550. 600. 650. 0. 200. 400. 600. CrG + S2-. S. 2-. 10-5. 1 M. Intensity. Wavelength(nm). CrG. (c). 400. 450. 500. 550. 600. 0. 100. 200. Intensity. Wavelength(nm).
Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2016 Electronic Supporting Information Rationally Introduce Multi-competitive Binding Interactions in Supramolecular Gels: A Simple and Efficient Approach to Develop Multi-analytes Sensor Array Qi Lin*, Tao-Tao Lu, Xin Zhu, Tai-Bao Wei, Hui Li, You-Ming Zhang* Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
Table of Contents Materials and instruments Scheme S1. The synthesis of G Synthesis of gelator G Figure S1. 1H NMR Spectrum of G Figure S2. 13C NMR Spectrum of G Figure S3. Mass Spectrum of G Table S1. Gelation Property of Organogelator G Figure S4. FT-IR spectra of (a) powder G and xerogel of organogel OG; (c) xerogel of OG, OG+Fe3+ and OG+Fe3++HSO4-; (b) xerogel of OG, and xerogel OG +CN-. Figure S5. Powder XRD patterns of powder and xerogel of OG. Figure S6. SEM images of (a) OG xerogel; (b) FeG xerogel; (c) FeG xerogel treated with HSO4- in situ. Figure S7. Fluorescence spectra of organogel of OG (0.8% w/v).
(in gelated state) in n-butyl alcohol
Figure S8. Photographs of organogel of OG in n-butyl alcohol (0.8% w/v) and organogels of OG in the presence of various metal ions (Mg2+, Ca2+, Cr3+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Ag+, Cd2+, Hg2+, Pb2+, Ba2+, Sr2+, Al3+, La3+, Y3+, Ru3+, Eu3+ and Tb3+, G: metal ions =2 : 1) under (a) nature light (b) UV light. Figure S9. Fluorescence spectra of organogel of OG (in gelated state) in n-butyl alcohol (0.8% w/v) and organogels of OG in the presence of various metal ions (using their perchloric salts chlorizated salts as the sources) added in 1 : 1 mol ratio with respect to OG (λex = 300 nm). Figure S10. Fluorescence spectra of supramoleculargel based sensor (in gelated state) (a)CuG, (b)CrG, (c)BaG and (d)AlG in the presence of various anions (F-, Cl-, Br-, I-, AcO-, H2PO4-, N3-, SCN-, ClO4-, S2- CN- H+ and OH-); (e) LaG, (f) EuG and (g) TbG treated with OH-; (h) AlFeG and (i) AlCuG treated with CN-; (j) AlCrG treated with S2-; (k) AlHgG treated with Cl-; (l) BaMgG treated with I-; (m) BaCaG treated with HSO4-; (n) OG+CN-
treated with Fe3+; (o) OG in the presence of various anions. (λex = 300 nm). Figure S11. Fluorescence spectra of supromaleculargel based sensors (in gelated state) with increasing concentration of guest ions: (a) FeG with HSO4- (b) CuG with SCN-; (c) CrG with S2-; (d) BaG with F-; (e) AlG with HSO4-; (f) AlFeG with CN-; (g) AlHgG with Cl-; (h) AlCrG with S2-; (i) AlCuG with CN-; (j) BaMgG with I-; (k) BaCaG with HSO4-; (l) YG with Pb2+; (m) RuG with Al3+; (n) LaG with Hg2+; (o) EuG with Zn2+; (p) OG+CN- with Fe3+; (q) OG CN-. (λex = 300 nm). Figure S12. 1H NMR spectra of (a) G (20 mg /ml-1), (b) after addition of 0.5 equiv. of CN- in CDCl3 (0.4ml ) and d6-DMSO (0.1ml); (c) 1 equiv. of CN-; (d) 2 equiv. of CN-1. Table S2. Detection limits of the supramolecular based sensor array for target ions.
Materials and instruments All anions were used as the sodium salts while all cations were used as the perchlorate salts, which were purchased from Alfa Aesar and used as received. Fresh double distilled water was used throughout the experiment. Nuclear magnetic resonance (NMR) spectra were recorded on Varian Mercury 400 and Varian Inova 600 instruments. Mass spectra were recorded on a Bruker Esquire 6000 MS instrument. The X-ray diffraction analysis (XRD) was performed in a transmission mode with a Rigaku RINT2000 diffractometer equipped with graphite monochromated CuKa radiation (λ = 1.54073 Å). The morphologies and sizes of the xerogels were characterized using field emission scanning electron microscopy (FE-SEM, JSM-6701F) at an accelerating voltage of 8 kV. The infrared spectra were performed on a Digilab FTS-3000 Fourier transform-infrared spectrophotometer. Melting points were measured on an X-4 digital melting-point apparatus (uncorrected). Fluorescence spectra were recorded on a Shimadzu RF-5301PC spectrofluorophotometer.
CHO
CHO OH
C16H33Br
OH
K2CO3, KI, acetone,reflux, 72h
OH
O + OH
OC16H33 OC16H33 M OC16H33
O
CHO NHNH2
OC16H33
OC16H33 OC16H33 OC16H33
AcOH EtOH, reflux
N H
N
OH
OC16H33 OC16H33
G
Scheme S1. The synthesis of G
Synthesis of gelator G 1. Synthesis of 2,3,4-tris-hexadecyloxy-benzaldehyde (M): 2,3,4-trihydroxy- benzaldehyde (5 mmol, 0.77g), 1-bromo-hexadecane (16 mmol, 4.88 g), K2CO3 (30 mmol, 4.14 g) and KI (2 mmol, 0.332 g) were added to 40 ml acetone. The reaction mixture was stirred under refluxing in nitrogen conditions for 36 hours. After removing the solvent, the precipitate was dissolved in CHCl3 and then being washed by H2O and saturated sodium chloride aqueous solution successively. The product 2,3,4-tris-hexadecyloxy-benzaldehyde (M) was obtained after evaporating the solvent. (yield: 90%). 1H NMR (CDCl3, 400 MHz): δ, 10.26 (s, 1H, CH=O), 7.57 (d, 1H, J = 8.0 Hz, -ArH), 6.71 (d, 1H, J = 8.0 Hz, -ArH), 3.97-4.17 (m, 6H, OCH2), 1.74-1.87 (m, 6H, -CH2), 1.26-1.31 (m, 78H, -CH2), 0.88 (t, J = 8.0 Hz, 9H, -CH3). MS-ESI calcd for C55H103O4 [G + H]+: 827.7800; found: 827.6445. 2. Synthesis of gelator G: 2,3,4-tris-hexadecyloxy-benzaldehyde (M) (1 mmol), 3-hydroxynaphthohydrazide (1 mmol) and glacial acetic acid (0.05 mmol, as a catalyst) were added to ethanol (15 mL). Then the reaction mixture was stirred under refluxed conditions for 24 hours, after removing the solvent, yielding the precipitate of G (yield, 79%). 1H NMR (CDCl3, 400 MHz): δ, 11.22 (s, 1H,-OH) δ, 9.51 (s, 1H,-NH), 8. 51 (s, 1H, -N=CH), 8.10 (s, 1H, -ArH), 7.80-7.79 (d, 1H, J = 4.0 Hz, -ArH), 7.71-7.70 (d, J = 4.0 Hz, 1H, -ArH), 7.58-7.56 (d, J = 8.0 Hz, 1H, -ArH), 7.50-7.49 (d, J = 4.0 Hz, 1H, -ArH), 7.34-7.36 (t, J = 8.0 Hz, 1H, -ArH), 6.636.72 (m, 2H, -ArH), 4.18-3.97 (m, 6H, -OCH2), 1.85-1.75 (m, 6H, -OCH2CH2), 1.35-1.26 (m, 78H, -CH2), 0.89-0.87 (t, J = 8.0 Hz, 9H, -CH3). 13C-NMR (CDCl3, 100 MHz) δ/ppm 153.0, 139.2, 128.6, 128.1, 126.9, 126.2, 124.4, 122.3, 108.51, 74.8, 73.7, 68.8, 31.9, 30.3, 29.7, 29.7, 29.7, 29.6, 29.5, 29.4, 29.4, 26.2, 26.1, 26.10, 26.1, 22.7, 14.1. IR (KBr, cm-1) v: 3202 (broad peak, O-H, N-H), 1649 (C=O), 1590 (C=N); MS-ESI calcd for C66H111N2O5 [G + H]+: 1011.8488; found: 1011.6870.
Figure S1. 1H NMR Spectrum of G
Figure S2. 13C NMR Spectrum of G
OC16H33
O N H
N
OH M=1010.84
Figure S3. Mass Spectrum of G
OC16H33 OC16H33
Table S1. Gelation Property of Organogelator G. Entry
Solvent
Statea
CGCb(%)
Tgelc (℃, wt%)
1 water P \ \ 2 acetone G 1.5 \ 3 methanol P \ \ 4 ethanol G 2 54(2.5 %) 5 isopropanol G 1 50(1.5 %) 6 isopentanol G 0.8 49(1%) 7 acetonitrile P \ \ 8 THF S \ \ 9 DMF G 1.5 49(2 %) 10 DMSO G 4 48(4.5 %) 11 CCl4 G 1 52(1.5 %) 12 n-hexane G 1 51(1.5 %) 13 ethanediol P \ \ 14 benzene S \ \ 15 CH2Cl2 S \ \ 16 CHCl3 S \ \ 17 CH2ClCH2Cl S \ \ 18 petroleum ether G 3 52(3.5%) 19 ethyl acetate G 1 48(1.5%) 20 n-propanol G 2 55(2.5%) 21 n-butyl alcohol G 0.2 47(0.6%) 22 n-amyl alcohol G 0.2 48(0.6%) 23 cyclohexanol G 2 50(2.5%) 24 n-hexanol G 1 49(1.5%) aG, P and S denote gelation, precipitation and solution, respectively, c = 0.8%. bThe critical gelation concentration (wt%, 10mg/ml = 1.0%). cThe
gelation temperature(℃).
(a)
OG
Transmittance%
3380 3244 1641 1594 Powder G
3202 1640 1587
4000 3500 3000 2500 2000 -11500 1000 Wavenumber(nm )
(b)
500
OG+Fe3++HSO4-
Transmittance%
1641 1594 -C=O -C=N
OG+Fe3+ 1647 -C=O
1588 -C=N OG
1641 -C=O 1594 -C=N 4000
3500
3000
2500
2000
1500
1000
500
Wavenumber(nm-1)
(c) OG+CN-
Transmittance%
2176 -CN 1629 -C=O
OG 1641 1594 -C=O -C=N-
4000
3500
3000
2500
2000
1500
1000
500
Wavenumber(nm-1)
Figure S4. FT-IR spectra of (a) powder G and xerogel of organogel OG; (c) xerogel of OG, OG+Fe3+ and OG+Fe3++HSO4-; (b) xerogel of OG, and xerogel OG +CN-.
4.35
3.96
OG 3.93 4.10 4.30
Powder 10
20
30
40
2Theta(deg.)
Figure S5. Powder XRD patterns of powder and xerogel of OG.
Figure S6. SEM images of (a) OG xerogel; (b) FeG xerogel; (c) FeG xerogel treated with HSO4- in situ.
800
600 Intensity
Gel 400
200
0
300
400 500 600 Wavelength(nm)
700
Figure S7 Fluorescence spectra of organogel of OG (in gelated state) in n-butyl alcohol (0.8% w/v).
Figure S8. Photographs of organogel of OG in n-butyl alcohol (0.8% w/v) and organogels of OG in the presence of various metal ions (Mg2+, Ca2+, Cr3+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Ag+, Cd2+, Hg2+, Pb2+, Ba2+, Sr2+, Al3+, La3+, Y3+, Ru3+, Eu3+ and Tb3+, G: metal ions =2 : 1) under (a) nature light (b) UV light.
LaG, YG 800
Intensity
600
AlG
400
OG+other cations CuG CrG FeG, BaG, RuG EuG, TbG
200 0
500
600
700
Wavelength
Figure S9. Fluorescence spectra of organogel of OG and OG (in gelated state) in the presence of various metal ions (Mg2+, Ca2+, Cr3+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Ag+, Cd2+, Hg2+, Pb2+, Ba2+, Sr2+, Al3+, La3+, Y3+, Ru3+, Eu3+ and Tb3+, G: metal ions =2 : 1) . (λex = 300 nm).
CuG+SCN-
(a)
800
600
CrG+S2-
400
Intensity
Intensity
600
(b)
400
200
CuG+Others
200
CrG+Others 0 400
500
600
700
Wavelength(nm)
(c)
0 400
300
BaG+FIntensity
Intensity
200
100
500
600
700
Wavelength(nm)
(d)
200
AlG+Others 100
AlG+HSO4-
BaG+Others 400
(e) Intensity
800
500
600
Wavelength(nm)
LaG
400
LaG+OH-
600
0 400
700
500
600
400
EuG+OH-
(f)
200
200
EuG
0 400
500
600
700
0
500
TbG+OH-
600
600
700
(h) AlFeG+CN-
400
400
Intensity
Intensity
(g)
600
Wavelength(nm)
Wavelength(nm)
200
200
TbG 0
700
Wavelength(nm)
Intensity
0
500
600
Wavelength(nm)
700
0
AlFeG
500
Wavelength(nm)
600
(j)
500
AlCuG+CN-
400
AlCrG+S2-
400
Intensity
Intensity
(i)
200
AlCuG
300 200 100
0 400
500
600
AlCrG
0 450
700
500
600
(k)
600
AlHgG+Cl-
200
800
500
800
BaCaG
500
550
600
650
(n)
OG+CN-
600
Intensity
Intensity
450
Wavelength(nm)
600
BaCaG+HSO4-
400 200 0 400
BaMgG+I-
Wavelength(nm)
(m)
700
300
0
600
650
BaMgG
150
AlHgG 0 400
600
(l)
450
Intensity
Intensity
400
550
Wavelength(nm)
Wavelength(nm)
400 200
500
600
0
700
Wavelength(nm)
800
OG+CN-+Fe3+ 450
500
550
Wavelength(nm)
600
650
(o)
Intensity
OG+Others 600
OG+CN-
400 200 0 400
500
600
Wavelength(nm)
700
Figure S10. Fluorescence spectra of supramoleculargel based sensor (in gelated state) (a)CuG, (b)CrG, (c)BaG and (d)AlG in the presence of various anions (F-, Cl-, Br-, I-, AcO-, H2PO4-, N3-, SCN-, ClO4-, S2- CN- H+ and OH-); (e) LaG, (f) EuG and (g) TbG treated with OH-; (h) AlFeG and (i) AlCuG treated with CN-; (j) AlCrG treated with S2-; (k) AlHgG treated with Cl-; (l) BaMgG treated with I-; (m) BaCaG treated with HSO4-; (n) OG+CNtreated with Fe3+; (o) OG in the presence of various anions. (λex = 300 nm).
500
600
0
700
Wavelength(nm)
CuG+SCNCuG
200
400
500
(d) S2- 10-5 ~ 1 M
(c)
600
700
Wavelength(nm)
F- 10-5 ~ 1 M
400
400
Intensity
400
FeG+HSO4FeG
200
600
Intensity
400
600
200
Intensity
Intensity
600
0
(b)
800
SCN- 10-6~1M
(a) HSO4- 10-6~1M
800
BaG+F-
100
CrG + S2-
200
BaG
CrG 0
500
550
600
0 400
650
450
550
(g)
400
200
0
600
500
Wavelength(nm)
400
0 400
600
500
600
Wavelength(nm)
500
550
600
650
Wavelength(nm)
(j)
700
BaMgG BaMgG+I-
450 300 150
700
600
AlCrG+S2AlCrG
0 450
600
AlCuG+CNAlCuG
200
200 100
Intensity
Intensity
400
(h)
300
CN- 10-7 ~ 1 M
(i)
500
Wavelength(nm)
AlHgG+ClAlHgG
0 400
AlFeG+CNAlFeG
I- 10-6 ~ 1 M
500
Wavelength(nm)
Cl- 10-5 ~ 1 M
Intensity
600
450
200
Intensity
0
600
S2- 10-6 ~ 1 M
200
(f)
400
Intensity
HSO4- 10-6 ~ 1 M
Intensity
400
600
550
CN- 10-5 ~ 1 M
AlG AlG+HSO4-
(e)
500
Wavelength(nm)
Wavelength(nm)
0
450
500
550
Wavelength(nm)
600
650
(k)
BaCaG
600
(m)
400
200
800
RuG+Al3+
Wavelength(nm)
(o)
200
500
400
450
500
Wavelength(nm)
550
OG+CNOG+CN-+Fe3+
(p)
400 200 0
700
Wavelength(nm)
600
600
600
600
450
500
550
600
650
Wavelength(nm)
600
Intensity
550
LaG LaG+Hg2+
0 400
600
EuG+Zn2+ EuG
100
500
Wavelength(nm)
600
Intensity
Intensity
300
0 400
(n)
800
400
450
200
Zn2+ 10-7 ~ 1 M
500
500
250
0
RuG 0
500
700
Wavelength(nm)
Al3+ 10-5 ~ 1 M
Intensity
600
500
Intensity
0 400
Pb2+ 10-5 ~ 1 M
200
Intensity
400
2+ YG+Pb
Fe3+ 10-6 ~ 1 M
600
YG
(l) 750
Hg2+ 10-6 ~ 1 M
BaCaG+HSO4-
HSO4- 10-6 ~ 1 M
Intensity
800
(q)
CN- 10-5~1M
450 300
OG+CN150 0
OG 420
480
540
600
Wavelength(nm)
660
Figure S11. Fluorescence spectra of supromaleculargel based sensors (in gelated state) with increasing concentration of guest ions: (a) FeG with HSO4- (b) CuG with SCN-; (c) CrG with S2-; (d) BaG with F-; (e) AlG with HSO4-; (f) AlFeG with CN-; (g) AlHgG with Cl-; (h) AlCrG with S2-; (i) AlCuG with CN-; (j) BaMgG with I-; (k) BaCaG with HSO4-; (l) YG with Pb2+; (m) RuG with Al3+; (n) LaG with Hg2+; (o) EuG with Zn2+; (p) OG+CN- with Fe3+; (q) OG CN-. (λex = 300 nm).
Figure S12 1H NMR spectra of (a) G (20 mg /ml-1), (b) after addition of 0.5 equiv. of CN- in CDCl3 (0.4ml ) and d6-DMSO (0.1ml); (c) 1 equiv. of CN-; (d) 2 equiv. of CN-1.
Table S2. Detection limits of the supramolecular based sensor array for target ions. sensor
ions
OG FeG CuG CrG BaG AlG AlFeG AlHgG AlCuG AlCrG BaMgG BaGaG OG+CNLaG YG RuG EuG
CNHSO4SCNS2FHSO4CNClCNS2IHSO4Fe3+ Hg2+ Pb2+ Al3+ Zn2+
detection limits/M-1 10-5 10-6 10-6 10-5 10-5 10-6 10-5 10-5 10-7 10-6 10-6 10-6 10-6 10-6 10-5 10-5 10-7