Table of Contents - Royal Society of Chemistry

0 downloads 0 Views 892KB Size Report
550. 600. 650. 0. 200. 400. 600. CrG + S2-. S. 2-. 10-5. 1 M. Intensity. Wavelength(nm). CrG. (c). 400. 450. 500. 550. 600. 0. 100. 200. Intensity. Wavelength(nm).
Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2016 Electronic Supporting Information Rationally Introduce Multi-competitive Binding Interactions in Supramolecular Gels: A Simple and Efficient Approach to Develop Multi-analytes Sensor Array Qi Lin*, Tao-Tao Lu, Xin Zhu, Tai-Bao Wei, Hui Li, You-Ming Zhang* Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.

Table of Contents Materials and instruments Scheme S1. The synthesis of G Synthesis of gelator G Figure S1. 1H NMR Spectrum of G Figure S2. 13C NMR Spectrum of G Figure S3. Mass Spectrum of G Table S1. Gelation Property of Organogelator G Figure S4. FT-IR spectra of (a) powder G and xerogel of organogel OG; (c) xerogel of OG, OG+Fe3+ and OG+Fe3++HSO4-; (b) xerogel of OG, and xerogel OG +CN-. Figure S5. Powder XRD patterns of powder and xerogel of OG. Figure S6. SEM images of (a) OG xerogel; (b) FeG xerogel; (c) FeG xerogel treated with HSO4- in situ. Figure S7. Fluorescence spectra of organogel of OG (0.8% w/v).

(in gelated state) in n-butyl alcohol

Figure S8. Photographs of organogel of OG in n-butyl alcohol (0.8% w/v) and organogels of OG in the presence of various metal ions (Mg2+, Ca2+, Cr3+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Ag+, Cd2+, Hg2+, Pb2+, Ba2+, Sr2+, Al3+, La3+, Y3+, Ru3+, Eu3+ and Tb3+, G: metal ions =2 : 1) under (a) nature light (b) UV light. Figure S9. Fluorescence spectra of organogel of OG (in gelated state) in n-butyl alcohol (0.8% w/v) and organogels of OG in the presence of various metal ions (using their perchloric salts chlorizated salts as the sources) added in 1 : 1 mol ratio with respect to OG (λex = 300 nm). Figure S10. Fluorescence spectra of supramoleculargel based sensor (in gelated state) (a)CuG, (b)CrG, (c)BaG and (d)AlG in the presence of various anions (F-, Cl-, Br-, I-, AcO-, H2PO4-, N3-, SCN-, ClO4-, S2- CN- H+ and OH-); (e) LaG, (f) EuG and (g) TbG treated with OH-; (h) AlFeG and (i) AlCuG treated with CN-; (j) AlCrG treated with S2-; (k) AlHgG treated with Cl-; (l) BaMgG treated with I-; (m) BaCaG treated with HSO4-; (n) OG+CN-

treated with Fe3+; (o) OG in the presence of various anions. (λex = 300 nm). Figure S11. Fluorescence spectra of supromaleculargel based sensors (in gelated state) with increasing concentration of guest ions: (a) FeG with HSO4- (b) CuG with SCN-; (c) CrG with S2-; (d) BaG with F-; (e) AlG with HSO4-; (f) AlFeG with CN-; (g) AlHgG with Cl-; (h) AlCrG with S2-; (i) AlCuG with CN-; (j) BaMgG with I-; (k) BaCaG with HSO4-; (l) YG with Pb2+; (m) RuG with Al3+; (n) LaG with Hg2+; (o) EuG with Zn2+; (p) OG+CN- with Fe3+; (q) OG CN-. (λex = 300 nm). Figure S12. 1H NMR spectra of (a) G (20 mg /ml-1), (b) after addition of 0.5 equiv. of CN- in CDCl3 (0.4ml ) and d6-DMSO (0.1ml); (c) 1 equiv. of CN-; (d) 2 equiv. of CN-1. Table S2. Detection limits of the supramolecular based sensor array for target ions.

Materials and instruments All anions were used as the sodium salts while all cations were used as the perchlorate salts, which were purchased from Alfa Aesar and used as received. Fresh double distilled water was used throughout the experiment. Nuclear magnetic resonance (NMR) spectra were recorded on Varian Mercury 400 and Varian Inova 600 instruments. Mass spectra were recorded on a Bruker Esquire 6000 MS instrument. The X-ray diffraction analysis (XRD) was performed in a transmission mode with a Rigaku RINT2000 diffractometer equipped with graphite monochromated CuKa radiation (λ = 1.54073 Å). The morphologies and sizes of the xerogels were characterized using field emission scanning electron microscopy (FE-SEM, JSM-6701F) at an accelerating voltage of 8 kV. The infrared spectra were performed on a Digilab FTS-3000 Fourier transform-infrared spectrophotometer. Melting points were measured on an X-4 digital melting-point apparatus (uncorrected). Fluorescence spectra were recorded on a Shimadzu RF-5301PC spectrofluorophotometer.

CHO

CHO OH

C16H33Br

OH

K2CO3, KI, acetone,reflux, 72h

OH

O + OH

OC16H33 OC16H33 M OC16H33

O

CHO NHNH2

OC16H33

OC16H33 OC16H33 OC16H33

AcOH EtOH, reflux

N H

N

OH

OC16H33 OC16H33

G

Scheme S1. The synthesis of G

Synthesis of gelator G 1. Synthesis of 2,3,4-tris-hexadecyloxy-benzaldehyde (M): 2,3,4-trihydroxy- benzaldehyde (5 mmol, 0.77g), 1-bromo-hexadecane (16 mmol, 4.88 g), K2CO3 (30 mmol, 4.14 g) and KI (2 mmol, 0.332 g) were added to 40 ml acetone. The reaction mixture was stirred under refluxing in nitrogen conditions for 36 hours. After removing the solvent, the precipitate was dissolved in CHCl3 and then being washed by H2O and saturated sodium chloride aqueous solution successively. The product 2,3,4-tris-hexadecyloxy-benzaldehyde (M) was obtained after evaporating the solvent. (yield: 90%). 1H NMR (CDCl3, 400 MHz): δ, 10.26 (s, 1H, CH=O), 7.57 (d, 1H, J = 8.0 Hz, -ArH), 6.71 (d, 1H, J = 8.0 Hz, -ArH), 3.97-4.17 (m, 6H, OCH2), 1.74-1.87 (m, 6H, -CH2), 1.26-1.31 (m, 78H, -CH2), 0.88 (t, J = 8.0 Hz, 9H, -CH3). MS-ESI calcd for C55H103O4 [G + H]+: 827.7800; found: 827.6445. 2. Synthesis of gelator G: 2,3,4-tris-hexadecyloxy-benzaldehyde (M) (1 mmol), 3-hydroxynaphthohydrazide (1 mmol) and glacial acetic acid (0.05 mmol, as a catalyst) were added to ethanol (15 mL). Then the reaction mixture was stirred under refluxed conditions for 24 hours, after removing the solvent, yielding the precipitate of G (yield, 79%). 1H NMR (CDCl3, 400 MHz): δ, 11.22 (s, 1H,-OH) δ, 9.51 (s, 1H,-NH), 8. 51 (s, 1H, -N=CH), 8.10 (s, 1H, -ArH), 7.80-7.79 (d, 1H, J = 4.0 Hz, -ArH), 7.71-7.70 (d, J = 4.0 Hz, 1H, -ArH), 7.58-7.56 (d, J = 8.0 Hz, 1H, -ArH), 7.50-7.49 (d, J = 4.0 Hz, 1H, -ArH), 7.34-7.36 (t, J = 8.0 Hz, 1H, -ArH), 6.636.72 (m, 2H, -ArH), 4.18-3.97 (m, 6H, -OCH2), 1.85-1.75 (m, 6H, -OCH2CH2), 1.35-1.26 (m, 78H, -CH2), 0.89-0.87 (t, J = 8.0 Hz, 9H, -CH3). 13C-NMR (CDCl3, 100 MHz) δ/ppm 153.0, 139.2, 128.6, 128.1, 126.9, 126.2, 124.4, 122.3, 108.51, 74.8, 73.7, 68.8, 31.9, 30.3, 29.7, 29.7, 29.7, 29.6, 29.5, 29.4, 29.4, 26.2, 26.1, 26.10, 26.1, 22.7, 14.1. IR (KBr, cm-1) v: 3202 (broad peak, O-H, N-H), 1649 (C=O), 1590 (C=N); MS-ESI calcd for C66H111N2O5 [G + H]+: 1011.8488; found: 1011.6870.

Figure S1. 1H NMR Spectrum of G

Figure S2. 13C NMR Spectrum of G

OC16H33

O N H

N

OH M=1010.84

Figure S3. Mass Spectrum of G

OC16H33 OC16H33

Table S1. Gelation Property of Organogelator G. Entry

Solvent

Statea

CGCb(%)

Tgelc (℃, wt%)

1 water P \ \ 2 acetone G 1.5 \ 3 methanol P \ \ 4 ethanol G 2 54(2.5 %) 5 isopropanol G 1 50(1.5 %) 6 isopentanol G 0.8 49(1%) 7 acetonitrile P \ \ 8 THF S \ \ 9 DMF G 1.5 49(2 %) 10 DMSO G 4 48(4.5 %) 11 CCl4 G 1 52(1.5 %) 12 n-hexane G 1 51(1.5 %) 13 ethanediol P \ \ 14 benzene S \ \ 15 CH2Cl2 S \ \ 16 CHCl3 S \ \ 17 CH2ClCH2Cl S \ \ 18 petroleum ether G 3 52(3.5%) 19 ethyl acetate G 1 48(1.5%) 20 n-propanol G 2 55(2.5%) 21 n-butyl alcohol G 0.2 47(0.6%) 22 n-amyl alcohol G 0.2 48(0.6%) 23 cyclohexanol G 2 50(2.5%) 24 n-hexanol G 1 49(1.5%) aG, P and S denote gelation, precipitation and solution, respectively, c = 0.8%. bThe critical gelation concentration (wt%, 10mg/ml = 1.0%). cThe

gelation temperature(℃).

(a)

OG

Transmittance%

3380 3244 1641 1594 Powder G

3202 1640 1587

4000 3500 3000 2500 2000 -11500 1000 Wavenumber(nm )

(b)

500

OG+Fe3++HSO4-

Transmittance%

1641 1594 -C=O -C=N

OG+Fe3+ 1647 -C=O

1588 -C=N OG

1641 -C=O 1594 -C=N 4000

3500

3000

2500

2000

1500

1000

500

Wavenumber(nm-1)

(c) OG+CN-

Transmittance%

2176 -CN 1629 -C=O

OG 1641 1594 -C=O -C=N-

4000

3500

3000

2500

2000

1500

1000

500

Wavenumber(nm-1)

Figure S4. FT-IR spectra of (a) powder G and xerogel of organogel OG; (c) xerogel of OG, OG+Fe3+ and OG+Fe3++HSO4-; (b) xerogel of OG, and xerogel OG +CN-.

4.35

3.96

OG 3.93 4.10 4.30

Powder 10

20

30

40

2Theta(deg.)

Figure S5. Powder XRD patterns of powder and xerogel of OG.

Figure S6. SEM images of (a) OG xerogel; (b) FeG xerogel; (c) FeG xerogel treated with HSO4- in situ.

800

600 Intensity

Gel 400

200

0

300

400 500 600 Wavelength(nm)

700

Figure S7 Fluorescence spectra of organogel of OG (in gelated state) in n-butyl alcohol (0.8% w/v).

Figure S8. Photographs of organogel of OG in n-butyl alcohol (0.8% w/v) and organogels of OG in the presence of various metal ions (Mg2+, Ca2+, Cr3+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Ag+, Cd2+, Hg2+, Pb2+, Ba2+, Sr2+, Al3+, La3+, Y3+, Ru3+, Eu3+ and Tb3+, G: metal ions =2 : 1) under (a) nature light (b) UV light.

LaG, YG 800

Intensity

600

AlG

400

OG+other cations CuG CrG FeG, BaG, RuG EuG, TbG

200 0

500

600

700

Wavelength

Figure S9. Fluorescence spectra of organogel of OG and OG (in gelated state) in the presence of various metal ions (Mg2+, Ca2+, Cr3+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Ag+, Cd2+, Hg2+, Pb2+, Ba2+, Sr2+, Al3+, La3+, Y3+, Ru3+, Eu3+ and Tb3+, G: metal ions =2 : 1) . (λex = 300 nm).

CuG+SCN-

(a)

800

600

CrG+S2-

400

Intensity

Intensity

600

(b)

400

200

CuG+Others

200

CrG+Others 0 400

500

600

700

Wavelength(nm)

(c)

0 400

300

BaG+FIntensity

Intensity

200

100

500

600

700

Wavelength(nm)

(d)

200

AlG+Others 100

AlG+HSO4-

BaG+Others 400

(e) Intensity

800

500

600

Wavelength(nm)

LaG

400

LaG+OH-

600

0 400

700

500

600

400

EuG+OH-

(f)

200

200

EuG

0 400

500

600

700

0

500

TbG+OH-

600

600

700

(h) AlFeG+CN-

400

400

Intensity

Intensity

(g)

600

Wavelength(nm)

Wavelength(nm)

200

200

TbG 0

700

Wavelength(nm)

Intensity

0

500

600

Wavelength(nm)

700

0

AlFeG

500

Wavelength(nm)

600

(j)

500

AlCuG+CN-

400

AlCrG+S2-

400

Intensity

Intensity

(i)

200

AlCuG

300 200 100

0 400

500

600

AlCrG

0 450

700

500

600

(k)

600

AlHgG+Cl-

200

800

500

800

BaCaG

500

550

600

650

(n)

OG+CN-

600

Intensity

Intensity

450

Wavelength(nm)

600

BaCaG+HSO4-

400 200 0 400

BaMgG+I-

Wavelength(nm)

(m)

700

300

0

600

650

BaMgG

150

AlHgG 0 400

600

(l)

450

Intensity

Intensity

400

550

Wavelength(nm)

Wavelength(nm)

400 200

500

600

0

700

Wavelength(nm)

800

OG+CN-+Fe3+ 450

500

550

Wavelength(nm)

600

650

(o)

Intensity

OG+Others 600

OG+CN-

400 200 0 400

500

600

Wavelength(nm)

700

Figure S10. Fluorescence spectra of supramoleculargel based sensor (in gelated state) (a)CuG, (b)CrG, (c)BaG and (d)AlG in the presence of various anions (F-, Cl-, Br-, I-, AcO-, H2PO4-, N3-, SCN-, ClO4-, S2- CN- H+ and OH-); (e) LaG, (f) EuG and (g) TbG treated with OH-; (h) AlFeG and (i) AlCuG treated with CN-; (j) AlCrG treated with S2-; (k) AlHgG treated with Cl-; (l) BaMgG treated with I-; (m) BaCaG treated with HSO4-; (n) OG+CNtreated with Fe3+; (o) OG in the presence of various anions. (λex = 300 nm).

500

600

0

700

Wavelength(nm)

CuG+SCNCuG

200

400

500

(d) S2- 10-5 ~ 1 M

(c)

600

700

Wavelength(nm)

F- 10-5 ~ 1 M

400

400

Intensity

400

FeG+HSO4FeG

200

600

Intensity

400

600

200

Intensity

Intensity

600

0

(b)

800

SCN- 10-6~1M

(a) HSO4- 10-6~1M

800

BaG+F-

100

CrG + S2-

200

BaG

CrG 0

500

550

600

0 400

650

450

550

(g)

400

200

0

600

500

Wavelength(nm)

400

0 400

600

500

600

Wavelength(nm)

500

550

600

650

Wavelength(nm)

(j)

700

BaMgG BaMgG+I-

450 300 150

700

600

AlCrG+S2AlCrG

0 450

600

AlCuG+CNAlCuG

200

200 100

Intensity

Intensity

400

(h)

300

CN- 10-7 ~ 1 M

(i)

500

Wavelength(nm)

AlHgG+ClAlHgG

0 400

AlFeG+CNAlFeG

I- 10-6 ~ 1 M

500

Wavelength(nm)

Cl- 10-5 ~ 1 M

Intensity

600

450

200

Intensity

0

600

S2- 10-6 ~ 1 M

200

(f)

400

Intensity

HSO4- 10-6 ~ 1 M

Intensity

400

600

550

CN- 10-5 ~ 1 M

AlG AlG+HSO4-

(e)

500

Wavelength(nm)

Wavelength(nm)

0

450

500

550

Wavelength(nm)

600

650

(k)

BaCaG

600

(m)

400

200

800

RuG+Al3+

Wavelength(nm)

(o)

200

500

400

450

500

Wavelength(nm)

550

OG+CNOG+CN-+Fe3+

(p)

400 200 0

700

Wavelength(nm)

600

600

600

600

450

500

550

600

650

Wavelength(nm)

600

Intensity

550

LaG LaG+Hg2+

0 400

600

EuG+Zn2+ EuG

100

500

Wavelength(nm)

600

Intensity

Intensity

300

0 400

(n)

800

400

450

200

Zn2+ 10-7 ~ 1 M

500

500

250

0

RuG 0

500

700

Wavelength(nm)

Al3+ 10-5 ~ 1 M

Intensity

600

500

Intensity

0 400

Pb2+ 10-5 ~ 1 M

200

Intensity

400

2+ YG+Pb

Fe3+ 10-6 ~ 1 M

600

YG

(l) 750

Hg2+ 10-6 ~ 1 M

BaCaG+HSO4-

HSO4- 10-6 ~ 1 M

Intensity

800

(q)

CN- 10-5~1M

450 300

OG+CN150 0

OG 420

480

540

600

Wavelength(nm)

660

Figure S11. Fluorescence spectra of supromaleculargel based sensors (in gelated state) with increasing concentration of guest ions: (a) FeG with HSO4- (b) CuG with SCN-; (c) CrG with S2-; (d) BaG with F-; (e) AlG with HSO4-; (f) AlFeG with CN-; (g) AlHgG with Cl-; (h) AlCrG with S2-; (i) AlCuG with CN-; (j) BaMgG with I-; (k) BaCaG with HSO4-; (l) YG with Pb2+; (m) RuG with Al3+; (n) LaG with Hg2+; (o) EuG with Zn2+; (p) OG+CN- with Fe3+; (q) OG CN-. (λex = 300 nm).

Figure S12 1H NMR spectra of (a) G (20 mg /ml-1), (b) after addition of 0.5 equiv. of CN- in CDCl3 (0.4ml ) and d6-DMSO (0.1ml); (c) 1 equiv. of CN-; (d) 2 equiv. of CN-1.

Table S2. Detection limits of the supramolecular based sensor array for target ions. sensor

ions

OG FeG CuG CrG BaG AlG AlFeG AlHgG AlCuG AlCrG BaMgG BaGaG OG+CNLaG YG RuG EuG

CNHSO4SCNS2FHSO4CNClCNS2IHSO4Fe3+ Hg2+ Pb2+ Al3+ Zn2+

detection limits/M-1 10-5 10-6 10-6 10-5 10-5 10-6 10-5 10-5 10-7 10-6 10-6 10-6 10-6 10-6 10-5 10-5 10-7