Supplement of Atmos. Meas. Tech., 8, 1835–1862, 2015 http://www.atmos-meas-tech.net/8/1835/2015/ doi:10.5194/amt-8-1835-2015-supplement © Author(s) 2015. CC Attribution 3.0 License.
Supplement of Instrument intercomparison of glyoxal, methyl glyoxal and NO2 under simulated atmospheric conditions R. Thalman et al. Correspondence to: R. Volkamer (
[email protected])
27 Table S1: Correlation Matrix for experiment E1.a Y↓ X→ CE-DOAS Slope Intc R2
CE-DOAS
BBCEAS
Mad-LIP
FT-IR b
W-DOAS
SPME
CE-DOASd
-
1.032(2) 0.005(2) 0.9997
1.301(3) -0.06(2) 0.9998
1.02(3) -0.1(7) 0.999
1.090(4) 0.07(1) 0.9998
1.05(12) 0.01(1) 0.996
1.02(1) -0.17(1) 0.998
1.048(1) 0.029(10) 0.9998
1.02(12) 0.00(2) 0.996
0.97(1) 0.04(18) 0.999
0.836(1) 0.06(1) 0.9994
0.74(8) 0.03(1) 0.995
0.77(1) -0.05(18) 0.9996
1.07(2) 0.0(4) 0.999
1.1(4) -0.3(41) 0.96
1.03(10) -1(3) 0.998
0.93(10) -0.08(3) 0.995
0.92(2) -0.02(20) 0.999
BBCEAS Slope 0.970(2) 1.2631 (8) 0.95(2) Int -0.005(2) -0.008(2) 0.5(6) R2 0.9997 0.9998 0.997 Mad-LIP Slope 0.768(2) 0.7917(5) 0.77(2) Int 0.06(2) 0.006(2) 0.2(4) R2 0.9998 0.9998 0.997 FT-IR b Slope 0.98(3) 1.05(2) 1.31(3) Int 0.1(7) -0.6(6) -0.3(5) 2 R 0.999 0.997 0.997 W-DOAS Slope 0.917(3) 0.955(1) 1.197(2) 0.93(2) Int -0.06(1) -0.028(9) -0.07(2) 0.0(4) R2 0.9998 0.9998 0.9994 0.999 SPME Slope 0.95(10) 0.98(11) 1.35(15) 0.9(3) Int -0.01(1) -0.00(2) -0.04(2) 0.3(36) R2 0.996 0.996 0.995 0.96 CE-DOASd Slope 0.98(1) 1.04(1) 1.30(2) 0.97(10) Int 0.17(10) -0.05(19) 0.1(0.2) 1(3) R2 0.998 0.999 0.9996 0.998 a Number in parenthesis is the 1-σ fit error of the last displayed digit b Correlations for high concentration data only c Units of the intercept are ppbv d CE-DOAS fitting for weak band range
28
-
1.07(12) -0.08(4) 0.995 1.08(2) 0.02(24) 0.999
-
1.0(2) 0.0(14) 0.994
1.0(2) 0.0(14) 0.994 -
Table S2: Correlation Matrix for experiment E8a.a Y↓ X→ CE-DOAS Slope Int b R2 BBCEAS Slope Int R2 Mad-LIP Slope Int R2 FTIR Slope Int R2 White-cell DOAS Slope Int R2
CE-DOAS -
0.967(5) -0.012(2) 0.9998
BBCEAS
Mad-LIP
FTIR
W-DOAS
SPME
1.035(5) 0.013(3) 0.9998
0.919(4) -0.011(3) 0.998
1.01(3) 0.2(1) 0.992
1.092(8) 0.08(2) 0.998
1.2(1) 0.00(2) 0.998
0.9141(9) -0.030(2) 0.998
0.95(2) 0.0(1) 0.992
1.027(3) 0.02(1) 0.997
1.1(1) -0.01(2) 0.998
1.02(2) -0.1(1) 0.96
1.057(3) -0.05(1) 0.96
1.3(1) 0.01(1) 0.996
1.08(2) 0.0(1) 0.987
1.3(2) -0.2(3) 0.994
-
1.088(4) 0.012(2) 0.998
1.094(1) 0.033(2) 0.998
0.99(2) -0.2(1) 0.992
1.05(2) 0.0(1) 0.992
0.98(2) 0.1(1) 0.96
0.916(7) -0.07(2) 0.998
0.973(3) -0.02(1) 0.997
0.946(3) 0.05(1) 0.96
-
-
0.93(2) 0.0(1) 0.987
SPME Slope 0.85(8) 0.88(9) 0.75(7) 0.8(1) Int 0.00(1) 0.01(1) -0.009(10) 0.1(2) R2 0.998 0.998 0.996 0.994 a Only data from daytime experiment with defined levels; b Intercept in ppbv
29
-
0.9(1) 0.3(1) 0.998
1.1(1) -0.3(1) 0.998
-
30 Table S3: Correlation Matrix for the methyl glyoxal experiment E2.a Y↓ X→ CE-DOAS BBCEAS Mad-LIP FTIR W-DOAS PTR-MS CE-DOAS Slope a 0.990(3) 0.714(3) 0.852(9) 1.03(3) 0.813(3) Int -0.35(2) 0.02(2) -0.55(12) 0.0(3) 0.86(2) R2 0.9987 0.997 0.996 0.96 0.96 BBCEAS Slope 1.010(3) 0.720(3) 0.854(9) 1.05(3) 0.820(4) Int 0.36(2) 0.38(3) -0.02(10) 0.3(3) 1.25(3) R2 0.9987 0.996 0.994 0.96 0.96 Mad-LIP Slope 1.400(6) 1.388(6) 1.16 ± 0.02 1.45(5) 1.093(7) Int -0.03(3) -0.53(4) -0.6 ± 0.1 -0.2(4) 1.22(3) R2 0.997 0.996 0.995 0.96 FTIR Slope 1.174(13) 1.17(1) 0.86(1) 1.20(8) 1.04(3) Int 0.65(13) 0.02(12) 0.5(1) 1.1(8) 0.3(2) R2 0.996 0.994 0.995 0.97 0.97 W-DOAS Slope 0.97(3) 0.95(3) 0.69(2) 0.84(6) 0.84(3) Int 0.0(3) -0.3(3) 0.1(3) -0.8(7) -0.3(4) R2 0.96 0.96 0.95 0.97 0.92 PTR-MSb Slope 1.231(5) 1.220(6) 0.915(6) 0.96(3) 1.19(4) Int -1.05(2) -1.53(4) -1.12(3) -0.3(2) 0.4(4) 2 R 0.96 0.96 0.96 0.97 0.92 a b Number in () is the 1 sigma standard deviation for the last reported digit PTR-MS data filtered for ramp up and odd section that bumps higher than the trend in all of the other instruments and assumes a 5% uncertainty in the 1 minute PTR data.
31 32
33 34 35 36 37 38 39
Figure S1: Absorption cross-sections of species measured by visible light absorption spectroscopy instruments (Here convolved to FWHM = 0.5 nm, Mad-LIP (0.001 nm) and BBCEAS (0.18-0.26 nm) both use much higher resolutions). NO2 (Vandaele et al., 2002) and water (Rothman et al., 2009) absorb in the same region as glyoxal (Volkamer et al., 2005), methyl glyoxal (Meller et al., 1991) and biacetyl (Horowitz et al., 2001).
40 41 42 43 44
Figure S2: Non-calibrated PTR-ToF-MS signal showing the methyl glyoxal signal (m/z = 73.0284) and the neighboring water cluster (m/z = 73.0656). Subtracting the water cluster interference and applying the calibration for methyl glyoxal yields the plot in Figure 2, Panel D.
45 46 47 48 49
Figure S3: Sensitivity of methyl glyoxal to high levels of NO2 from experiment E10. Chamber dilution has been scaled relative to concentrations at 14:10 from the decay of the SF6 tracer. See text for details.
50 51 52 53 54
Figure S4: Experiment E7, oxidation of isoprene under high NOx conditions. Panel (A) shows the evolution of NO2, isoprene, methacrolein (MACR) and methyl vinyl ketone (MVK) in the chamber; Panel (B) shows methyl glyoxal, hydroxyacetone and glycolaldehyde; Panel (C) shows glyoxal. The vertical dashed line indicates the chamber opening (09:32).
55 56 57 58 59
Figure S5: comparison of glyoxal measurements