Document not found! Please try again

Table of Common Distributions

23 downloads 1115 Views 65KB Size Report
Table of Common Distributions taken from Statistical Inference by Casella and Berger. Discrete Distrbutions distribution pmf mean variance mgf/moment.
Table of Common Distributions taken from Statistical Inference by Casella and Berger

Discrete Distrbutions distribution

pmf

mean

variance

mgf/moment

Bernoulli(p)

px (1 − p)1−x ; x = 0, 1; p ∈ (0, 1)

p

p(1 − p)

(1 − p) + pet

Beta-binomial(n, α, β)

Γ(α+β) Γ(x+α)Γ(n−x+β) (nx ) Γ(α)Γ(β) Γ(α+β+n)

nα α+β

nαβ (α+β)2

Notes: If X|P is binomial (n, P ) and P is beta(α, β), then X is beta-binomial(n, α, β). Binomial(n, p)

( nx )px (1 − p)n−x ; x = 1, . . . , n

np

np(1 − p)

Discrete Uniform(N )

1 N;

N +1 2

(N +1)(N −1) 12

[(1 − p) + pet ]n PN it 1 i=1 e N

Geometric(p)

p(1 − p)x−1 ; p ∈ (0, 1)

1 p

1−p p2

pet 1−(1−p)et

x = 1, . . . , N

Note: Y = X − 1 is negative binomial(1, p). The distribution is memoryless: P (X > s|X > t) = P (X > s − t). Hypergeometric(N, M, K)

N −M (M x )( K−x ) ; N ( K)

x = 1, . . . , K

KM N

KM (N −M )(N −k) N N (N −1)

r(1−p) p

r(1−p) p2

λ

λ

M − (N − K) ≤ x ≤ M ; N, M, K > 0 Negative Binomial(r, p)

)pr (1 − p)x ; p ∈ (0, 1) (r+x−1 x

? ³

p 1−(1−p)et

r y−r ( y−1 ; Y =X +r r−1 )p (1 − p)

Poisson(λ)

e−λ λx x! ;

λ≥0

Notes: If Y is gamma(α, β), X is Poisson( βx ), and α is an integer, then P (X ≥ α) = P (Y ≤ y).

1

t

eλ(e

−1)

´r

Continuous Distributions distribution

pdf

Beta(α, β)

Γ(α+β) α−1 (1 Γ(α)Γ(β) x

Cauchy(θ, σ)

1 1 πσ 1+( x−θ )2 ; σ

− x)β−1 ; x ∈ (0, 1), α, β > 0

σ>0

mean

variance

α α+β

αβ (α+β)2 (α+β+1)

mgf/moment P∞ ³Qk−1 1 + k=1 r=0

does not exist

does not exist

does not exist

Notes: Special case of Students’s t with 1 degree of freedom. Also, if X, Y are iid N (0, 1), χ2p Notes: Gamma( p2 , 2). Double Exponential(µ, σ) Exponential(θ)

p

x 2 −1 e− 2 ; x > 0, p ∈ N

1 p 2 Γ( p 2 )2

x

1 − |x−µ| σ ; 2σ e 1 −x θ ; x ≥ θe

σ>0 0, θ > 0

q

1

p

2p

µ

2σ 2

θ

θ2

X Y

is Cauchy

³

1 1−2t

´ p2

eµt 1−(σt)2 1 1−θt , t

X Notes: Gamma(1, θ). Memoryless. Y = X γ is Weibull. Y = 2X β is Rayleigh. Y = α − γ log β is Gumbel. ³ ´ ν21 ν1 −2 ν +ν Γ( 1 2 2 ) ν1 ν2 +ν2 −2 x 2 2 ; x>0 2( ν2ν−2 )2 νν11 (ν , ν2 > 4 Fν1 ,ν2 ν1 ν2 ¡ ν1 ¢ ν1 +ν 2 ν2 −2 , ν2 > 2 Γ( 2 )Γ( 2 ) ν2 2 −4) 2

, t
0

x−µ β

1

Notes: The cdf is F (x|µ, β) =



1+e

x−µ β

³

αβ

1 X

π2 β 2 3

µ

1 1−βt

´α , t
0

βα β−1 ,



Γ( ν+1 2 ) Γ( ν2 )

√1 νπ

0, ν > 1

ν ν−2 , ν

b+a 2

(b−a)2 12

ebt −eat (b−a)t

h i 2 β γ Γ(1 + γ2 ) − Γ2 (1 + γ1 )

EX n = β γ Γ(1 + nγ )

Notes: t2ν = F1,ν .

(x−µ)2 2σ 2

; x > 0, σ > 0

; σ>0

1 2 (1+ xν

ν+1 ) 2

1 Uniform(a, b) b−a , a ≤ x ≤ b Notes: If a = 0, b = 1, this is special case of beta (α = β = 1). xγ

γ γ−1 − β e ; x > 0, γ, β > 0 Weibull(γ, β) βx Notes: The mgf only exists for γ ≥ 1.

eµ+

2

e2(µ+σ ) − e2µ+σ

2

σ2

µ

1

β>1

β γ Γ(1 + γ1 )

2

EX n = enµ+ eµt+

βα2 (β−1)2 (β−2) ,

β>2

>2

σ 2 t2 2

does not exist EX n =

n n Γ( ν+1 2 )Γ(ν− 2 ) √ ν2, πΓ( ν2 )

n

n even

ν2 2

Suggest Documents