---

---

17

sulcata

15 cm/ 0/0 (a)

---

---

---

---

1

---

---

1

---

---

2

---

12

---

---

---

---

---

---

---

---

---

---

---

---

18

23 cm

58

20

14

3

28

14

5

25

5

42

73

33

43

5

9

4

66

5

36

54

132

32

5

62

59

Sum

114 Palaeontographica Americana, No. 

--1

---

1

2

8 4 1 3

1cf. --1

5

26 21 2 3

--1

4

55

4

--3 1

20 12 23

7

461 298

-----

61

---

68 ---

-----

30 4

3 1

---

3

---

67 ---

--11

25 11

20 ---

1 ---

17 6

---

1cf.

3

---

1

Pr. meischneri Pr. kockeli Po. c. carina Po. p. purus Po. p. subplanus Pr. kockeli-kuehni Pr. kuehni Ps. dentilineatus Ps. multistriatus Ps. primus Si. sulcata

13

16

58

Kaiser ET AL.: Conodonts Around the Hangenberg Event

115

Formation are a precise equivalent of the Rhenish Hangenberg Limestone. MILLES At Milles, upper Famennian successions of the "calcaire griotte" are followed by uppermost Famennian limestones of the "supra-griotte," which consist of gray-blue, solid micrites, and are interrrupted by equivalents of the Hangenberg Black Shale (e.g., Sanz-López, 2002; Cygan & Perret, 2002). These successions pass into Carboniferous beds, which are composed of limestones, black pelites, and radiolarian-bearing cherts (Perret & Weyant, 1994; Cygan & Perret, 2002). As previous authors (Perret, 1988: samples 17-18´; Cygan & Perret, 2002), we have sampled approximately the last meter of limestone below the Hangenberg Black Shale and our last sample comes from ca. 1 m above the top of the shale (Text-fig. 9, Table 7). Beds 3-7 are assigned to the Lower praesulcata Zone; Pa. gracilis gonioclymeniae is absent. Previous faunas include four species, Bi. stabilis, Po. inornatus, Po. symmetricus, and Ps. marburgensis trigonicus, that we did not encounter, but that are typical for pre-Hangenberg levels. We add Bi. bispathodus, Bi. costatus M1 and M2, Bi. spinulicostatus, Br. suprema, and Pa. gracilis expansa to the list of taxa. Previous Famennian records of Po. purus purus and Ps. dentilineatus Branson, 1934 (Perret, 1988), are not confirmed. Bed 6 yielded Pr. meischneri, the only evidence in all our sections that Protognathodus can enter below the Hangenberg Event. Locally ten out of 14 taxa (71.4%) disappear below Bed 8, an ochre shale layer and the local equivalent of the Hangenberg Black Shale. The lower part of Bed 9 is attributed to the kockeli (= Upper praesulcata) Zone. Few specimens of Po. purus occur at this level, whereas a high abundance of Po. purus occurs at the top of Bed 9, where Pr. kuehni appears, indicating an earliest Carboniferous age. Cygan & Perret (2002) found Bi. aculeatus plumulus Rhodes, Austin, & Druce, 1969, at this level and we add Po. communis carina Hass, 1959. A typical Lower Carboniferous pseudopolygnathid assemblage appears in Bed 10, with Ps. primus, Ps. dentilineatus, and Ps. multistriatus. The position of the D/C boundary was placed by Cygan & Perret (2002) at the base of Bed 12 although their range chart notes Si. sulcata in Bed 10. Bed 11 contains a basal Carboniferous record of Br. inornata Branson & Mehl, 1934a. The black shales at the base of Bed 12, interpreted by Cygan & Perret (2002) as a maximum flooding surface of a deepening upward cycle, are most probably time-equivalent to the post-event (sensu lato) rise in sea level within the sulcata Zone (Gattendorfia level). Beds 9-11 correlate with the German Stockum Limestone and indicate that the spread of Si. sulcata in Bed 12 was controlled by an eustatic rise. The first Si. bransoni (= duplicata M1) occurs in Bed 14, which

116

Palaeontographica Americana, No. 

Text-fig. 8. Lithological log of Puech de la Suque (Montagne Noire), with the position of conodont faunas, conodont ranges, and zonation. HBS = Hangenberg Blackshale equivalent.

Kaiser ET AL.: Conodonts Around the Hangenberg Event is in accordance with Cygan & Perret (2002). We have not resampled the top of the Lower Tournaisian, where the quadruplicata (Upper sandbergi) Zone can be identified based on its index species.

CONODONT ZONATION The comparison of the investigated conodont sequences with the record of similar pelagic facies of the Rhenish Massif (Clausen et al., 1989; Korn et al., 1994a), North Cornwall (Stewart & Selwood, 1985), Sardinia (Corradini, 2003, 2008), Poland (Dzik, 2006), Turkey (Capkinoglu, 2000), the southern Urals (Kononova, 1979), the Russian Far East (Gagiev & Kononova, 1990), Oklahoma (Over, 1992), and southern China (Hou et al., 1985; Yu, 1988; Ji et al., 1989; Gong et al., 1991; Ji & Ziegler, 1993; Bai et al., 1994) shows similarities that allow good correlations but also outline regional patterns. The upper and uppermost Famennian standard zonation was last reviewed by Ziegler & Sandberg (1984). The lower Tournaisian siphonodellid zonation was introduced by Sandberg et al. (1978), but Ji (1985) proposed significant alterations that have only occasionally (Korn & Weyer, 2003) been used in subsequent conodont literature. Here we use both zonal schemes in parallel (Text-fig. 10). Some upper Famennian and lower Tournaisian index conodonts are too rare in the studied regions to allow an easy or reliable recognition of biozones. Dependent on the depositional environments and still poorly understood palaeoecological factors such as trophic structures, important taxa can appear delayed or can be completely missing. In such cases, alternative species are used or even the validity of nomenclature of zones can be questioned. We have recognized the following 12 zones (Text-fig. 11). LOWER EXPANSA ZONE Palmatolepis gracilis expansa is a rare form (Plan di Zermula) that is hardly useful to find a more-or-less isochronous line of correlation or zonal base in pelagic facies. This is not only true for the Carnic Alps (see also Perri & Spalletta, 1991) but also for the Rhenish Massif (Hartenfels & Becker, 2009), Franconia (H. Tragelehn & S. Hartenfels, pers. comm., 2007), Thuringia (e.g., Brügge, 1973), Montagne Noire (Boyer et al., 1968), Cantabrian Mountains (Garcia-Lopez et al., 1999), northwestern Turkey (Capkinoglu, 2000), southern Morocco (Hartenfels & Becker, 2009), and Thailand (Savage et al., 2007). Pa. gracilis expansa is neither present in contemporaneous more shallow water carbonates, such as the Palliser Formation of the Canadian Rocky Mountains (Johnston & Chatterton, 2001), or the Russian Platform (Chigova et al., 1979; Aristov, 1988). At Rio Boreado, Po. extralobatus and Bi. stabilis M2 are used to recognize the Lower expansa Zone,

117

which is in accord with the practice of Perri & Spalletta (1998c) at the neighbouring Casera Collinetta di Sotto A section. At Cava Cantoniera (Perri & Spalletta, 1991), yet other marker species, Pa. rugosa rugosa and Ps. brevipennatus Ziegler, 1962, were used to approximate the lower boundary of the zone. The section Pramosio Bassa (Perri et al., 1998) and Pramosio (Spalletta & Perri, 1998) yielded joint occurrences of Pa. gracilis expansa and Po. styriacus; the latter species is lacking in our samples. In northwestern Canada, Germany, Morocco, Turkey, and Thailand, Pa. rugosa rugosa, Bi. stabilis M2, and/or Po. experplexus best indicate the basal part of the zone. At least regionally, Ps. marburgensis marburgensis and Ps. brevipennatus are good alternative index species for the Lower expansa Zone. Our limited samples did not yield species that elsewhere (Ziegler & Sandberg, 1984) enter in higher parts of the zone (e.g., Bi. jugosus, Po. hassi Helms, 1961, Po. inornatus, Po. delicatulus). But at Malpasso (Perri & Spalletta, 1991) and Pramosio (Spalletta & Perri, 1998), Br. fissilis is a useful guide for higher parts of the Lower expansa Zone. MIDDLE EXPANSA ZONE As observed in the Carnic Alps by Perri & Spalletta (1991, 1998c), the recognition of the Middle expansa Zone is hampered by the locally rather irregular or sometimes delayed, sometimes up to the next zone, entry of its standard marker form Bi. aculeatus aculeatus. This pattern is also true for some sections of the Rhenish Massif (Ziegler, 1962; Korn & Luppold, 1987; Clausen et al., 1989) and Turkey (Capkinoglu, 2000). In the sections at Rio Boreado and Plan di Zermula, the first occurrence of Bi. costatus is used to place the zonal base; therefore, it is perhaps better to return to the practice of Ziegler (1962) and to re-establish the costatus Zone. Po. znepolensis is another good alternative index species, for example at Rio Boreado and Cava Cantoniera (Perri & Spalletta, 1991; Spalletta et al., 1998). At the neighbouring Casera Collinetta di Sotto A, the Middle expansa Zone was not recognizable at all (Perri & Spalletta, 1998c). UPPER EXPANSA ZONE This zone is very easily recognizable by the more or less contemporaneous entry of Bi. ultimus, Pa. gracilis gonioclymeniae, Ps. marburgensis trigonicus, and Br. suprema, as noted by Corradini (2008). The easy recognition makes it the prime level for formal definition of the uppermost Famennian substage to be based on one of the marker forms, for example Pa. gracilis gonioclymeniae. Pseudopolygnathus marburgensis marburgensis does not extend above the Upper expansa Zone. A single youngest Po. perplexus Thomas, 1949, was recorded in the Carnic Alps by Perri & Spalletta (1998c) from Casera

118

Palaeontographica Americana, No. 

Table 6. Conodont distribution at Puech de la Suque.

Puech de la Suque

bed numbers Bi. costatus M2 Bi. spinulicostatus Bi. ultimus M1 Bi. ultimus M2 Pa. gr. gracilis Pa. gr. sigmoidalis Si. praesulcata Bi. costatus M1 Br. suprema Br. inornata Pa. gr. expansa Me. strigosa Po. inornatus Bi. a. aculeatus Po. c. communis Branmehla sp. Po. c. carina Pr. kockeli Po. purus purus Pr. collinsoni Pr. meischneri Polygnathus sp. Ps. multistriatus Ps. primus Si. sulcata Po. p. subplanus Pr. kockeli - kuehni Ps. dentilineatus Po. p. subplanus Bi. a. aculeatus Bi. a. anteposicornis Bi. a. plumulus Pr. aff. praedelicatulus Si. bransoni Ps. cf. marginatus Si. duplicata Po. pupus Si. hassi Pr. kuehni Si. quadruplicata Ps. tr. inaequalis Ps. triangulus ssp. Ps. tr. triangulus Si. cooperi M1 Si. lobata

praesulcata

kockeli

3

4

5

6

7

8 top

26 3 2 2 10 3 5

12 --19 --10 ----10 1cf.

49 34 70 15 42 6 2 22 2

7 7 67 6 44 ----48 17 5 3

9 9 16 4 20 ----24 4 --2

18 --16 --21 6 1 14 3 2 ---

sulcata

9a

9b

10b

11

12a1

5 12 28 1 21 7 --28 7 1 1 16 1

----41 3 17 3 5 30 12 2 2 14 --2 1

----------------------1 --1cf. --2cf. 4 1cf.

----------------------9 --2 56 2cf. 1 7 10 8 25

----------------------4 --2 2 ----1 15 3 3 1 3 1 1

12 a2 ----------------------------3 ----6 --2 6 --------3 4

12b

13

14

15

----------------------22 --8 18 --------------15 36 3 78 --5 45

----------------------6 --1 ----1 2 --------1 15 1 24 ---

----------------------------13 --------------2 35 1 32 --3 55

----------------------3 ----12 ----------------6 --42 --2 39

12

16

17

18

------------2 --------6 ----15 ----16 --3 4 ----4 7 67 2 --51 1 1 1 4 2

------------13 --------20 --8 42 ----12 --4 ----2 6 34 185 1 5 134 ------1 2

------------7cf. ----------4 9 ------18 --------1 6 16 102 ----40 ------5 1

?sandbergi

bransoni

hassi

Kaiser ET AL.: Conodonts Around the Hangenberg Event

21

22

23

24

25

26

----------------------14 ------------------1 --2 5 31 ----8 --------5 1 1

----------------------14 8 ----------180 ----70 3 10 9

----------------------16 11 ----------75 ----40 5 6 6 ----------------2 4 --13 2

------------------------------------25 ----10 ------23 --11 --------------1 2 ---

----------------------1 2 --6 ----16 11 --6 5 1 --2 --------------------------1 1 1

----------------------2 4 ----------1 ------2 3 2cf. ----2 ----------------------2 ---

duplicata

20 top ------------4cf. --------34 2 --------------------2 23 44 ----30 --------5 5

--------------3 2 --30

quadruplicata

27 base

27 top

Sum

------------1cf. --------15 --1 --------6 ----2 ----------10 2 ------------------------2cf.

----------------------26 --------4 --18 ----15 ----------24 ----------------2 ------20 --12 3 1

126 65 259 31 185 25 29 176 45 10 8 223 32 33 168 0 10 94 341 20 44 144 35 132 110 631 7 31 416 1 1 1 10 20 12 2 47 2 1 3 21 2 12 3 1

119

120

Palaeontographica Americana, No. 

Text-fig. 9. Lithological log of Milles (French Pyrenees), with the position of conodont faunas, conodont ranges, and zonation. HBS = Hangenberg Blackshale equivalent. For legend of lithological sections, see Textfig. 8.

Colinetta di Sotto A, a single Po. marginvolutus Gedik, 1969, from the Grüne Schneid area by Perri & Spalletta (2000). At Malpasso, one sample of Perri & Spalletta (1998b) and one of our samples extend the range of Ps. controversus M2 into the Upper expansa Zone. Our faunas do not contain

the various palmatolepids, Pa. rugosa rugosa, Pa. rugosa ampla Müller, 1956, Pa. perlobata postera Ziegler in Kronberg et al., 1960, and Pa. perlobata schindewolfi Müller, 1956, as well as some polygnathids: Po. znepolensis, Po. extralobatus, and Po. praehassi Schäfer, 1976, that Ziegler & Sandberg

Kaiser ET AL.: Conodonts Around the Hangenberg Event

121

Milles bed number

praesulcata

bransoni

Table 7. Conodont distribution at Milles. x = record of Cygan & Perret (2002) and Perret (1988).

sulcata

kockeli

3 base

4 top

5

6

7

9 base

9 top

10

11

12 base

12 mid

14

Sum

Bi. bispathodus

1

2

6

1

3

---

---

---

---

---

---

---

13

Bi. costatus M1

14

31

91

19

38

---

---

---

---

---

---

---

193

Bi. spinulicostatus

3

4

7

1

1

---

---

---

---

---

---

---

16

Bi. ultimus M1

3

14

26

7

9

---

---

---

---

---

---

---

59

Bi. ultimus M2

1

2

3

1

1

---

---

---

---

---

---

---

8

Pa. gr. expansa

1

1

---

1

3

---

---

---

---

---

---

---

6

Pa. gr. gracilis

10

22

74

5

15

---

---

---

---

---

---

---

126

Si. praesulcata

1

---

---

1cf.

3

---

1cf.

---

---

---

1

---

7

Bi. costatus M2

2

4

1

15

---

---

---

---

---

---

---

22

Br. suprema

1

4

2

7

2

---

---

2cf.

---

---

---

18

1

2

11

7

---

3

14

3

1

5

47

Bi. a. aculeatus

1

---

1

1

---

1cf.

---

1

---

5

Pa. gr. sigmoidalis

1

---

---

---

---

---

---

---

---

1

Pr. meischneri

1

---

28

27

---

---

---

---

---

56

3

---

1cf.

1

---

---

---

6

11

Po. c. carina

2

6

---

---

---

---

---

8

Po. c. communis

41

25

9

28

12

4

1

120

Po. p. purus

7

76

19

51

7

2

2

164

Pr. collinsoni

12

15

---

---

---

---

---

27

Pr. kockeli

34

51

---

---

---

5

---

90

Po. p. subplanus

14

10

40

16

11

3

94

Pr. kuehni

2

---

---

---

---

---

2

Ps. dentilineatus

2

26

2

1

Ps. multistriatus

2

2

---

---

---

4

Ps. primus

11

7

3

---

---

21

4cf.

---

---

---

4

x

2

4

6

1

1

Me. strigosa

Polygnathus sp.

Br. inornata Si. sulcata Si. bransoni

(1984) still show in the Upper expansa Zone. This agrees with the Rhenish (Ziegler, 1962; Luppold et al., 1994), Sardinian (Corradini, 2003, 2008), Turkish (Capkinoglu, 2000), and southern Chinese Guangxi and Guizhou (Hou et al., 1985; Ji & Ziegler, 1993; Bai et al., 1994) conodont successions and suggests a common pattern along the vast Prototethys outer

x

31

shelf belt. In the southern Urals (Kononova, 1979), Po. znepolensis cooccurs with Ps. marburgensis trigonicus. PRAESULCATA ZONE Siphonodella praesulcata enters mostly as a rather rare species at Großer Pal, Plan di Zermula, and Trolp; hence, it is

122

Palaeontographica Americana, No. 

Text-fig. 10. Correlation of D/C boundary sections of the Carnic Alps, Graz Paleozoic, Montagne Noire, and Pyrenees, showing the thickness of recognized conodont zones. HBS = Hangenberg Black Shale; HS = Hangenberg Sandstone.

often difficult to place the base of the zone with precision. Unfortunately, there is no alternative index species that allows a more precise dating within the long Wocklumian timespan.

Uppermost Famennian Pr. meischneri are even more irregularly distributed and were only found at Milles and in the Carnic Alps at Grüne Schneid (Kaiser et al., 2006). The old-

Kaiser ET AL.: Conodonts Around the Hangenberg Event

123

Text-fig. 11. Range chart of selected platform element conodonts from the Lower expansa Zone to quadruplicata Zone recognized in the investigated sections (previous and our data from the studied regions), indicating record interruptions and more extended ranges (= dotted lines) elsewhere.

est records pre-date the entry of Si. praesulcata (reviewed by Kürschner et al., 1993; see also Corradini, 2008). Protognathus collinsoni Ziegler, 1969, occurs only sporadically just before the Hangenberg Event, for example, at Grüne Schneid (Perri & Spalletta, 2000; Kaiser, 2007; Kaiser et al., 2006) and in the Rhenish Massif (Clausen et al., 1989). As an additional problem, the taxonomy of early siphonodellids needs to be revised; Si. praesulcata could in fact comprise several taxa (H. Tragelehn, pers. comm., 2007). Kürschner et al. (1993) outlined the rather diachronous last occurrence of Pa. gracilis gonioclymeniae internationally. The poor definition of the Middle praesulcata Zone was also criticised by Over (1992). In our studied sections, the species variably disappears still in the Upper expansa Zone at Plan di Zermula or just above the first Si. praesulcata as at Trolp, and slightly higher (approximately at UD VI-C1 level) at Großer Pal, Rio Boreado, and Malpasso, or only just below the Hangenberg Event level, as at Trolp, based on data of Ebner (1980), and Puech de la Suque, based on samples of Boyer et al. (1968). At La Serre in the Montagne Noire, Pa. gracilis gonioclymeniae has also been found together with Wocklumeria (Flajs & Feist, 1988) at the top of UD VI-D. Bai et al. (1994) recorded it from right below the Changshun Shale, the Hangenberg Black Shale equivalent, of Huangmao, Guizhou. The absence of Pa. gracilis gonioclymeniae in the praesulcata Zone at Plan di Zermula A could be related to a deeper depositional environment when compared to all other studied sections (Perri & Spalletta, 2001). Our new data support the conclusion of Kaiser (2005) and Corradini (2008) that the Middle praesulcata Zone must be abandoned. Species that disappear within the – Lower (here revised) – praesulcata Zone, well before the Hangenberg Event level, are: Po. vogesi (Großer Pal, Rio Boreado, Malpasso, Grüne Schneid), Br. disparilis (Großer Pal, Malpasso), Br. fissilis (Rio Boreado; Spalletta et al., 1998), Bi. stabilis M1 (Großer Pal), and Po. aff. experplexus (Rio

Boreado). Such pre-event extinctions have a counterpart in ammonoid evolution, where evolute Parawocklumeriidae, most Glatziellidae, and various other clymenids disappeared before the Hangenberg Event. (Schindewolf, 1937; Becker, 1993a, b, 1996). Polygnathus znepolensis does not range in the regions studied by us into the (Lower) praesulcata Zone but it does in the Mugodzhar Mountains south of the Urals (Gagiev et al., 1987), the Russian Far East (Gagiev & Kononova, 1990) and in southern China (Ji & Ziegler, 1993). The first two, rather isolated regions have rather different and partly endemic uppermost Famennian conodonts, such as Omolonognathus, Po. parapetus Druce, 1969, Po. lenticularis Gagiev, 1979, Po. mugodzaricus Gagiev, Kononova, & Pazukhin, 1987, and Br. dentiloba (Wang & Yin, 1984). Southern China (Guizhou) yielded the strange Semirotulognathus that crosses the D/C boundary (Hou et al., 1985, Ji et al., 1989). HANGENBERG CONODONT EXTINCTION: (CKI) Conodont extinctions in relation to the global Hangenberg Event have never been summarized in detail. The sudden change from pelagic limestone to hypoxic or anoxic black shales caused a significant conodont extinction, which was contemporaneous with the main extinction phase in ammonoids, trilobites, and other deeper-water benthos, such as solitary rugose corals, ostracods, and rhynchonellids (e.g., Becker, 1996; Kaiser et al., 2006). The main victims include, in our sections and globally, rather dominant and widespread (cosmopolitan) forms, such as the last three subspecies of Palmatolepis gracilis, marker bispathodids Bi. costatus, Bi. ultimus, Bi. bispathodus, and Bi. spinulicostatus, as well as Ps. marburgensis trigonicus. Branmehla, Mehlina, and Polygnathus were only locally affected. Youngest records of Br. ampla from pre-event beds of Puech de la Suque (Boyer et al., 1968) and Kronhofgraben (Schönlaub, 1969) need confirmation. We THE COSTATUS-KOCKELI INTERREGNUM

124

Palaeontographica Americana, No. 

found no evidence for a short-term survival of Palmatolepis in our studied sections, although post-event regional records of the genus in the Rhenish Massif (Clausen et al., 1989; Luppold et al., 1994; Korn et al., 1994b), southern Urals (Kononova, 1979), Guizhou (Muhua; Hou et al., 1985), and Kolyma Basin, Far East Russia (Gagiev & Kononova, 1990) exist. The small size of Pa. gracilis subspecies could allow easy reworking and redeposition, especially in slope settings. This could also apply to specimens of Bi. costatus and Bi. ultimus reported from the basal Carboniferous of Drewer (Korn et al., 1994b) and other sections (Clausen et al., 1989), but this is rather speculative. If the short-term survival of Pa. gracilis gracilis in the named regions was real, what could have stopped it from re-entering the open pelagic realm of our large study area? Rhenish pelagic sections include several other forms that die out at the base of the Hangenberg Black Shale, such as Bi. muessenbergensis Luppold, Kahn, & Korn, 1984, Po. nodomarginatus Branson, 1934, and Dinodus wilsoni Druce, 1969 (Ziegler, 1962; Luppold et al., 1994; Korn et al., 1994b). The latest Famennian of southern China (Wang & Wang, 1978) and Oklahoma (Over, 1992) contain ?Pelekysgnathus guizhouensis Wang & Wang, 1978; the Guizhou pelagic topmost Famennian yielded the types of Br. dentiloba. But generally, there were more survivors than event victims: Si. praesulcata (sensu lato), Pr. meischneri, Pr. collinsoni, Bi. stabilis M2, Bi. aculeatus aculeatus, Bi. aculeatus anteposicornis, Bi. aculeatus plumulus, Me. strigosa Branson & Mehl, 1934a, Po. communis communis, Po. inornatus, and Po. symmetricus. Our samples confirm a lower Tournaisian (post-event) range of Br. suprema at Trolp and Milles, and Br. inornata at Plan di Zermula and Milles; (see also Yu, 1988; Over, 1992). Specimens come from micritic limestone deposited under very calm conditions and, therefore, we see no evidence of reworking in these cases. Hou et al. (1985) listed, but did not figure, Br. fissilis from the lower Tournaisian Gedongguan section; Yu (1988) described Br. werneri Ziegler, 1962, which normally (Ziegler & Sandberg, 1984) does not range above the Lower expansa Zone, from the Tournaisian of Guangxi at the Nanbiancun auxiliary D/C boundary stratotype. These records need further substantiation and reworking has to be excluded. Another southernChinese event survivor is "Spathognathodus" planiconvexus Wang & Ziegler, 1982. Apatognathus is rare in pelagic settings with some records by Gagiev & Kononova (1990) and Over (1992) and there is an open discussion concerning its true range. The closely related or identical (Klapper, 1966; Draganits et al., 2002), mainly (our sections) Carboniferous Ps. primus and Ps. dentilineatus have been widely reported from the Famennian. The mostly Famennian Bi. spinulicostatus can range elsewhere into the lower Tournaisian (Ziegler et al., 1974;

Hou et al., 1985). Ziegler & Sandberg (1984) raised the possibility of iterative evolution in Famennian and Tournaisian Bispathodus because there are slight differences between Famennian and Tournaisian Bi. spinulicostatus. Polygnathus delicatulus was found just below the extinction level at Grüne Schneid (Kaiser et al., 2006) but Boyer et al. (1968) claimed that it survived into the Tournaisian at Puech de la Suque. Perret (1988) and Corradini et al. (2003) reported Po. purus purus, a typical post-event form of our sections, from preevent beds of the Pyrennes and Sardinia. We found Po. communis carina only in post-event beds but it crosses the crisis interval elsewhere in pelagic facies (e.g., Ziegler & Sandberg, 1984; Ji et al., 1989; Luppold et al., 1994). Following a long Lazarus phase, Po. vogesi re-appears in the lower Tournaisian in widely separated areas (Ziegler, 1962; Kononova, 1979; Hou et al., 1985; Kürschner et al., 1993). Summarizing this evidence, the total (global) extinction rate for conodonts of pelagic settings at the base of the Hangenberg Black Shale was ca. 38%, when only platform element taxa are considered, not counting forms previously assigned to Ozarkodina, Palmatodella, Prioniodina, Falcodus, Drepanodus, etc., or the enigmatic Conchodontus and Fungulodus. The local extinction rates of our studied sections vary between 55.6% at Trolp and 71.4% at Milles; these high rates can be explained because some survivors disappeared locally and did not re-appear in the basal Tournaisian. Extinction patterns in southwestern England (Stewart & Selwood, 1985) and in the basinal Woodford Shale of Oklahoma (Over, 1992) are comparable. At Kronhofgraben (Kaiser et al., 2006) and in some sections of the Rhenish Massif local extinction rates can reach 80% and more (Kürschner et al., 1993; Luppold et al., 1994; Kaiser et al., 2006), whereas it is very low, ca. 35%, excluding supposed reworked records, in the Kamenka section of Kolyma (Gagiev & Kononova, 1990). This could reflect a latitudinal and temperature gradient. Tropical eastern Prototethys locations at Guangxi and Guizhou in southern China have local extinction rates that are in the scale of Europe at ca. 65-70%, based on data by Hou et al. (1985), Ji et al. (1989), and Bai et al. (1994). But survival rates were also higher in the mixed neritic-facies of the tropical Moravian Karst (range chart of Kalvoda & Kukal, 1987). The selective extinction among conodont genera, especially within Bispathodus, as well as the local/regional differences (extinction in some sections, survival in others) still require palaeoecological explanations. The repeatedly claimed regional short-term survival of Pa. gracilis gracilis is a prominent example. Sea-level change, sea-water temperatures, and anoxia certainly were among the contributing causal factors and expecially affected tropical pelagic shelf habitats. Extinctions were less severe in conodonts than in cooccuring ammonoids. This, and the much slower evolution of conodonts (giving only two zones) than ammonoids (giv-

Kaiser ET AL.: Conodonts Around the Hangenberg Event ing five zones plus two subzones) in the pre-event uppermost Famennian show that there was no general palaeoecological connection between the two groups in Famennian pelagic ecosystems. The sudden extinction of several important marker forms allows in all sections a sharp and synchronous subdivision of the interval corresponding at present to the Lower, Middle and Upper praesulcata zones, which justifies recognition at zonal level. The main Hangenberg Event interval, comprising the initial transgression of the Hangenberg Black Shale and equivalents at Plan di Zermula, Trolp, Puech de la Suque, and Milles, and the subsequent, polyphase major regressive interval of the Hangenberg shales, sandstones and equivalents, lacking in our condensed sections, is best desribed as a Bi. costatus-Pr. kockeli Interregnum or interval zone (CKI). Only Trolp includes a thin limestone unit with impoverished fauna that can be assigned to the upper part of the CKI. At Grüne Schneid (Schönlaub et al., 1992; Kaiser et al., 2006), Pr. meischneri and Pr. collinsoni continue together with Po. communis communis and Me. strigosa in an impoverished fauna that is contemporaneous with the Hangenberg Black Shale. Occurrences of Pr. meischneri in the lower event interval are also documented in southern China at Limushan and Muhua (Hou et al., 1985); this could justify naming the CKI alternatively as meischneri partial (upper) range zone. KOCKELI ZONE The former Upper praesulcata Zone is here renamed, after its index species, as Pr. kockeli Zone because siphonodellids are mostly absent at this level. It correlates with the Lower Protognathodus fauna of Alberti et al. (1974) and is preserved at Trolp and Puech de la Suque (there with our oldest Po. purus purus; compare Grüne Schneid data of Perri & Spalletta, 2000, and Kaiser et al., 2006). Polygnathus communis carina, Ps. primus, and Ps. dentilineatus spread with the post-event transgression (see also Hou et al., 1985).

ZONE At Puech de la Suque and Milles, the exact determination of the D/C boundary position was carried out and alternatively drawn with the biostratigraphically significant Upper protognathodid Fauna (Alberti et al., 1974), instead of the low abundant siphonodellid fauna conventionally used. The first occurrence of Si. sulcata depends on the local palaeoecology and depositional environment, and is thus mostly diachronous (e.g., Paproth & Streel 1984a). In the Rhenish sections, the lowest occurrence of Si. sulcata is at the base of the Hangenberg Limestone, which is the middle part of sulcata Zone at the level of the first ammonoid Gattendorfia, and it is preceded by Pr. kuehni in the upper part of the Stockum Limestone. Therefore, it was proposed that the earliest apSULCATA/KUEHNI

125

pearance of Si. sulcata and Pr. kuehni is synchronous (Ziegler & Sandberg, 1984), and Pr. kuehni can thus be considered as a reliable index fossil for the sulcata Zone (Sandberg et al., 1972; Alberti et al., 1974; Clausen et al., 1989; Ji et al., 1989; see discussion by Bless et al., 1988; Gagiev & Kononova, 1990). The absence of Si. sulcata at the D/C boundary in many sections suggests that the definition of the boundary has to be reconsidered (see Kaiser, 2009); Po. purus subplanus Voges, 1959, Ps. marginatus Branson & Mehl, 1934b, and Ps. multistriatus obviously can also be used as Carboniferous index forms (new data, Kaiser et al., 2006). BRANSONI TO QUADRUPLICATA ZONES The siphonodellid zonation of Ji (1985) has only rarely been applied, but the validity of the taxa based on morphotypes, whose stratigraphical significance is long known, are supported herein. His terminology has the advantage that all zones are strictly named after their defining species as well as being recognizable. The bransoni or lower part of the Lower duplicata Zone, based on the previous Si. duplicata M1, can be recognized at Plan di Zermula A and Puech de la Suque. Si. duplicata sensu stricto (Si. duplicata M2) or the duplicata Zone sensu stricto (= upper part of old Lower duplicata Zone), the hassi Zone (= previous Upper duplicata Zone, based on Si. duplicata sensu Hass), the sandbergi Zone (= previous lower part of the sandbergi Zone), and quadruplicata Zone (= previous upper part of sandbergi Zone) were recognized at Puech de la Suque and Plan di Zermula A. The quadruplicata Zone is also developed at Kronhofgraben on the Austrian side of the Carnic Alps (Kaiser et al., 2006) and at Milles (Cygan & Perret, 2002); the bransoni Zone is fossiliferous at Grüne Schneid.

CONODONT BIOFACIES Conodont biofacies interpretations are based on previous studies on the facies and palaeogeographical distribution of conventional platform element genera (Sandberg, 1976; Sandberg & Ziegler, 1979; Sandberg & Dreesen, 1984; Dreesen et al., 1986; Dreesen, 1992; Ziegler & Weddige, 1999). With the apparatus-based subdivision of genera and with the increasing knowledge of different habitat preferences of species groups within conventional genera, this model will have to be further modified. For example, there are clearly pelagic and neritic groups within Siphonodella and Polygnathus. According to the current model, a palmatolepid or palmatolepid-bispathodid(branmehlid) biofacies indicates deposition on the continental rise and lower slope, but all known pelagic cephalopod limestones still belonged to outer shelf areas. Branmehla is supposed to have had the same living setting as Bispathodus (Ziegler & Sandberg, 1984). A palmatolepid-polygnathid biofacies displays the middle and upper slope or outer shelf

126

Palaeontographica Americana, No. 

Text-fig. 12. Conodont biofacies at (A) Rio Boreado (Carnic Alps), (B) Großer Pal (Carnic Alps), and (C) Casera Malpasso (Carnic Alps).

Text-fig. 13. Conodont biofacies at (A) Plan di Zermula (Carnic Alps), and (B) Trolp (Graz Paleozoic).

environment, and the polygnathid biofacies the inner shelf. The protognathodid biofacies and the siphonodellid biofacies both characterize the continental rise and lower slope. In all studied sections (Text-figs 12-13), changes of biofacies are well recognizable, and the following succession from the Lower expansa to the quadruplicata (= Upper sandbergi) Zone can be discriminated. The Lower expansa Zone is dominated by palmatolepids and polygnathids, but Branmehla and Bispathodus are also very abundant. A palmatolepid-polygnathid biofacies in the Middle expansa Zone is observed at Plan di Zermula, and indicates a shallowing of the deposition-

al environment. This was also recognized by Perri & Spalletta (1991, 2000) for several other Carnic Alps sections, and was explained by regional tectonics and uplift in the Carnic Alps (Perri & Spalletta, 1998a, 2000). At Rio Boreado, the Middle expansa Zone is dominated by palmatolepids and bispathodids, which continue into the higher praesulcata Zone. A palmatolepid-bispathodid biofacies, ranging from the Middle to Upper expansa Zone, characterizes deeper settings, which can also be assumed for the palmatolepid-bispathodid-branmehlid biofacies following in younger pre-event levels. With respect to previous conodont biofacies interpretations (Perri

Kaiser ET AL.: Conodonts Around the Hangenberg Event & Spalletta, 2000), the palmatolepid-bispathodid biofacies in the Carnic Alps is proposed to reflect a transgressive trend, both local and global. Also, the first occurrences of Pa. gracilis gonioclymeniae, Br. suprema, and Ps. m. trigonicus are connected with a slight transgressive trend during major environmental changes (e.g., Kaiser et al., 2008) in the Upper expansa Zone. The final disappearance of Pa. gracilis gonioclymeniae in the praesulcata Zone can be linked with a minor sea-level drop at the top of UD VI-D (Bless et al., 1993; Becker, 1996). As in Rhenish and Moroccan (Becker et al., 2002) sections, this pre-event regression might be responsible for the widespread lack, or subsequent removal or nondeposition of the Wocklumeria Zone, as observed at Großer Pal, Rio Boreado, and Casera Malpasso. The impoverished faunas across the D/C boundary in the Carnic Alps (e.g., Kaiser et al., 2006) and at Trolp in the CKI are to be attributed to rapid changes in environmental conditions, both local and global. The paleoecology of these "disaster faunas" needs to be further studied. The observed local changes might have been influenced by local tectonics – short-term repeated regressive-transgressive pulses influencing the environment. The topmost Devonian beds are characterized by a major faunal change and the onset of a protognathodid-polygnathid biofacies in the kockeli (= Upper praesulcata) Zone, which can be related to an opportunistic lifestyle after major environmental changes. The abundant occurrence of protognathodids in the Upper praesulcata Zone is time-equivalent to the post-event sea-level rise, and can thus be attributed to more deeper depositional environments. The protognathodid-polygnathid biofacies continues up to the middle part of the sulcata Zone, while the polygnathids begin to predominate in higher levels. At Plan di Zermula, Siphonodella is highly abundant in the condensed beds of the late hassi (= Upper duplicata) Zone and in the sandbergi and quadruplicata zones, indicating gradually rising sea level, as it is mirrorred in the lithofacies at Puech de la Suque.

SYSTEMATICS The identifications are based on conventional naming of platform (Pa) elements of species. Ramiform elements have not been identified and, therefore, we do not try to follow the multi-element generic nomenclature introduced by Dzik (1997) for Tournaisian and applied by Dzik (2006) to Famennian taxa. Polygnathus communis is commonly placed by authors in Neopolygnathus; the group of Pa. gracilis falls in Tripodellus (van den Boogaard & Kuhry, 1979). Until a further revision of early siphonodellids is available, we do not use the subgenus Eosiphonodella introduced by Ji (1985). Brief comments are only given for some morphologically variable forms.

127

Phylum CHORDATA Bateson, 1886 Class CONODONTA Pander, 1856 Order OZARKODINIDA Dzik, 1976 Family ELICTOGNATHIDAE Austin & Rhodes, 1981 Genus SIPHONODELLA Branson & Mehl, 1944 Type species.–Siphonognathus duplicata Branson & Mehl, 1934 Siphonodella cooperi Hass, 1959 Pl. 1, Fig. 17 Siphonodella cooperi Hass, 1959: 392, pl. 48, figs 35-36. Siphonodella cooperi M2 Hass. Perri & Spalletta, 2000b: 39, pl. 1, figs 1-2.

Remarks.–Siphonodella cooperi Morphotype 2 is figured in Pl. 1, Fig. 17. Siphonodella cooperi M1, which evolved from S. duplicata M2 (= S. duplicata sensu stricto) was the defining species for the Upper duplicata Zone (= hassi Zone, after Ji, 1985) Occurrence, M2.–Plan di Zermula. Siphonodella bransoni Ji, 1985 Siphonodella duplicata (Branson & Mehl) Morphotype 1. Sandberg et al., 1978: 105, fig. 1. Siphonodella (Eosiphonodella) bransoni Ji, 1985: 53, fig. 2.

Remarks.–Siphonodella bransoni (= S. duplicata M1) is the index fossil for the bransoni Zone (= Lower duplicata Zone; for further descriptions, see Sandberg et al., 1978). Occurrence.–Plan di Zermula, Milles, Puech de la Suque. Siphonodella duplicata (Branson & Mehl, 1934b) Siphonognathus duplicata Branson & Mehl, 1934b: 296-297, pl. 24, figs 16-17. Siphonodella duplicata (Branson & Mehl). Hass, 1951: pl. 1, figs 12-13; Luppold et al., 1984: 106, pl. 5, figs 6, 9, 15 (see synonymy).

Remarks.–Siphonodella duplicata sensu stricto = Si. duplicata M2. Occurrence.–Puech de la Suque. Siphonodella hassi Ji, 1985 Pl. 2, Fig. 6 Siphonodella duplicata Hass, 1959: pl. 49, figs 17-18. Siphonodella duplicata sensu Hass. Schönlaub, 1969: pl. 2, figs 9-10. Siphonodella hassi Ji, 1985: 59, fig. 14.

128

Palaeontographica Americana, No. 

Remarks.–Siphonodella hassi (= S. duplicata sensu Hass) is the index fossil for the hassi (= Upper duplicata Zone). Occurrence.–Plan di Zermula, Puech de la Suque.

type of Si. sulcata at La Serre has a curved carina and platform of more than 7°. Occurrence.–Plan di Zermula, Milles, Puech de la Suque, Trolp.

Siphonodella lobata (Branson & Mehl, 1934b) Siphonognathus lobata Branson & Mehl, 1934b: 297, pl. 24, figs 14-15. Siphonodella lobata (Branson & Mehl). Klapper, 1966: pl. 2, figs 1-4; Siphonodella lobata (Branson & Mehl).- Perri & Spalletta, 2000b: 39, pl. 1, fig. 3.

Occurrence.–Plan di Zermula. Siphonodella obsoleta Hass, 1959 Siphonodella obsoleta Hass, 1959: 392-393, pl. 47, figs 1-2. Siphonodella obsoleta Hass. Perri & Spalletta, 2006b: 39, pl. 1, fig. 8.

Occurrence.–Plan di Zermula Siphonodella praesulcata Sandberg, 1972 Pl. 1, Figs 12-13, 15-16, Pl. 2, Fig. 4 Siphonodella praesulcata Sandberg in Sandberg et al., 1972: 190191, pl. 1, figs 1-17, pl. 2, figs 10-19. Siphonodella praesulcata Sandberg. Sandberg et al., 1978: 104; Wang & Yin, 1984: pl. 1, figs 1a-2b, 9a-b; Perri & Spalletta, 2000b: 39, pl. 1, figs 12a-b.

Occurrence.–Großer Pal, Rio Boreado, Casera Malpasso, Trolp, Plan di Zermula, Milles, Puech de la Suque. Siphonodella quadruplicata (Branson & Mehl, 1934b) Siphonognathus quadruplicata Branson & Mehl, 1934b: 295-296, pl. 24, figs 18-20. Siphonodella quadruplicata (Branson & Mehl). Klapper, 1966: pl. 2, figs 5-8; Perri & Spalletta, 2000b: 39, pl. 1, figs 9-10.

Occurrence.–Plan di Zermula, Puech de la Suque. Siphonodella sulcata (Huddle, 1934) Pl. 1, Fig. 14, Pl. 2, Figs 1-2, 5 Polygnathus sulcatus Huddle, 1934: 101, pl. 8, figs 22-23. Siphonodella sulcata (Huddle). Sandberg in Sandberg et al., 1972: 191, pl. 2, figs 1-9; Sandberg et al., 1978: 104-105; Luppold et al., 1984: 106, pl. 5, fig. 13 (see synonymy); Wang & Yin, 1984: pl. 1, fig. 8; Perri & Spalletta, 2000b: 39, pl. 1, figs 13-14b.

Family IDIOGNATHODONTIDAE Harris & Hollingsworth, 1933 Genus PROTOGNATHODUS Ziegler, 1969 Type species.–Gnathodus kockeli Bischoff, 1957 Protognathodus collinsoni Ziegler, 1969 Protognathodus collinsoni Ziegler, 1969: pl. 1, figs 13-18. Protognathodus collinsoni Ziegler. Perri & Spalletta, 2000b: 39, pl. 1, fig. 4.

Occurrence.–Trolp, Plan di Zermula, Milles, Puech de la Suque. Protognathodus kockeli (Bischoff, 1957) Pl. 1, Figs 10-11, Pl. 2, Fig. 16 Gnathodus kockeli Bischoff, 1957: 25, pl. 3, figs 7a-b, 28-32. Protognathodus kockeli (Bischoff). Ziegler, 1969: 354-355, pl. 1, figs 19-20, 23-25, pl. 2, figs 1-5; Luppold et al., 1984: 104, pl. 4, figs 1-2, pl. 5, fig. 12, pl. 6, fig. 4; Perri & Spalletta, 2000b: 39, pl. 1, fig. 5.

Occurrence.–Trolp, Plan di Zermula, Milles, Puech de la Suque. Protognathodus kuehni Ziegler & Leuteritz, 1970 Pl. 1, Figs 8-9, Pl. 2, Fig. 15 Protognathodus kuehni Ziegler & Leuteritz, 1970: 715, pl. 8, figs 4, 6-7, 9-16. Protognathodus kuehni Ziegler & Leuteritz. Wang & Yin, 1984: pl. 3, fig. 13.

Remarks.–Many transitional morphotypes of Pr. kuehni and Pr. kockeli (Protognathodus kockeli-kuehni) have been identified. They have an asymmetrical platform (typical for Pr. kockeli), as well as nodes (typical for Pr. kockeli) and transversal ridges (typical for Pr. kuehni). Occurrence.–Trolp, Plan di Zermula, Milles. Protognathodus meischneri Ziegler, 1969 Protognathodus meischneri Ziegler, 1969: 353, pl. 1, figs 1-13.

Occurrence.–Trolp, Milles, Puech de la Suque. Remarks.–After Flajs & Feist (1988), the initial morpho-

Family PALMATOLEPIDIDAE Sweet, 1988

Kaiser ET AL.: Conodonts Around the Hangenberg Event Genus PALMATOLEPIS Ulrich & Bassler, 1926 Type species.–Palmatolepis perlobata Ulrich & Bassler, 1926

129

pl. 4, figs 23-26 (see synonymy).

Occurrence.–Rio Boreado, Plan di Zermula. Palmatolepis gracilis expansa Sandberg & Ziegler, 1979 Palmatolepis rugosa ampla Müller, 1956 Palmatolepis gracilis expansa Sandberg & Ziegler, 1979: 178, pl. 1, figs 6-8.

Remarks.–At Kronhofgraben, many specimens from Beds –2 to 1top are transitional morphotypes (Pa. gracilis cf. expansa) between Pa. gracilis expansa and Pa. gracilis gonioclymeniae. They have a narrow platform as in Pa. gracilis gonioclymeniae, but the outer lobe is not developed. Occurrence.–Großer Pal, Rio Boreado, Casera Malpasso, Trolp, Plan di Zermula, Milles, Puech de la Suque. Palmatolepis gracilis gonioclymeniae Müller, 1956 Pl. 2, Fig. 9 Palmatolepis (Palmatolepis) gonioclymeniae Müller, 1956: 26-27, pl. 7, figs 12, 16-17, 19. Palmatolepis gracilis gonioclymeniae Müller. Sandberg & Ziegler, 1979: 178-179, pl. 1, figs 15-18; Wang & Yin, 1984: 23, pl. 3, fig. 5.

Occurrence.–Großer Pal, Rio Boreado, Casera Malpasso, Trolp, Plan di Zermula.

Palmatolepis (Palmatolepis) ampla Müller, 1956: 28-29, pl. 9, figs 35-36. Palmatolepis rugosa ampla Müller. Sandberg & Ziegler, 1979: 181, pl. 2, figs 10-11 (see synonymy).

Occurrence.–Plan di Zermula. Palmatolepis rugosa rugosa Branson & Mehl, 1934a Palmatolepis rugosa Branson & Mehl, 1934a: 236, pl. 18, figs 15-16, 18-19. Palmatoleps rugosa rugosa Branson & Mehl. Sandberg & Ziegler, 1979: 181, pl. 2, figs 5-7 (see synonymy).

Occurrence.–Plan di Zermula. Family POLYGNATHIDAE Bassler, 1925 Genus BISPATHODUS Müller, 1962 Type species.–Spathodus spinulicostatus Branson, 1934 Bispathodus aculeatus aculeatus (Branson & Mehl, 1934a)

Palmatolepis gracilis gracilis Branson & Mehl, 1934a Palmatolepis gracilis Branson & Mehl, 1934a: 238, pl. 18, figs 2, 8. Palmatolepis gracilis gracilis Branson & Mehl. Spassov, 1965: pl. 1, figs. 1, 2; Capkinoglu, 1997: 170, pl. 2, figs 16-18 (see synonymy).

Occurrence.–Großer Pal, Rio Boreado, Casera Malpasso, Trolp, Plan di Zermula, Milles, Puech de la Suque.

Spathodus aculeatus Branson & Mehl, 1934a: 186, pl. 17, figs 11, 14. Bispathodus aculeatus aculeatus (Branson & Mehl). Ziegler et al., 1974: 101, pl. 1, fig. 5, pl. 2, figs 1-8.

Occurrence.–Großer Pal, Casera Malpasso, Plan di Zermula, Trolp, Milles, Puech de la Suque. Bispathodus aculeatus anteposicornis (Scott, 1961)

Palmatolepis gracilis sigmoidalis Ziegler, 1962 Palmatolepis deflectens sigmoidalis Ziegler, 1962: 56-57, pl. 3, figs 2428. Palmatolepis gracilis sigmoidalis Ziegler. Klapper, 1966: 31, pl. 6, fig. 8; Ziegler, 1977: 323-324, pl. 7, figs 13-16 (see synonymy).

Occurrence.–Großer Pal, Rio Boreado, Casera Malpasso, Trolp, Plan di Zermula, Milles, Puech de la Suque.

Spathognathodus anteposicornis Scott, 1961: text-figs 2H-K. Bispathodus aculeatus anteposicornis (Scott, 1961). Ziegler et al., 1974: 101, pl. 1, figs 11-12, pl. 2, fig. 9, pl. 3, fig. 25.

Occurrence.–Großer Pal, Casera Malpasso, Trolp, Puech de la Suque. Bispathodus bispathodus Ziegler, Sandberg, & Austin, 1974

Palmatolepis perlobata schindewolfi Müller, 1956 Palmatoleps (Palmatolepis) schindewolfi Müller, 1956: 27-28, pl. 8, figs 22-31, pl. 9, fig. 33. Palmatolepis perlobata schindewolfi Müller. Capkinoglu, 1997: 172,

Bispathodus bispathodus Ziegler, Sandberg, & Austin, 1974: 102, pl. 3, figs 4-12, 17, 21.

Occurrence.–Großer Pal, Rio Boreado, Casera Malpasso,

130

Palaeontographica Americana, No. 

Milles. Bispathodus costatus (Branson, 1934) Spathodus costatus Branson, 1934: 303-304, pl. 27, fig. 13. Spathognathodus costatus costatus (Branson). Ziegler, 1962: 107-108, pl. 14, figs 1-6, 8-10. Bispathodus costatus (Branson). Ziegler et al., 1974: 102, pl. 1, figs 1-2, 9, pl. 2, figs 13-15.

Remarks.–Based on the shape and size of the basal cavity, two morphotypes (M1 and M2) can be distinguished. Morphotype 1 has a large bispathodus-like basal cavity; Morphotype 2 has an aculeatus-like basal cavity. The first occurrence of Bi. costatus M1 is near the base of the Middle expansa Zone, whereas Bi. costatus M2 appears somewhat higher in that zone (Ziegler et al., 1974). Occurrence, M1.–Großer Pal, Rio Boreado, Casera Malpasso, Trolp, Plan di Zermula, Milles, Puech de la Suque. Occurrence, M2.–Großer Pal, Rio Boreado, Casera Malpasso, Trolp, Plan di Zermula, Milles, Puech de la Suque. Bispathodus jugosus (Branson & Mehl, 1934a) Spathodus jugosus Branson & Mehl, 1934a: 190-191, pl. 17, figs 19, 22. 1974 Bispathodus jugosus (Branson & Mehl). Ziegler et al., 1974: 103, pl. 1, figs 3-4, pl. 3, figs 19, 23, 26.

Occurrence.–Rio Boreado, Casera Malpasso, Plan di Zermula. Bispathodus spinulicostatus (Branson, 1934) Spathodus spinulicostatus Branson, 1934: 305-306, pl. 27, fig. 19. Bispathodus spinulicostatus (Branson). Ziegler et al., 1974: 103, pl. 1, figs 6-8, pl. 3, figs 20, 22.

Occurrence.–Großer Pal, Rio Boreado, Casera Malpasso, Trolp, Plan di Zermula, Milles, Puech de la Suque. Bispathodus stabilis (Branson & Mehl, 1934a) Spathodus stabilis Branson & Mehl, 1934a: 188-189, pl. 17, fig. 20. Spathognathodus stabilis (Branson & Mehl). Ziegler, 1962: 112-114, pl. 13, figs 1-10. Bispathodus stabilis (Branson & Mehl). - Ziegler et al., 1974: 103104, pl. 1, fig. 10, pl. 3, figs 1-3. Bispathodus stabilis Morphotype 1. Over, 1992: 307-308, figs 6.16.16, 6.21, 6.26, 6.28. Bispathodus stabilis Morphotype 2. Ziegler, Sandberg & Austin. Johnston & Chatterton, 1991: 180, pl. 2, figs 1-2.

Remarks.–Morphotypes 1 and 2 are most common. Morphotype 2 has a large bispathodus-like basal cavity; Morphotype 1 has an aculeatus-like basal cavity (Ziegler et al., 1974). The third morphotype (Sandberg & Ziegler, 1979), also reported by Metzger (1989), has been recognized by one single node on the upper surface of the basal cavity. Occurrence, M1.–Großer Pal, Rio Boreado, Casera Malpasso. Occurrence, M2.–Großer Pal, Rio Boreado, Casera Malpasso, Trolp, Plan di Zermula. Bispathodus ultimus (Bischoff, 1957) Spathognathodus ultimus Bischoff, 1957: 57-58, pl. 4, figs 24-26. Bispathodus ultimus (Bischoff). Ziegler & Sandberg, 1984: 186-187, pl. 2, figs 1-7 (see synonymy).

Remarks.–Bispathodus ultimus Morphotype 1 has a large, asymmetrical basal cavity, whereas Morphotype 2 has a small, almost symmetrical basal cavity. Occurrence, M1.–Großer Pal, Casera Malpasso, Trolp, Plan di Zermula, Milles, Puech de la Suque, Rio Boreado. Occurrence, M2.–Trolp, Plan di Zermula, Milles, Puech de la Suque. Genus BRANMEHLA Hass, 1959 Type species.–Spathodus inornatus Branson & Mehl, 1934a Branmehla disparilis (Branson & Mehl, 1934a) Pl. 1, Fig. 24 Spathodus disparilis Branson & Mehl, 1934a: 189-190, pl. 17, fig. 18. Spathognathodus disparilis (Branson & Mehl). Ellison & Graves, 1941: pl. 2, fig. 2. Branmehla disparilis (Branson & Mehl). Over, 1992: 308, fig. 6.24.

Occurrence.–Großer Pal, Rio Boreado, Casera Malpasso. Branmehla inornata (Branson & Mehl, 1934a) Spathodus inornatus Branson & Mehl, 1934a: 185, pl. 17, fig. 23. Spathognathodus inornatus (Branson & Mehl). Bischoff & Ziegler, 1957: 166, pl. 13, figs 4-6. Branmehla inornata (Branson & Mehl). Hass, 1959: 381-382, pl. 50, fig. 3 (see synonymy).

Remarks.–Some specimens represent transitional forms of Branmehla inornata and Br. suprema (see below). The typical morphotype of Br. inornata has a symmetrical basal cavity, whereas the transitional morphoptype has a slightly asymmetrical basal cavity as in Br. suprema. Occurrence.–Großer Pal, Rio Boreado, Casera Malpasso,

Kaiser ET AL.: Conodonts Around the Hangenberg Event Trolp, Plan di Zermula, Milles, Puech de la Suque.

131

Polygnathus extralobatus Schäfer, 1976 Pl. 1, Fig. 3

Branmehla suprema (Ziegler, 1962) Spathognathodus supremus Ziegler, 1962: 345. Branmehla suprema (Ziegler). Perri & Spalletta, 1998b: pl. 2.5.1, figs 5a-b.

Occurrence.–Großer Pal, Rio Boreado, Casera Malpasso, Trolp, Plan di Zermula, Milles, Puech de la Suque. Genus POLYGNATHUS Hinde, 1879 Type species.–Polygnathus dubius Hinde, 1879 Polygnathus communis carina Hass, 1959 Pl. 1, Fig. 2 Polygnathus communis Branson & Mehl var. carina Hass, 1959: 391, pl. 47, figs 8-9. Polygnathus communis carina Hass. Rexroad & Scott, 1964: 34, pl. 2, figs 24-25; Luppold et al., 1984: 102, pl. 4, fig. 16, pl. 6, fig. 8.

Remarks.–Morphotype 1 of Polygnathus c. carina ranges from the crenulata Zone to the anchoralis Zone [see Vorontzova, 1996: 83 (error in figure) and Wang & Wang, 2004: 365], and Morphotype 2 ranges from the expansa Zone to the anchoralis Zone. However, the specimen figured in Pl. 1, Fig. 2, from the bransoni Zone at Plan di Zermula more closely resembles Morphotype 1. Occurrence, M1.–Plan di Zermula. Occurrence, M2.–Trolp, Milles, Puech de la Suque. Polygnathus communis communis Branson & Mehl, 1934b Pl. 2, Fig. 10 Polygnathus communis Branson & Mehl, 1934b: 293, pl. 24, figs 1-4. Polygnathus communis communis Branson & Mehl. Rhodes et al., 1969: pl. 12, figs 2a-5c.

Remarks.–Polygnathus c. communis Morphotype 1 ranges from the marginifera Zone to the anchoralis Zone, and is similar to the specimen figured in Pl. 2, Fig. 10, from the bransoni Zone at Milles, with an elongated platform and a smooth fold at the anterior platform. All other specimens identified in the studied sections belong to Po. c. communis Morphotype 2, the platform of which is less elongated compared to that of Morphotype 1 (see Vorontzova 1996: 83). Occurrence, M1.–Milles. Occurrence, M2.–Großer Pal, Rio Boreado, Casera Malpasso, Trolp, Plan di Zermula, Puech de la Suque.

1976 Polygnathus extralobatus Schäfer, 1976: 143, pl. 1, figs 16-17, 23-26.

Occurrence.–Rio Boreado, Plan di Zermula. Polygnathus granulosus Branson & Mehl, 1934a Polygnathus granulosa Branson & Mehl, 1934a: 246, pl. 20, figs 21, 23. Polygnathus granulosus. Olivieri, 1969: 124, pl. 22, figs 8-10.

Occurrence.–Plan di Zermula. Polygnathus hassi Helms, 1961 Pl. 1, Fig. 1 Polygnathus hassi Helms, 1961: 684, pl. 4, figs 6-7, 13-14.

Occurrence.–Plan di Zermula. Polygnathus inornatus Branson, 1934 Polygnathus inornata Branson, 1934: 309, pl. 25, figs 8, 26. Polygnathus inornatus Branson. Klapper, 1971: 6-7; Perri & Spalletta, 2000b: 39, pl. 1, figs 11a-b.

Remarks.–Polygnathus inornatus E. R. Branson (1934) is different from Po. inornatus sensu Branson & Mehl (1934b) (see Klapper, 1971). After Ziegler (1975), Po. inornatus sensu Branson & Mehl (1934b) first occurs in the basal Carboniferous, whereas Po. inornatus Branson (1934) first occurs in the Upper Famennian, which was also observed by Luppold et al. (1994), among others. Occurrence.–Großer Pal, Rio Boreado, Casera Malpasso, Trolp, Puech de la Suque. Polygnathus marginvolutus Gedik, 1969 Pl. 1, Fig. 7 Polygnathus marginvolutus Gedik, 1969: 237, pl. 5, figs 2-8. Polygnathus marginvolutus Gedik. Perri & Spalletta, 1991: 71, pl. 6, figs 1-2 (see synonymy); Capkinoglu, 2000: 96, pl. 2, figs 17-21.

Occurrence.–Plan di Zermula. Polygnathus obliquicostatus Ziegler, 1962 Polygnathus obliquicostatus Ziegler, 1962: 92-92, pl. 11, figs 8-12. Polygnathus obliquicostatus Ziegler. Ziegler, 1981: 311-312, pl. 5, fig. 5.

132

Palaeontographica Americana, No. 

Occurrence.–Plan di Zermula. Polygnathus pupus Wang & Wang, 1978 Pl. 2, Figs. 13-14

Genus PSEUDOPOLYGNATHUS Branson & Mehl, 1934b Type species.–Pseudopolygnathus primus Branson & Mehl, 1934b Pseudopolygnathus brevipennatus Ziegler, 1962

Polygnathus pupus Wang & Wang, 1978: 77, pl. 7, figs 7-10. Polygnathus pupus Wang & Wang. Ji Qiang et al., 1989: 88, pl. 21, figs 7a-b.

Occurrence.–Puech de la Suque.

Pseudopolygnathus brevipennatus Ziegler, 1962: 98-99, pl. 12, figs 1-7.

Occurrence.–Rio Boreado, Plan di Zermula.

Polygnathus purus purus Voges, 1959

Pseudopolygnathus controversus Sandberg & Ziegler, 1979

Polygnathus pura pura Voges, 1959: 291, pl. 34, figs 21-26. Polygnathus purus purus Voges. Gedik, 1974: 20-21, pl. 4, figs 20a-b, 21a-c; Luppold et al., 1984: 103, pl. 4, fig. 9.

Pseudopolygnathus cf. brevipennatus Ziegler. – Ziegler et al., 1974: pl. 3, figs 13-16. Pseudopolygnathus controversus Sandberg & Ziegler, 1979: pl. 3, figs 12-17. Pseudopolygnathus controversus Sandberg & Ziegler. Yazdi, 1999: 184-185, pl. 5, figs 1-2.

Occurrence.–Trolp, Plan di Zermula, Milles, Puech de la Suque. Polygnathus purus subplanus Voges, 1959 Polygnathus purus subplanus Voges, 1959: 291, pl. 34, figs 17-33.

Occurrence.–Trolp, Plan di Zermula, Milles, Puech de la Suque. Polygnathus symmetricus Branson, 1934 Polygnathus symmetricus Branson, 1934: 310, pl. 25, fig. 11. Polygnathus symmetricus Branson. Over, 1992: 305, figs 7.24, 7.26.

Occurrence.–Großer Pal, Rio Boreado, Casera Malpasso, Trolp, Plan di Zermula. Polygnathus vogesi Ziegler, 1962 Pl. 1, Fig. 4 Polygnathus vogesi Ziegler, 1962: 94-95, pl. 11, figs 5-7.

Occurrence.–Großer Pal, Rio Boreado, Casera Malpasso, Trolp, Plan di Zermula. Polygnathus znepolensis Spassov, 1965 Polygnathus znepolensis Spassov, 1965: pl. 3, figs 1-2. Polygnathus znepolensis Spassov. Perri & Spalletta, 1991: 73, pl. 7, figs 6-7 (see synonymy).

Occurrence.–Rio Boreado.

Occurrence.–Casera Malpasso, Plan di Zermula. Pseudopolygnathus dentilineatus Branson, 1934 Pseudopolygnathus dentilineatus Branson, 1934: 317, pl. 26, fig. 22. Pseudopolygnathus dentilineatus Branson. Bischoff, 1957: 50-51, figs 29-32, 34; Klapper, 1966: 14-15, pl. 5, figs 10-11; Rhodes et al., 1969: 208-209, pl. 5, figs 9-13, pl. 6, fig. 8; Yu, 1988: 132, pl. 21, fig. 2, pl. 24, figs 10-13, 16-17, pl. 30, figs 1-3.

Occurrence.–Trolp, Milles, Puech de la Suque. Pseudopolygnathus marburgensis marburgensis Bischoff & Ziegler, 1956 Pl. 1, Figs 19-22 Pseudopolygnathus marburgensis Bischoff & Ziegler, 1956: 162-163, pl. 11, figs 9, 11-13. Pseudopolygnathus marburgensis marburgensis Bischoff & Ziegler. Sandberg & Ziegler, 1979: 182, pl. 3, figs 1-4.

Occurrence.–Großer Pal, Rio Boreado. Pseudopolygnathus marburgensis trigonicus Ziegler, 1962 Pseudopolygnathus trigonica Ziegler, 1962: 101-102, pl. 12, figs 8-13. Pseudopolygnathus marburgensis trigonicus Ziegler. Sandberg & Ziegler, 1979: 182-183.

Occurrence.–Großer Pal, Rio Boreado, Casera Malpasso, Trolp, Plan di Zermula.

Kaiser ET AL.: Conodonts Around the Hangenberg Event Pseudopolygnathus marginatus (Branson & Mehl, 1934b) 1934b Pseudopolygnathus marginatus Branson & Mehl, 1934b: 294295, pl. 23, figs 25-27. Pseudopolygnathus marginatus (Branson & Mehl). Ziegler, 1981: 387-389, pl. 3, figs 4-5.

Occurrence.–Plan di Zermula. Pseudopolygnathus micropunctatus Bischoff & Ziegler, 1956 Pl. 1, Figs. 18 Pseudopolygnathus micropunctata Bischoff & Ziegler, 1956: 163164, pl. 11, figs 7, 8, 10. Pseudopolygnathus micropunctatus Bischoff & Ziegler. Ziegler, 1981: 393-394, pl. 2, figs 2, 4; Capkinoglu, 2000: 100, pl. 1, fig. 19.

Remarks.–The forms that lack a strong anterior outer lobe were described as Pseudopolygnathus cf. micropunctatus by Sandberg & Ziegler (1979). However, according to Perri & Spalletta (1991), they are within the range of variation of Ps. micropunctatus. Occurrence.–Plan di Zermula. Pseudopolygnathus multistriatus Mehl & Thomas, 1947 Pseudopolygnathus multistriata Mehl & Thomas, 1947: 16-17, pl. 1, fig. 36. Pseudopolygnathus multistriatus Mehl & Thomas. Lane et al., 1980: 135-136, pl. 8, figs 8, 10, pl. 10, fig. 8; Wang & Yin, 1984: pl. 2, figs 14-15.

Occurrence.–Trolp, Plan di Zermula, Milles, Puech de la Suque. Pseudopolygnathus primus Branson & Mehl, 1934b Pseudopolygnathus prima Branson & Mehl, 1934b: 298, pl. 24, figs 24-25. Pseudopolygnathus primus Branson & Mehl. Wang & Yin, 1984: pl. 2, figs 20-22; Luppold et al., 1984: 105, pl. 4, fig. 12 , pl. 6, figs 14, 16-18.

Occurrence.–Trolp, Plan di Zermula, Milles, Puech de la Suque. Pseudopolygnathus triangulus triangulus Voges, 1959 Pl. 1, Fig. 23 Pseudopolygnathus triangula triangula Voges, 1959: pl. 35, figs 7-13.

133

Occurrence.–Plan di Zermula. Family SPATHOGNATHODONTIDAE Hass, 1959 Genus MEHLINA Youngquist, 1945 Type species.–Mehlina irregularis Youngquist, 1945 (= Mehlina gradata Youngquist, 1945) Mehlina strigosa (Branson & Mehl, 1934a) Spathodus strigosus Branson & Mehl, 1934a: 187, pl. 17, fig. 17. Mehlina strigosa (Branson & Mehl). Perri & Spalletta, 1991: 60, pl. 3, fig. 6; Capkinoglu, 1997: 182-183, pl. 4, figs 3-7; Johnston & Chatterton, 2001: 49, pl. 32, figs 16-20, pl. 33, figs 1-4.

Remarks.–Some Famennian specimens referred to Mehlina strigosa have additional denticles on one side of the blade, in accordance with observations by Perri & Spalletta (1998b). Occurrence.–Großer Pal, Rio Boreado, Casera Malpasso, Trolp, Plan di Zermula, Milles, Puech de la Suque.

ACKNOWLEDGMENTS This study was financially supported by the Deutsche Forschungsgemeinschaft (grant Ste 670/4-3). Information about sections and field support were given by F. Ebner (Leoben) and M. W. Rasser (Stuttgart). This manuscript improved thanks to comments from C. Corradini (Cagliari), M. Piecha (Krefeld) and J. Over (Washington).

LITERATURE CITED Alberti, H., H. Groos-Uffenorde, M. Streel, H. Uffenorde, & O. H. Walliser. 1974. The stratigraphical significance of the Protognathodus fauna from Stockum (Devonian/Carboniferous boundary, Rhein. Schiefergebirge). Newsletters on Stratigraphy, 3: 263-276. Aristov, V. A. 1988. Devonian conodonts of the Central Devonian Field (Russian Platform).Transactions of the Academy of Sciences of the USSR, 432: 119 pp. [in Russian] Austin, R. L., & F. H. T. Rhodes. 1981. Family Elictognathidae. Pp W170-W172, in: Treatise on Invertebrate Paleontology, Conodonts, Miscellanea, Supplement 2, R. A. Robinson et al. (eds.), Geological Society of America, Boulder, Colorado, and University of Kansas, Lawrence. Bai, S. L., Z. Q. Bai, X. P. Ma, D. R. Wang, & Y. L. Sun. 1994. Devonian Events and Biostratigraphy of South China. Bejing University Press, Beijing, China, 303 pp., 45 pls. Bassler, R. S. 1925. Classification and stratigraphic use of conodonts. Geological Society of America, Bulletin, 36: 218-220. Bateson, W. 1886. The ancestry of the Chordata. Quarterly Journal of Microscopical Science, 26: 535-571. Becker, R. T. 1993a. Anoxia, eustatic changes, and Upper Devonian to Lowermost Carboniferous global ammonoid diversity. The

134

Palaeontographica Americana, No. 

Systematics Association, Special Volume, 47: 115-164. Becker, R. T. 1993b. Analysis of ammonoid palaeobiogeography in relation to the global Hangenberg (terminal Devonian) and Lower Alum Shale (Middle Tournaisian) events. Annales de la Société Géologique de Belgique, 115(2): 459-473. Becker, R. T. 1996. New faunal records and holostratigraphic correlation of the Hasselbachtal D/Cboundary auxiliary stratotype (Germany). Annales de la Société Géologique de Belgique, 117(1): 19-45. Becker, R. T., & M. House. 2001. Devonian ammonoid succession at Jbel Amelane (western Tafilalt, southern Morocco). Notes et Mémoires du Service Géologique, 399: 37-42. Becker, R. T., M. R. House, J. Bockwinkel, V. Ebbighausen, & Z. S. Aboussalam. 2002. Famennian ammonoid zones of the eastern Anti-Atlas (southern Morocco). Münstersche Forschungen zur Geologie und Paläontologie, 93: 159-2005. Becker, R. T., & D. Weyer. 2004. Bartzschiceras n. gen. (Ammonoidea) from the Lower Tournaisian of southern France. Mitteilungen aus dem Geologisch-Paläontologischen Institut, Universität Hamburg, 88: 11-36. Bischoff, G. 1957. Die Conodonten-Stratigraphie des rheno-herzynischen Unterkarbons mit Berücksichtigung der WocklumeriaStufe und der Devon/Karbon-Grenze. Abhandlungen des Hessischen Landesamtes für Bodenforschung, 19: 64 pp. Bischoff, G., & W. Ziegler. 1957. Die Conodontenchronologie des Mitteldevons und des tiefsten Oberdevons. Abhandlungen des Hessisches Landesamtes für Bodenforschung, 22: 136 pp. Bless, M. J. M., R. T. Becker, K. Higgs, E. Paproth, & M. Streel. 1993. Eustatic cycles around the Devonian-Carboniferous boundary and the sedimentary and fossil record in Sauerland (Federal Republic of Germany). Annales de la Société Géologique de Belgique, 115(2): 689-702. Bless, M. J. M., K. V. Simakov, & M. Streel. 1988. Advantages and disadvantages of a conodont-based or event-stratigraphic Devonian-Carboniferous Boundary. Courier Forschungsinstitut Senckenberg, 100: 3-14. Boyer, F., S. Krylatov, J. Le Fèvre, & D. Stoppel. 1968. Le Dévonien Supérieur et la limite Dévono-Carbonifère en Montagne Noire (France) lithostratigraphie-biostratigraphie (conodontes). Bulletin du Centre de Recherches de Pau, 2(1): 1-212. Branson, E. R. 1934. Conodonts from the Hannibal Formation of Missouri. University of Missouri Studies, 8: 301-334. Branson, E. R., & M. G. Mehl. 1934a. Conodonts from the Grassy Creek Shale of Missouri. University of Missouri Studies, 8: 171259. Branson, E. R., & M. G. Mehl. 1934b. Conodonts from the Bushberg Sandstone and equivalent formations of Missouri. University of Missouri Studies, 8: 265-299. Brügge, N. 1973. Zur stratigraphischen Einstufung des OberdevonProfils "Alte Heerstraße" bei Schleiz, Bezirk Gera. Zeitschrift für Geologische Wissenschaften, 1(3): 319-327. Buchroithner, M. F., F. Ebner, & R. Surenian. 1979. Die Entwicklung der Steinbergkalke (Oberdevon, Grazer Paläozoikum) an ihrer Typuslokalität. Mitteilungen der Naturwissenschaftlichen Vereinigung Steiermark, 109: 71-84. Capkinoglu, S. 1997. Conodont fauna and biostratigraphy of the Famennian of Büyükada, Istanbul, northwestern Turkey.

Bolletino della Societa Paleontologica Italiana, 35(2): 165-185. Capkinoglu, S. 2000. Late Devonian (Famennian) conodonts from Denizliköyü, Gebze, Kocaeli, northwestern Turkey. Turkish Journal of Earth Sciences, 9: 91-112. Caputo, M. V. 1985. Late Devonian glaciation in South America. Paleogeography, Paleoclimatology, Paleoecology, 51: 291-317. Casier, J. G., F. Lethiers, & A. Préat. 2001. Ostracods and rock facies associated with the Devonian-Carboniferous boundary series in the Puech de la Suque section, Montagne Noire, France. Bulletin de l´Institut Royal des Sciences Naturelles de Belgique, Sciences de la Terre, 71: 31-52. Chigova, V. A., J. Bouckaert, A. S. Alekseev, V. A. Aristov, I. S. Barskov, M. Ch. Gagiev, R. Dreesen, L. I. Kononova, O. M. Lipjnagov, N. S. Ovnatanova, K. V. Simakov, & V. G. Chalimbadja. 1979. The correlation of Famennian and Tournaisian deposits of the USSR and French-Belgian Basin on conodonts. Ministère des Affaires Economiques, Service Geologique de Belgique, Professional Paper, 1979/5: 21-36. Clausen, C. D., K. Leuteritz, & W. Ziegler. 1989. Ausgewählte Profile an der Devon/Karbon-Grenze im Sauerland (Rheinisches Schiefergebirge). Fortschritte in der Geologie von Rheinland und Westfalen, 35: 161-226. Corradini, C. 2003. Late Devonian (Famennian) conodonts from the Corona Mizziu sections near Villasalto (Sardinia, Italy). Palaeontographica Italica, 89: 65-116. Corradini, C. 2008. Revision of Famennian-Tournaisian (Late Devonian – Early Carboniferous) conodont biostratigraphy of Sardinia, Italy. Revue de Micropaléontologie, 51: 123-132. Cygan, C., & M.-F. Perret. 2002. Conodonts from the Upper Devonian-Lower Carboniferous succession of Milles (Arize Massif ). Pyrenees Field Trip. Guide Book. ECOS VIII. Université Paul Sabatier, pp. 56-62. Draganits, E., R. Mawson, J. A. Talent, & L. Krystyn. 2002. Lithostratigraphy, conodont biostratigraphy and depositional environment of the Middle Devonian (Givetian) to Early Carboniferous (Tournaisian) Lipak Formation in the Pin Valley of Spiti (NW India). Rivista Italiana di Paleontologia e Stratigrafia, 108(1): 7-35. Dreesen, R. M. 1992. Conodont biofacies analysis of the Devonian/ Carboniferous boundary beds in the Carnic Alps. Jahrbuch der Geologischen Bundesanstalt, 135: 49-56. Dreesen, R., C. A. Sandberg, & W. Ziegler. 1986. Review of Late Devonian and early Carboniferous conodont biostratigraphy and biofacies models as applied to the Ardenne shelf. Annales de la Sociéte Géologique de Belgique, 109: 27-42. Dzik, J. 1976. Remarks on the evolution of the Ordovician conodonts. Acta Paleontologica Polonica, 21: 41-44. Dzik, J. 1997. Emergence and succession of Carboniferous conodont and ammonoid communities in the Polish part of the Variscan sea. Acta Palaeontologica Polonica, 42(1): 57-164. Dzik, J. 2006. The Famennian "Golden Age" of conodonts and ammonoids in the Polish part of the Variscan sea. Palaeontologia Polonica, 63: 1-359. Ebner, F. 1973. Die Conodontenfauna des Devon/KarbonGrenzbereiches am Elferspitz (Karnische Alpen, Österrreich). Mitteilungen und Abhandlungen der Abteilung für Geologie, Paläontologie und Bergbau am Landesmuseum Joanneum, 33: 12-

Kaiser ET AL.: Conodonts Around the Hangenberg Event 78. Ebner, F. 1978. Stratigraphie des Karbon der Rannachfazies im Paläozoikum von Graz, Österreich. Mitteilungen der Österreichischen Geologischen Gesellschaft, 69: 163-196. Ebner, F. 1980. Conodont localities in the surroundings of Graz/ Styria. Abhandlungen der Geologischen Bundesanstalt, 35: 101127. Ebner, F. 1991. Circummediterranean Carboniferous preflysch sedimentation. Giornale di Geologia, 53(1): 197-208. Ebner, F. 1998. Das Paläozoikum auf ÖK-Blatt 163 Voitsberg. Mitteilungen des Referats Geologie und Paläontologie des Landesmuseum Joanneum, SH 2. Ebner, F., & W. Prochaska. 1989. Geochemical characterization of Carboniferous sedimentary rocks within the Rannach-Group of the Paleozoic of Graz (eastern Alps, Austria). The Geological Society of Greece, Special Publication 1: 23-33. Ebner, F., B. Hubmann, & L. Weber. 2000. Die Rannach- und Schöckel-Decke des Grazer Paläozoikums, Exkursionsführer Sediment 2000. Mitteilungen der Gesellschaft der Geologischen Bergbaustudenten Österreichs, 44: 1-44. Ellison, S. P., & R. W. Graves. 1941. Lower Pennsylvanian (Dimple Limestone) conodonts of the Marathon region, Texas. University of Missouri School of Mines and Metallurgy, Technical Series 14: 1-13. Feist, R. 1985. Devonian stratigraphy of the southeastern Montagne Noire (France). Courier Forschungsinstitut Senckenberg, 75: 331352. Feist, R. 2002. The Palaeozoic of the Montagne Noire, southern France. Guidebook. Institut de Sciences de l´Evolution, University of Montpellier II, 85 pp. Flajs, G., & R. Feist. 1988. Index conodonts, trilobites and environment of the Devonian-Carboniferous boundary beds at La Serre (Montagne Noire, France). In: Devonian-Carboniferous Boundary – Results of Recent Studies, G. Flajs, R. Feist, & W. Ziegler (eds.). Courier Forschungsinstitut Senckenberg, 100: 53-107. Flajs, G., R. Feist, & W. Ziegler, eds. 1988. Devonian-Carboniferous boundary – results of recent studies. Courier Forschungsinstitut Senckenberg, 100: 245 pp. Flügel, H. W., & F. Neubauer. 1984. Steiermark. Erläuterungen zur Geologischen Karte der Steiermark. Geologische Bundesanstalt, 23: 1-127. Frech F. 1887. Ueber das Devon des Ostalpen, nebst Bemerkungen über das Silur und einem paläontologischen Anhang. Zeitschrift der Deutschen Geologischen Gesellschaft, 39: 659-738. Frech F. 1894. Die Karnischen Alpen. Ein Beitrag zur vergleichenden Gebirgstektonik. Abhandlungen der Naturforschenden Gesellaft Halle, xiv + 514 pp. Frech, F. 1902. Über devonische Ammoneen. Beiträge zur Paläontologie Österreich-Ungarns und des Orients, 14: 27-112. Gaertner, H. R. von. 1931. Geologie der zentralkarnischen Alpen. Denkschrift der Österreichischen Akademie der Wissenschaften, 102: 113-199. Gagiev, M. H., & L. I. Kononova. 1990. The Upper Devonian and Lower Carboniferous sequences in the Kamenka River section (Kolyma River Basin, the Soviet North-East) – Stratigraphic description. Conodonta. Courier Forschungsinstitut Senckenberg, 118: 81-103.

135

Garcia-Lopez S., J. Sanz-Lopez, & M. V. Pardo Alonso. 1999. Conodontos (bioestratigrafia, biofacies y paleotemperaturas) de los sinclinales de Almaden y Guadalmez (Devonico-Carbonifero Inferior), Zona Centroiberica Meridional, Espana. Revista Espanola de Paleontologia, vol. Extraordinario: 161-172. Gedik, I. 1969. Karnik Alpler'den Alt Karbonifer'e ait conodontlar. Bulletin of the Mineral Research and Exploration Institute of Turkey, 70: 229-242. Gedik, I. 1974. Conodonten aus dem Unterkarbon der Karnischen Alpen. Abhandlungen der Geologischen Bundesanstalt, 31: 1-29. Girard, C. 1994a. Conodont biofacies and event stratigraphy across the D/C boundary in the stratotype area (Montagne Noire, France). Courier Forschungsinstitut Senckenberg, 168: 299-309. Girard, C. 1994b. Les Communauté de Conodontes et les Crises Kellwasser et Hangenberg de la Fin du Dévonien en Montagne Noire (Sud de France). Analyse Faunistique et Géochimique. Ph.D. Dissertation, Université Montpellier II, Montpellier, France, 113 pp. Girard, C. 1996. Réponse des communautés de conodontes aux perturbations eustatiques: les événements fini-dévoniens dans la Montagne Noire (France). Revue de Micropaléontologie, 39 (4): 261-270. Gong, X., H. Huang, M. Zhang, & Q. Huang. 1991. The stratigraphic classification and correlation of carbonate rocks of Upper Devonian and Lower Carboniferous in Guilin Karst Region. Guangxi Science and Technology Publishing House: 1-106. Harris, W. J., & R. W. Hollingsworth. 1933. New Pennsylvanian conodonts from Oklahoma. American Journal of Sciences, 25: 193-204. Hartenfels, S., & R. T. Becker. 2009. Timing of the global Dasberg Event: implications for Famennian eustasy and chronostratigraphy. Paleontographica Americana, 63: 69-95. Hass, W. H. 1959. Conodonts from the Chappel Limestone of Texas. United States Geological Survey Professional Paper, 294: 365-399. Helms, J. 1961. Die "nodocostata-Gruppe" der Gattung Polygnathus (Oberdevonische Conodonten). Geologie, 10: 674-711. Hou, H. F., Q. Ji, X. H. Wu, J. Xiong, S. Wang, L. Gao, H. Sheng, J. Wie, & S. Turner. 1985. Muhua Section of DevonianCarboniferous Boundary Beds. Geological Publishing House, Beijing, China, 226 pp. Huddle, J. W. 1934. Conodonts from the New Albany Shale of Indiana. Bulletins of American Paleontology, 21(72): 1-136. Ji, Q. 1985. Study on the phylogeny, taxonomy, zonation and biofacies of Siphonodella (Conodonta). Bulletin of the Institute of Geology, 11: 51-75. Ji, Q., Z. Wang, H. Sheng, J. Hou, R. Feng, J. Wei, S. Wang, H. Wang, L. Xiang, & G. Fu. 1989. The Dapoushang Section. An Excellent Section for the Devonian-Carboniferous Boundary Stratotype in China. Science Press, Beijing, China, 165 pp. Ji, Q., & W. Ziegler. 1993. The Lali section: an excellent reference section for Upper Devonian in south China. Courier Forschungsinstitut Senckenberg, 157: 1-183. Johnston, D. I., & B. D. E. Chatterton. 1991. Famennian conodont biostratigraphy of the Palliser Formation, Rocky Mountains, Alberta and British Columbia, Canada. Geological Survey Canada, Bulletin 417: 163-183.

136

Palaeontographica Americana, No. 

Johnston, D. I., & B. D. E. Chatterton. 2001. Upper Devonian (Famennian) conodonts of the Palliser Formation and Wabamun Group, Alberta and British Columbia, Canada. Palaeontographica Canadiana, 19: 1-154. Kaiser, S. I. 2005. Mass Extinctions, Climatic and Oceanographic Changes at the Devonian-Carboniferous Boundary. Ph.D. Dissertation, Ruhr-University Bochum, Germany, 156 pp. Kaiser, S. I. 2007. Conodontenstratigraphie und Geochemie (į13Ccarb, į13Corg, į18Ophosph) aus dem Devon-Karbon Grenzbereich der Karnischen Alpen. Jahrbuch der Geologischen Bundesanstalt, 146(3-4): 301-314. Kaiser, S. I. 2009. The Devonian/Carboniferous stratotype section La Serre (Montagne Noire) revisited. Newsletters on Stratigraphy, 43(2): 195-205. Kaiser, S., R. T. Becker, D. Brice, J.-P. Nicollin, M. LegrandBlain, Z. S. Aboussalam, A. El Hassani, & H. Nübel. 2004. Sedimentary succession and neritic faunas around the DevonianCarboniferous boundary at Kheneg Lakahal south of Assa (Dra Valley, SW Morocco). Document de l´Institut Scientifique Rabat 19 : 69-74. Kaiser, S. I., R. T. Becker, & A. El Hassani. 2007. Middle to Late Famennian successions at Ain Jemaa (Moroccan Meseta) – implications for regional correlation, event stratigraphy and synsedimentary tectonics of NW Gondwana. Geological Society of London, Special Publications, 278: 237-260. Kaiser, S. I., T. Steuber, & R. T. Becker. 2008. Environmental change during the Late Famennian and Early Tournaisian (Late Devonian – Early Carboniferous) – implications from stable isotopes and conodont biofacies in southern Europe. In: Carboniferous Platforms and Basins, M. Aretz, H.-G. Herbig, & I. D. Somerville (eds.). Geological Journal, Special Issue 43(2-3): 241-260. Kaiser, S. I., T. Steuber, R. T. Becker, & M. M. Joachimski. 2006. Geochemical evidence for major environmental change at the Devonian-Carboniferous boundary in the Carnic Alps and the Rhenish Massif. Palaeogeography, Palaeoclimatology, Palaeoecology, 240(1-2): 146-160. Kalvoda, J., & Z. Kukal. 1987. Devonian-Carboniferous boundary in the Moravian Karst at Lesni Lom quarry, Brno-Lisen, Czechoslovakia. Courier Forschungsinstitut Senckenberg, 98: 95117. Klapper, G. 1966. Upper Devonian and Lower Mississippian conodont zones in Montana, Wyoming, and South Dakota. University of Kansas Paleontological Contributions, Paper 3: 43 pp. Klapper, G. 1971. Patrognathus and Siphonodella (Conodonta) from the Kinderhookian (Lower Mississippian) of western Kansas and southwestern Nebraska. Kansas Geological Survey Bulletin, 202(3): 14 pp. Kodsi, M. G. 1967. Zur Kenntnis der Devon/Karbon-Grenze im Paläozoikum von Graz. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 7: 415-427. Kononova, L. I. 1979. Znachenie konodontov dlya stratigrafii famenskikh i turneyskikh otlozheniy Urala. Trudy Institut Geologii i Geokhimii, Uraliskiy Nauchnie Centr, Akademia Nauk USSR, 145: 72-93. Korn, D. 1998. Ammonoid stratigraphy of late Famennian rocks in the Carnic Alps. Giornale di Geologia, Serie 3a, Special Issue, 60:

123-124. Korn, D., C. D. Clausen, Z. Belka, K. Leuteritz, F. W. Luppold, R. Feist, & D. Weyer. 1994b. Die Devon/Karbon-Grenze bei Drewer (Rheinisches Schiefergebirge). Geologie und Paläontologie in Westfalen, 29: 97-147. Korn, D., C. D. Clausen, & F. W. Luppold. 1994a. Die Devon/ Karbon-Grenze im Rheinischen Schiefergebirge. Geologie und Paläontologie in Westfalen, 29: 1-221. Korn, D., & R. Feist. 2007. Early Carboniferous ammonoid faunas and stratigraphy of the Montagne Noire (France). Fossil Record, 10(2): 99-124. Korn, D., & M. R. House. 1997. Late Devonian and Early Carboniferous ammonoid faunas from the Carnic Alps. Pp 40-41, in: First International Conference on North Gondwanan Mid-Paleozoic Biodynamics, (IGCP Project No. 421), Vienna 1721, September 1997, Abstract Volume, R. Feist (ed.). Geologische Bundesanstalt, Vienna. Korn, D., & F. W. Luppold. 1987. Nach Clymenien und Conodonten gegliederte Profile des oberen Famennium im Rheinischen Schiefergebirge. Courier Forschungsinstitut Senckenberg, 92: 199223. Korn, D., & D. Weyer. 2003. High resolution stratigraphy of the Devonian-Carboniferous transitional beds in the Rhenish Mountains. Mitteilungen des Museums für Naturkunde Berlin, Geowissenschaftliche Reihe, 6: 79-124. Kürschner, W., R. T. Becker, D. Buhl, & J. Veizer. 1993. Strontium isotopes in conodonts: Devonian-Carboniferous transition, the northern Rhenish Slate Mountains, Germany. Annales de la Société Géologique de Belgique, 115(2): 595-621. Lane, H. R., C. R. Sandberg, & W. Ziegler. 1980. Taxonomy and phylogeny of some lower Carboniferous conodonts and preliminary standard post-Siphonodella zonation. Geologica et Palaeontologica, 14: 117-168. Lethiers, F., & R. Feist. 1991. Ostracodes, stratigraphie et bathymétrie du passage Dévonien-Carbonifère au Viséen Inférieur en Montagne Noire (France). Geobios, 24(1): 71-104. Lipnjagow, O. M. 1979. The conodonts of Ct1a and Ct1b of the Donetz Basin. Ministère des Affaires Economiques, Service Geologique de Belgique, Professional Paper, 1979/5: 41-51. Luppold, F. W., C. D. Clausen, D. Korn, & D. Stoppel. 1994. Devon/Karbon-Grenzprofile im Bereich von RemscheidAltenaer Sattel, Warsteiner Sattel, Briloner Sattel und AttendornElsper Doppelmulde (Rheinisches Schiefergebirge). Geologie und Paläontologie in Westfalen, 29: 7-69. Mehl, M. G., & L. A. Thomas. 1947. Conodonts from the Fern Glen of Missouri. Denison University, Journal of Science Laboratory, 40(2): 3-20. Manzoni, M. 1966. Conodonti neodevonici e neocarboniferi al Monte Zermula (Alpi Carniche). Giornale di Geologia, 33: 461488. Metzger, R. A. 1989. Upper Devonian (Frasnian-Famennian) conodont biostratigraphy in the subsurface of north-central Iowa and southeastern Nebraska. Journal of Paleontology, 63: 503-524. Müller, K. J. 1956. Zur Kenntnis der Conodonten-Fauna des europäischen Devons, 1. Die Gattung Palmatolepis. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft, 494: 1-70. Nössing, L. 1975. Die Sanzenkogel-Schichten (Unterkarbon),

Kaiser ET AL.: Conodonts Around the Hangenberg Event eine biostratigraphische Einheit des Grazer Paläozoikums. Mitteilungen der Naturwissenschaftlichen Vereinigung Steiermark, 105: 79 -92. Olivieri, R. 1969. Conodonti e zonatura del Devoniano Superiore e riconoscimento di Carbonifero Inferiore nei calcari di Corona Mizziu (Gerrei-Sardegna). Bolletino della Società Paleontologica Italiana, 8(2): 63-152. Over, D. J. 1992. Conodonts and the Devonian-Carboniferous boundary in the Upper Woodford Shale, Arbuckle Mountains, south-central Oklahoma. Journal of Paleontology, 66: 293-311. Pander, C. H. 1856. Monographie der Fossilen Fische des Silurischen Systems der Russisch-Baltischen Gouvernements. Akademie der Wissenschaften St. Petersburg, St. Petersburg, Russia, 91 pp. Paproth, E., & M. Streel. 1984. The Devonian-Carboniferous boundary. Courier Forschungsinstitut Senckenberg, 67: 231-239. Perret, M. F. 1988. Le passage du Devonien au Carbonifere dans les Pyrenees. Zonation par conodontes. Courier Forschungsinstitut Senckenberg 100: 39-52. Perret, M. F. 1993. Recherches micropaléontologiques et biostratigrafiques (conodontes-foraminifères) dans le Carbonifère Pyreneen. Strata, 2(21): 1-597. Perret, M. F., & M. Weyant. 1994. Les biozones à conodontes du Carbonifère des Pyrénées. Comparaisons avec d´autres régions du globe. Geobios, 27(6): 689-715. Perri, M. C., & C. Spalletta. 1991. Famennian conodonts from Cava Cantoniera and Malpasso sections, Carnic Alps, Italy. Bollettino della Società Paleontologica Italiana, 30 (1): 47-78. Perri, M. C., & C. Spalletta. 1998a. Updating of the conodont biostratigraphy in the Carnic Alps (Italy). Giornale di Geologia, serie 3a, Special Issue, 60: 116-119. Perri, M. C., & C. Spalletta. 1998b. Late Famennian conodonts from the Malpasso section (Carnic Alps, Italy). Giornale di Geologia, serie 3a, Special Issue, 60: 220-227. Perri, M. C., & C. Spalletta. 1998c. Latest Devonian and Early Carboniferous conodonts from the Casera Collinetta di Sotto A section (Carnic Alps, Italy). Giornale di Geologia, serie 3a, Special Issue, 60: 168-181. Perri, M. C., & C. Spalletta. 2000. Late Devonian-Early Carboniferous transgressions and regressions in the Carnic Alps (Italy). Records of the Western Australian Museum, Supplement, 58: 305319. Perri, M. C., & C. Spalletta. 2001. Hangenberg Event al limite Devoniano/Carbonifero al Monte Zermula, Alpi Carniche, Italia. Giornale di Geologia, serie 3a, 62: 31-40. Perri, M. C., C. Spalletta, & M. Pondrelli. 1998. Late Famennian conodonts from the Pramosio Bassa section (Carnic Alps, Italy). Giornale di Geologia, serie 3a, Special Issue, 60: 228-233. Préat, A., B. Mamet, A. Bernard, & D. Gillan. 1999. Bacterial mediation, red matrices diagenesis, Devonian, Montagne Noire (southern France). Sedimentary Geology, 126: 223-242. Rexroad, C. B., & A. J. Scott. 1964. Conodont zones in the Rockford Limestone and in the lower part of the New Providence Shale (Mississippian) in Indiana. Indiana Geological Survey, Bulletin 30: 1-54. Rhodes, F. H. T., R. L. Austin, & E. C. Druce. 1969. British Avonian (Carboniferous) conodont faunas, and their value in local and intercontinental correlation. Bulletin of the British Museum of

137

Natural History (Geology), Supplement, 5: 1-313. Sandberg, C. A. 1976. Conodont biofacies of Late Devonian Polygnathus styriacus Zone in western United States. Geological Association of Canada, Special Paper, 15: 171-186. Sandberg, C. A., & R. Dreesen. 1984. Late Devonian icriodontid biofacies models and alternate shallow-water conodont zonation. Geological Society of America, Special Papers, 196: 143-178. Sandberg, C. A., M. Streel, & R. A. Scott. 1972. Comparison between conodont zonation and spore assemblages at the Devonian-Carboniferous boundary in the western and central United States and in Europe. Compte Rendu, 7é Congress of Stratigraphy and Geology of the Carboniferous, 1: 179-203. Sandberg, C. A., & W. Ziegler. 1979. Taxonomy and biofacies of important conodonts of Late Devonian styriacus-Zone, United States and Germany. Geologica et Paleontologica, 13: 173-212. Sandberg, C. A., W. Ziegler, K. Leuteritz, & S. M. Brill. 1978. Phylogeny, speciation, and zonation of Siphonodella (Conodonta, Upper Devonian and Lower Carboniferous). Newsletters on Stratigraphy, 7(2): 102-120. Sanz-López, J. 2002. Devonian and Carboniferous pre-Stephanian rocks from the Pyrenees. Guadernos del Museo Geominero, 1: 5688. Savage, N. M., A. Sardsud, & P. Lutat. 2007. Famennian (Upper Devonian) conodonts from Mae Sariang, northwestern Thailand. Geothai 2007, Proceedings of the International Conference on Geology of Thailand: Towards Sustainable Development and Sufficiency Economy, pp. 87-92. Schäfer, W. 1976. Einige neue Conodonten aus dem höheren Oberdevon des Sauerlandes (Rheinisches Schiefergebirge). Geologica et Palaeontologica, 10: 141-152. Schindewolf, O. H. 1937. Zur Stratigraphie und Paläontologie der Wocklumer Schichten (Oberdevon). Abhandlungen der Preußischen Geologischen Landesanstalt, neue Folge, 178: 1-132. Schmidt, H. 1924. Zwei Cephalopodenfaunen an der DevonCarbongrenze des Sauerlandes. Jahrbuch der Preußischen Geologischen Landesanstalt, 44: 98-171. Schönlaub, H. P. 1969. Conodonten aus dem Oberdevon und Unterkarbon des Kronhofgrabens (Karnische Alpen, Österreich). Jahrbuch der Geologischen Bundesanstalt, 112: 321-354. Schönlaub, H. P. 1980. Carnic Alps. Field trip A. Abhandlungen der Geologischen Bundesanstalt, 35: 5-57. Schönlaub, H. P., M. Attrep, K. Boeckelmann, R. Dreesen, R. Feist, A. Fenninger, G. Hahn, P. Klein, D. Korn, R. Kratz, M. Magaritz, C. J. Orth, & J.-M. Schramm. 1992. The Devonian/ Carboniferous boundary in the Carnic Alps (Austria) – a multidisciplinary approach. Jahrbuch der Geologischen Bundesanstalt, 135(1): 57-98. Scott, A. J. 1961. Three new conodonts from the Louisiana limestone (Upper Devonian) of western Illinois. Journal of Paleontology, 35(6): 1223-1227. Spalletta, C., & M. C. Perri. 1998. The Lower expansa Zone (Late Devonian) in the Pramosio section (Carnic Alps, Italy). Giornale di Geologia, serie 3a, Special Issue, 60: 234-241. Spalletta, C., M. C. Perri, & M. Pondrelli. 1998. Late Famennian conodonts from the Rio Boreado section (Carnic Alps, Italy). Giornale di Geologia, serie 3a, Special Issue, 60: 214-219. Spassov, C. 1965. Unterkarbon in Bulgarien. Review of the Bulgarian

138

Palaeontographica Americana, No. 

Geological Society, 26: 157-166. Stewart, I. J., & E. B. Selwood. 1985. Devonian-Carboniferous biostratigraphy and conodont localities of the Launceston Area and St. Melion Outlier. Fourth European Conodont Symposium (ECOS IV), Excursion A, Guidebook, pp. 63-90. Streel, M., M. V. Caputo, S. Loboziak, & J. H. G. Melo. 2000. Late Frasnian-Famennian climates based on palynomorph analyses and the question of the Late Devonian glaciations. Earth Science Reviews, 52: 121-173. Sweet, W. C. 1988. The Conodonta. Morphology, Taxonomy, Paleoecology, and Evolutionary History of a Long-Extinct Animal Phylum. Clarendon Press, New York, Oxford, 212 pp. Trapp, E., B. Kaufmann, K. Mezger, D. Korn, & D. Weyer. 2004. Numerical calibration of the Devonian-Carboniferous boundary: two new U-Pb ID-TIMS single-zircon ages from Hasselbachtal (Sauerland, Germany). Geology, 32: 857-860. Ulrich, E. O., & R. S. Bassler. 1926. A classification of the toothlike fossils, conodonts, with description of American Devonian and Mississippian species. Proceedings of the United States Natural Museum, 68: 1-63. Van den Boogaard, M. & B. Kuhry, B. 1979. Statistical reconstruction of the Palmatolepis apparatus (Late Devonian conodontophorid) at the generic, subgeneric, and species level. Scripta Geologica, 49: 1-57. Venturini, C., & C. Spalletta. 1990. Stop 4b - Stua Ramaz, along the road, 1000 m. In: Field Workshop on Carboniferous to Permian Sequence of the Pramollo-Nassfeld Basin (Carnic Alps), C. Venturini (ed.). Guidebook 153, Arti Grafiche Friulane, Udine. Venturini, C., & C. Spalletta. 1998. Remarks on the Paleozoic stratigraphy and the Hercynian tectonics of the Palaeocarnic Chain (southern Alps). Giornale di Geologia, serie 3a, Special Issue, 60: 69-88. Venturini, C., C. Spalletta, G. B. Vai, M. Pondrelli, S. Delzotto, C. Fontana, G. Longo Salvador, & G. B. Carulli. In press. Note Illustrative al Foglio 031 Ampezzo, Carta Geologica d’Italia alla Scala 1:50,000; 1-240 (APAT, Servizio Geologico d’Italia). Voges, A. 1959. Conodonten aus dem Untercarbon I und II (Gattendorfia- und Pericyclus-Stufe) des Sauerlandes. Paläontologische Zeitschrift, 33(4): 266-314. Vorontzova, T. N. 1996. The genus Neopolygnathus (Conodonta): phylogeny and some questions of systematics. Paleontologicheskii Zhurnal, 1996(2): 82-84. Wang, C.-Y. 1987. Devonian-Carboniferous boundary in South China. Pp 1-10, in: Carboniferous Boundaries in China, C.-Y.

Wang (ed.). Contribution to the 11th International Congress of Carboniferous Stratigraphy and Geology, 1987, Beijing, China. Wang, C.-Y., & Z. Wang. 1978. Upper Devonian and Lower Carboniferous conodonts from southern Guizhou. Memoires of the Nanjing Institute of Geology and Palaeontology, Academia Sinica, 11: 51-96. Wang, C.-Y., & B. Yin. 1984. Conodont zonations of early Lower Carboniferous and Devonian-Carboniferous boundary in pelagic facies, south China. Acta Palaeontologica Sinica, 23 (2): 224-238. Wang, C.-Y., & W. Ziegler. 1982. On the Devonian-Carboniferous boundary in south China based on conodonts. Geologica et Palaeontologica, 16: 151-162. Wang, P. & C.-Y. Wang. 2004. Lower Carboniferous conodont faunas from the Jiehejie Formation of the Xiongjiashan in Fengxian Counta, Shaanxi, China. Acta Palaeontologica Sinica, 44(3): 358-375. Yazdi, M. 1999. Late Devonian-Carboniferous conodonts from eastern Iran. Rivista Italiana di Paleontologia e Stratigrafia, 105(2): 167-200. Yu, C., ed. 1988. Devonian-Carboniferous boundary in Nanbiancun, Guilin, China. Aspects and Records. Science Press, Beijing, China, 389 pp., 87 pls. Ziegler, W. 1962. Taxionomie und Phylogenie Oberdevonischer Conodonten und ihre stratigraphische Bedeutung. Hessisches Landesamt für Bodenforschung, Abhandlungen, 38: 166 pp. Ziegler, W. 1975. Palmatolepis stoppeli Sandberg & Ziegler. Pp 249-250, in: Cataloge of Conodonts, Vol. 2, W, Zeigler (ed.). E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, Germany. Ziegler, W. 1977. Catalogue of Conodonts, Vol. 3. E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, Germany, 574 pp. Ziegler, W. 1981. Catalogue of Conodonts, Vol. 4. E. Schweizerbart´sche Verlagsbuchhandlung, Stuttgart, Germany, 445 pp. Ziegler, W., & K. Leuteritz. 1970. Conodonten. Fortschritte in der Geologie von Rheinland und Westfalen, 17: 679-732. Ziegler, W., & C. A. Sandberg. 1984. Palmatolepis-based revision of upper part of standard Late Devonian conodont zonation. Geological Society of America, Special Papers, 196: 179-194. Ziegler, W., C. A. Sandberg, & R. L. Austin. 1974. Revision of Bispathodus group (Conodonta) in the Upper Devonian and Lower Carboniferous. Geologica et Palaeontologica, 8: 97-112. Ziegler, W., & K. Weddige. 1999. Zur Biologie, Taxonomie und Chronologie der Conodonten. Paläontologische Zeitschrift, 73(1/2): 1-38.

139

PLATES

140

Palaeontographica Americana, No. 

Plate  Figure

1 2 3 4 5-6

7 8-9

10-11

12-13

14 15-16

17 18 19-20

21-22

23 24

Page All scale bars = 200μm. Polygnathus hassi Helms, 1961; locality: Plan di Zermula; sample: PZA-9; Bed –9; Lower expansa Zone. SMNS 67368. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Polygnathus communis carina Hass, 1959, M1; locality: Plan di Zermula; sample: PZA 2ax; Bed 2ax; bransoni Zone. SMNS 67369. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Polygnathus extralobatus Schäfer, 1976; locality: Plan di Zermula; sample: PZA-9; Bed –9; Lower expansa Zone. SMNS 67370. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Polygnathus vogesi Ziegler, 1962; locality: Casera Malpasso; sample: CM 11; Bed 11; Upper expansa Zone. SMNS 67371. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Polygnathus sp. A; locality: Casera Malpasso; sample 15.1; Bed 16; praesulcata Zone. SMNS 67372. 5. Upper view. 6. Lower view. Polygnathus marginvolutus Gedik, 1969; locality: Plan di Zermula A; sample –12; Bed –12; Lower expansa Zone. SMNS 67373. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Protognathodus kuehni Ziegler & Leuteritz, 1970; locality: Trolp; sulcata Zone. . . . . . . . . . . 126 8. Sample: 16´; Bed 16´. SMNS 67374. 9. Sample: 16; Bed 16. SMNS 67375. Protognathodus kockeli (Bischoff, 1958); locality: Trolp; sample 10 cm; Bed 16; sulcata Zone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 10. SMNS 67376. 11. SMNS 67377. Siphonodella praesulcata Sandberg, 1972, locality: Trolp; sulcata Zone. . . . . . . . . . . . . . . . . . . . . . 125 12. Sample 17; Bed 17. SMNS 67378. 13. Sample 16; Bed 16. SMNS 67379. Siphonodella sulcata (Huddle, 1934); locality: Trolp; sample 16; Bed 16; sulcata Zone. SMNS 67380. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Siphonodella praesulcata Sandberg, 1972, locality: Trolp; sample 2.1, 2.2; Bed 10/11; kockeli Zone. SMNS 67381. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 15. Lower view. 16. Upper view, broken. Siphonodella cooperi Hass, 1959 M1, locality: Plan di Zermula A; sample 2ay; Bed 2ay; quadruplicata Zone. SMNS 67382. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Pseudopolygnathus micropunctatus Bischoff & Ziegler, 1956; locality: Plan di Zermula A; sample: PZA-5; Bed –5; Middle expansa Zone. SMNS 67383. . . . . . . . . . . . . . . . 130 Pseudopolygnathus marburgensis marburgensis Bischoff & Ziegler, 1956; locality: Großer Pal; sample: GP 1 top; Bed 1 Top; Upper expansa Zone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 19. Upper view, SMNS 67384. 20. Lower view, SMNS 67385. Pseudopolygnathus marburgensis marburgensis Bischoff & Ziegler, 1956; locality: Rio Boreado; sample: RB 3; Bed 3; Middle expansa Zone. . . . . . . . . . . . . . . . . . . . . . . . . . 130 19. SMNS 67386. 20. Lower view, SMNS 67387. Polygnathus triangulus triangulus Voges, 1959; locality: Plan di Zermula A; sample: PZA 2ay; Bed 2ay; quadruplicata Zone. SMNS 67388. . . . . . . . . . . . . . . . . . . . . . . . . . 130 Branmehla disparilis (Branson & Mehl, 1934a); locality: Casera Malpasso; sample: 13.1; Bed 14B; praesulcata Zone. SMNS 67389. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Kaiser ET AL.: Conodonts Around the Hangenberg Event

141

142

Palaeontographica Americana, No. 

Kaiser ET AL.: Conodonts Around the Hangenberg Event

143

Plate  Figure

1-2

3 4 5 6 7-8

9 10 11-12

13-14

15 16

Page All scale bars = 200μm. Siphonodella sulcata (Huddle, 1934); locality: Puech de la Suque; sample: PS 16; Bed 16; bransoni Zone. SMNS 67390. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. Upper view. 2. Lower view. Siphonodella cf. praesulcata Sandberg, 1972; locality: Milles; sample: Mi 9 top, Bed 9 top; sulcata Zone. SMNS 67391. Siphonodella praesulcata Sandberg, 1972; locality; Puech de la Suque; sample: PS 16; Bed 16; bransoni Zone. SMNS 67392. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Siphonodella sulcata (Huddle, 1934); locality: Puech de la Suque; sample: PS 18; Bed 18; bransoni Zone. SMNS 67393. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Siphonodella hassi Ji, 1985; locality: Puech de la Suque; sample: PS 23; Bed 23; hassi Zone. SMNS 67394. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Polygnathus sp. B; locality: Puech de la Suque; sample: PS 22; Bed 22; duplicata Zone. SMNS 67395. 7. Lower view. 8. Upper view. Palmatolepis gracilis gonioclymeniae Müller, 1956; locality: Plan di Zermula A; sample –4; Bed -4; Upper expansa Zone. SMNS 67396. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Polygnathus communis communis Branson & Mehl, 1934b, M1; upper view; locality: Milles; sample: Mi 14; Bed 14; bransoni Zone. SMNS 67397. . . . . . . . . . . . . . . . . . . . . . . . . . . . Polygnathus sp. C; locality: Puech de la Suque; sample: PS 21; Bed 21; duplicata Zone. SMNS 67398. 11. Upper view. 12. Lower view. Polygnathus pupus Wang & Wang, 1978; locality: Puech de la Suque; sample: PS 22; Bed 22; duplicata Zone. SMNS 67399. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13. Lower view. 14. Upper view. Protognathodus kuehni Ziegler & Leuteritz, 1970; locality: Milles; sample: Mi 9 top; Bed 9 top; sulcata Zone. SMNS 67400. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Protognathodus kockeli (Bischoff, 1957), locality: Puech de la Suque; sample: PS 16; Bed 16; bransoni Zone. SMNS 67401. . . . . . . . . . . . . . . . . . . . . . . . . . .

125

125 125 125

126 128

129

126 125