WITH WAVELENGTHS SHORTER THAN 3300 KM ..... uncefrtaiities in the low degree and order (n, m< f2) gravity field model used to reduce the orbits. ...... 445. 15. Zs. Z6. 45. a3.(t. 23.;J7. 22.L5. 2,QK-. 247.42. 47.,e. P46.75. E46,4 2. 1.18e 0 ..... -(.523S7. -0.412P7. 759529. 5 0. 28. -24.;5. 219.52. G. CC77. -C.-3645. --.
NASA Technical Memorandum 79553 r(NAS A
THEN78Z26679 fAt -.7s553})'- GRILxES A' EAST PACIFIC RISE iITH WAVELENGTHS SHORTER,
:
THAN 3300 KN RERCOVERED FRON GEOS-3/ATS-6 ... unclas
,DATA TRACKING DOPPMER SAWELLITE-TO-SATELLIT-E COSC1 -08N" G3/46 24368.
(NASA) -,275, p HC ,A12/KF-A01 ..
Gravity Anomalies Near the East Pacific Rise with Wavelengths Shorter than 3300 KM Recovered from GEOS-3/ATS-6 Satellite-To-Satellite Doppler Tracking Data James G. Marsh, Bruce D. Marsh,
Timothy D.Conrad, William T. Wells,
and Ronald G. Williamson
DECEMBER 1977 National Aeronautics and Space Administration
"AS'FVL~
Goddard Space Flight Center Greenbelt. Maryland 20771
Satellites for Presented at the Second Internationa! Symposium on the Use of Artificial Geodesy and Geodynamics at Lagonissi, Greece, May 1978.
TM 79553
GRAVITY ANOMALIES NEAR THE EAST PACIFIC RISE
WITH WAVELfENGTHS SHORTER THAN 3300KM
RECOVERED FROM GEOS-3/ATS-6 SATELLITE-TO-SATELLITE
DOPPLER TRACKING DATA
James G. Marsh
Geodynamics Branch
Earth Survey Applications Division
Goddard Space Flight Center
Greenbelt, Maryland 20771
Bruce D. Marsh
Earth and Planetary Sciences Department
The Johns Hopkins University.
Baltimore, Maryland 21218
Timothy D. Conrad
William T. Wells
Ronald G. Williamson
EG&G/Washington Analytical Services Center, Inc.
Wolf Research and Development Group
Riverdale, Maryland 20840
December 1977
GODDARD SPACE FLIGHT CENTER
Greenbelt, Maryland
GRAVITY ANOMALIES NEAR THE EAST PACIFIC RISE
WITH WAVELENGTHS SHORTER THAN 3300KM
RECOVERED FROM GEOS-3/ATS-6 SATELLITE-TO-SATELLITE
DOPPLER TRACKING DATA
ABSTRACT
The velocity of the GEOS-3 satellite measured by Doppler as a function of time from the ATS-6 satellite has been used to recover gravity anomalies in the region of the East Pacific.
The orbit of GEOS-3 at an altitude of 840 km is per
turbed by spatial changes in Earth's gravitational field.
These perturbations
are measured via ATS-6 which is in a synchronous orbit at an altitude of about 40, 000 km. The range-rate data were reduced using a gravitational field model complete to the 12 degree and order, since these low degree and order coef ficients are well known. A simulation of the possible effects causing the remain ing range-rate residuals relative to the 12, 12 field shows that in general the dominant effect is the neglect of the higher degree and order coefficients of the gravitational field model. The reduced range-rate data were smoothed using a filter correlation length of 1500 km and the resulting curv6 differen tiated to give accelerations (regals) as a function of space.
Point values taken
at equally spaced points along each profile were contoured to produce a map of the earth's high degree and order gravity field; two independent sets of GEOS-3 tracks were used to produce two independent maps.
These maps match satisfac
torily, and they are broadly similar to existing maps.
In areal extent the closest
match'is with Rapp's newest compilation of surface data, although his map shows generally smaller amplitudes and much less detail. This is a promising new method by which to study Earth's high degree and order gravitational field.
iii
CONTENTS
Page ABSTRACT ....................
........
INTRODUCTION .........
..........
. ....
..
iii
. . . . ..
1
GEOS-3/ATS-6 SATELLITE-TO-SATELLITE TRACKING SYSTEM
5
DATA ANALYSIS TECHNIQUES .............
........
8
DISCUSSION OF RESULTS ...............
.........
13
.....
22
ACKNOWLEDGEMENTS REFERENCES ..........
...........
.......... ................
APPENDIX ...............
.... ..................
23
.A-1
TABLES
Table
Page
1
Description of SST Passes .......
2
Errors Considered in Error Analysis
3
Correlation Between Actual SST Data and Synthetic Data
Due to Gravity Model Effects Above (12,12) .. .... ....
.......... ........
..... . .
26
...
27
28
ILLUSTRATIONS
Figure 1 2-A
2-B
Page
ATS-6/GEOS-3 SST Geometry .....
..............
....
29
Ground Tracks of, GEOS-3/ATS-6 Passes from April 26
to May 12, 1975 ............... .............
30
Ground Tracks of GEOS-3/ATS-6 Passes from May 29
to June 4, 1975 ............... ..............
31
v
ILLUSTRATIONS (Continued) Figure -3
4
Page GEOS-3/ATS-6 SST Residuals Computed Using PGS-110 Gravity Model Coefficients to (4,4) ...... ..........
..
Synthetic SST Range Rate Residuals Due to Unmodeled Error Sources for Revolution 254 .... ...... .......
32
33
5
Flow Diagram of Data Reduction and Analysis ..
6.
ATS-6/GEOS-3 Satellite to Satellite Range Rate Residuals for Revolution 221 Smoothed Using Correlation Distances of 1500km, 1000km and 500km ....... ........... ....
35
Comparison of Observed and Synthetic Accelerations for Revolution 758 - Ascending Pass Across North America. Accelerations are Relative to the PGS-110 (12,12) Gravity Model........ .................... ....
36
Comparison of Observed and Synthetic Accelerations for Revolution 233 - Ascending Pass Across North America. Accelerations are Relative to the PGS-110 (12,12) Gravity Model............... .............
37
7
8
9
10
11
12
13
....
...
34
Comparison of Observed and Synthetic Accelerations for Revolution 231 - Ascending Pass Across North America. Accelerations are Relative to the PGS-110 (12,12) Gravity Model .......... ........... . . . . . .38 GEOS-3/ATS-6 SST - Range Rate Residuals Computed Using the PGS-110 Gravity Model Coefficients to (12,12) Along Overlapping Ground Tracks ........ . . ...... ...
39
GEOS-3/ATS-6 SST - Range Rate Residuals Computed Using the PGS-110 Gravity Model Coeffi6ients to (12,12) Along Overlapping Ground Tracks ...... ........... .......
40
Histogram of Differences Between Synthetic Accelerations and Accelerations Derived from Range Rate Residuals . .
41
....
GEOS-3/ATS-6 Satellite to Satellite Accelerations Relative to PGS-110 -(12,12) Gravity Model Units - mgal x 10 ... ...... vi
42
ILLUSTRATIONS (Continued) Figure 14-A
Page GEOS-3/ATS-6 Satellite to Satellite Accelerations Relative to the PGS-110 "(12,12) Gravity Model. ATS-6 Subsatellite Longitude is 2660 East .
14-13
14-C
15
16
17
.................
.
43
GEOS-3/ATS-6 Satellite to Satellite Accelerations Relative to the PGS-110 (12,12) Gravity Model. The ATS-6 Subsatellite Longitude Varied from 2960 to 3190 East. ..
44
GEOS-3/ATS-6 Satellite to Satellite Accelerations Relative to the PGS-110 (12,12) Gravity Model. This map is based upon a 'combination of the data displayed in Figures 14-A and 14-B...... . ........ .................. ...
45
Gravity Anomalies Evaluated at the GEOS-3 Altitude of 840 km Corresponding to the Coefficients Above (12,12) in the PGS-110 Model ...... ..................
..
46
Gravity Anomalies Evaluated at th&°GEOS-3 Altitude of 840 km Corresponding to the Coefficients Above (12,12) in the Rapp 1977 Model ...... ...............
....
47
Gravity Anomalies Evaluated at the GEOS-3 Altitude of 840 km Corresponding to the Coefficients Above (12,12) in the GEM-10 Model
.............
vii
. ....
48
GRAVITY ANOMALIES NEAR THE EAST PACIFIC RISE
WITH WAVELENGTHS SHORTER THAN 3300 KM
RECOVERED FROM GEOS-3/ATS-6 SATELLITE-TO-SATELLITE
DOPPLER TRACKING DATA
INTRODUCTION
Density variations within the earth give rise to convection and also produce gravity anomalies.
The connection between gravity anomalies and thermal con
vection in the earth was clearly shown in a theoretical study by Pekeris (1935). Later, in drawing attention to the theorem by Von Zeipel which gives the condi tions necessary for hydrostatic equilibrium withih a rotating, radioactive planet, Verhoogen (1949) used Pekeris's results and the earth's gravitational field to estimate a convective velocity in the mantle of a few centimeters per year. With the establishment of the kinematics of plate tectonics it has become increasingly clear that this model furnishes explanations for most of the mag netic, bathymetric, and heat flow anomalies observed in the ocean basins.
It is
now known that only second order variations in heat flow and bathymetry can be used to identify the style of convection within the mantle. Theoretical and nu merical studies (e.g. McKenzie, 1977), however, suggest a more direct, first order connection between thermal convection and gravity anomalies.
In short,
if the convection is strong enough to deflect the lithosphere then an upwelling current will cause a positive gravity anomaly; the'hot upwelling material alone, were it not able to deflect upward the surface, would of course cause a negative gravity anomaly. 1
Theoretical and numerical studies, many carried out under unusual assump tions; suggest a variation of gravity with surface deflection (bathymetric anomaly) of a few tens of mgals pertkilometer.
Surp iingly enough, a study of the corre
lation between fre6-air gravity and bathymetry along the oceanic rises by Ander son et al. (1973) showed a gravity increase of about 30 nagals per km of elevation, even using a rather inaccurate gravity model. The use of a more modern grav itational field model shows a poorer correlation than found by these authors. Other studies in the North Atlantic (Sclater et al., 1975), and in'the Hawaiian area (Watts, 1976) have shown similar correlations between free air gravity and sea floor elevation.
In each of these three studies, however, -the authors have used
averaged surface data instead of removing a low degree and order field model to expose long wavelength gravity anomalies; In a world-wide study, Marsh and Marsh (1976) used a gravitational field model complete to the 30th degree and order (PGS11O, Lerch 1976) to lookfor short wavelength gravity anomalies which might iidicate a pattern of convection as suggestdt'by theoretical studies (Richter and Parsois, 1975).
They removed
a field model complete to the 12th degree and order and the highest order har monics, beyond n, m-23, and found that this field consists almost wholly of. anomalies possessing a wavelength of about 2000 km.
Where correlations were
possible they found a close correlation between bathymetry and gravity and a close correspondence to surface gravity maps, although this latter correlation is not surprising since the field model contained a great amount of this same
2
data in addition to satellite data. A peculiar-pattern of anomalies of alternating sign was also found spanning the Pacific basin, striking approximately NW. Along the east Pacific rise a hint of a correspondence between gravity and ba thymetry was also noted.
Yet many of the anomalies within the Pacific are of a
small amplitude - d±10 mgal while the uncertainties are often as large as :8 ngal. Although the pattern of anomaly uncertainties does not resemble the anomaly pattern, the map must be viewed with caution. Marsh and Marsh were also con cerned with the possibility of introducing purely numerical perturbations into the resulting map through the procedure of truncation of the spherical harmonic field model. The present study was undertaken to obtain accurate gravity anomalies in the region of the east Pacific rise that would be independent of any particular gravi tational field model, that could be used to check the higher degree and order part of existing field models, that would not use a huge collection of spherical harmonic coefficients, and that would supply much needed gravity data in this region. Since there is little hope of obtaining extensive sea surface gravity measurements in this area, the new method of satellite-to-satellite tracking (SST) was used. Satellite-to-satellite doppler tracking basically involves the use of a station ary (relative to Earth) satellite (ATS-6) at an altitude of 40; 000ikm to track a lower satellite which in this case was GEOS-3 at an altitude of about 840 km whose orbit is nearly circular.
Doppler tracking furnishes range rates as a
function of time which, once corrected for long wavelength orbital perturbations,
3
can be easily converted to line-of-sight (between ATS-6 and GEOS-3) accelera tions or gravity anomalies.
By reducing the orbits using a gravitational field
model complete -to only the 12th degree and order, gravity anomalies with wave lengths smaller than about 3,300km could be revealed. .The profiles of anom alies can then be used to construct a gravity map. This method, which was used by Muller and Sjogren (1968), and Sjogren etal. (1974), for the detection of limur mascons, has the great advantage of being simple; the data have little opportunity to become adulterated during processing. More recently Sjogren etal. (1976) have analyzed ATS-6/GEOS-3 SST data by re ducing the orbits with only a J 2 gravitational field and have observed the effects of gravitational perturbations on the GEOS-3 orbit.
Vonbun et al. (1976) have
also recently conducted an experiment involving SST tracking between ATS-6 and Apollo at an altitude of 230km.
These data have been analyzed for the recovery
of gravity anomalies in the Indian Oceanarea. To compare our SST derived gravity anomalies with those of the high degree and order part of the field model used by Marsh and Marsh, synthetic line-of sight range-rates were computed using the coefficients of the PGS-110 field model above the 12th degree and order.
This has provided a very useful inde
pendent check on the high degree and order portion of the PGS-1lO field model. A total of 28 passes of satellite-to-satellite tracking data have been ana lyzed.
The consistency. of the data has been measured by comparison of signa
tures of passes having a similar ground track but separated, by several weeks in time.
These comparisons revealed a high level of repeatability. 4
A test of the
accuracy of the residuals is possible from passes which traverse the U.S. where the PGS-i0 field and surface gravity data closely agree. Three such passes of SST residuals over the U.S. show excellent agreement with the residuals pre dicted by the PGS-110 model, thus confirming that the observed residuals can be attributed to high-degree perturbations in the gravitational field of the earth. Error analyses indicate that if orbital arc lengths of one revolution or less are used, the effects of high-order geopotential coefficients will indeed produce the dominant signature in the SST residuals. In the remainder of this report the procedures leading to the production of the gravity map over the east Pacific rise are discussed in detail. GEOS-3/ATS-6 SATELLITE-TO-SATELLITE TRACKING SYSTEM The ATS-6/GEOS-3 Satellite-to-Satellite Tracking Experiment was conducted to determine the tracking and orbit accuracies attainable with this type of system and also to determine the geophysical importance of the SST data type.
Basic
ally, the inter-satellite range rate measurement is made in the following man ner: the initial signal is transmitted from an ATS-6 ground station to the ATS-6 spacecraft, where it is converted to the proper frequency for reception by GEOS-3. The converted signal is then transmitted to GEOS-3, where it is processed for transmission back to ATS-6 .and thence to the ATS-6 ground station via the same instrumentation.
The final observation, in this experiment, takes the form of
an average range rate sum: R = '1 +i 2 +'
5
3
+ i4
Figure 1 shows the geometry of this measurement. This doppler observation involves the counting of cycles of a signal returned from the satellites to deter -mine its Doppler shift due to the motion ofte satellites and-the ground station. In this experiment, the type of observation generated is called "destruct Doppler." To generate destruct data, the time required to collect N cycles of the signal is measured by counting cycles of a 100 MHz clock. The counter is th6n reset to zero, hence the name "destruct Doppler."
For orbit determination with
this type of observation, the data were converted from range rate time into an average range rate in meters/second.
An average range rate measurement is
'obtained from range rate time by the following:
where fx = constant determined by particular tracking configuration fB = ground generated bias frequency
N = integrated doppler signal plus bias cycles accumulated T = integration time interval required to accumulate N cycles c = speed of light
The quantity fx is computed as follows: fx
a (fRRfB)
6
where m
= GEOS-3 transponder ratio
=
221
fRR = Ground generated ranging carrier frequency
K = ATS-6 transponder frequency multipliers Further details on the system operation are provided by Teles et al., (1975) and detailed preprocessing information is,given by Eddy, et al., (1975).
The
expected data quality for the SST measurement was approximately 0.07 cm/sec for a 10 second integration period. The actual noise level of the data used in this experiment was found to be close to this expected data quality. A data rate of six measurements per minute was used throughout this experiment. The basis for selecting data for this experiment was two-fold: 1. Passes where GEOS-3 crossed the equator (either ascending or descend ing) somewhere between 2200 east longitude and 8000 east longitude
since the main area of interest was the Pacific Ocean, and 2. Sufficient ground tracking data of GEOS-3 were available within one revolution of the SST pass of interest so that short arc orbit determi nation for GEOS-3 was possible. The ground tracking data of GEOS-3 was obtained from the GSFC lasers, C-Band radars, and U.S. Navy geoceiver tracking systems. Using the above criteria, a data set of 28 SST passes was chosen. A summary of the ground tracks of these passes is shown in Figures 2A and 2B. A descrip tion of the orbital arcs is presented in Table 1. 7
DATA ANALYSIS TECHNIQUES. Orbital solutions were computed for each pass of SST data using a combi nation of-the SST data, direct rada trackihg oftATS-6 and laser, C-Band and Navy geoceiver tracking of GEOS-3.
The GEODYN orbit computation computer
program (Martin, et al., 1976) was used for these analyses.
The following
forces were modeled: luni-solar gravity, solar radiation pressure, atmospheric drag and the gravity field of the earth using the PGS-110 coefficients through the 12th degree and order.
The gravity field below (12,12) is well-known and fur
thermore any errors in the lower degree coefficients appear as long wavelength features distinct from the wavelengths of interest. The result of the orbit com putation process was a set of range-rate residuals (observed minus computed range rate) for each pass of data.
These residuals are "line-of-sight": between
GEOS-3 and ATS-6 however, near the sub-satellite point of ATS-6 (-300 - 400
Sjogren, 1976) they can be considered to be radial accelerations. To analyze the relationship of the SST residuals to the neglected higher order coefficients of the gravitational field model and to assess the magnitude of other unmodeled errors, an orbital error analysis program called ORAN (Martin, 1973) was used.
This error analysis routine simulates the least
squares orbital adjustment process and accounts for the effects of spacecraft geometry on the residuals and thus provides line of sight synthetic residuals which can be directly compared with the observed residuals.
8
At the outset of this investigation, orbit computations were performed for several revolutions using the PGS-110 coefficients through (4,4) in order to test the sensitivity of the data to the gravity field of the earth.
The residuals due to
the unmodeled gravitational effects above (4,4) were quite large, amounting to about one cm/sec.
Such residuals for revolution 240 are presented in Figure 3.
Synthetic residuals computed using the PGS-110 coefficients above (4,4), also shown in this figure, are in excellent agreement with these observed residuals. Since the main goal of this analysis-was to study gravity anomalies defined by the higher degree and order terms, orbital solutions were subsequently computed using a (12,12) gravity model. To insure that the dominant effects in the SST range rate residuals were due principally to the neglect of the higher degree gravity coefficients, the effects of other unmodeled errors were calculated. considered are presented in Table 2.
The error sources and,magnitudes
The magnitudes of the error sources were
chosen to represent realistic state of the art uncertainties.
The only significant
errors are: tracking station location error, tropospheric refraction correc tion error and error due to the C-band radar tracking system bias (i.e., the other errors were at least one order of magnitude smaller than the afore mentioned errors).
The effects of ionospheric refraction were negligible due to
the 840 kin altitude of GEOS-3. A typical plot of the propagation of these effects into the SST residuals is presented in Figure 4 for REV No. 254.
The maximum
effect due to each of the error sources was plotted. This error propagation is
9
considered to be conservative in that no cancellation or interaction of the error sources has been assumed.
The signature of the non-gravitational error in the
SST range rate residuals is clearly distinct from the effects of the higher degree and order terms of the gravity field. Thus, based upon this error analysis, it was concluded that corruption of the high degree gravitational signature due to non-gravitational errors would be small. The residuals corresponding to the coefficients above 12th degree could also have been obtained by computing the orbit with the full model and then subtracting these residuals from the residuals corresponding to a solution which only included coefficients below the 12th degree.
This was actually done as a test and the re
siduals-generated with the ORAN program were confirmed. A number of steps were involved in going from the raw data to the implied gravity field accelerations.
Figure 5 presents a flow chart for the data reduction
and analyses procedures used in this investigation. The raw SST data were first of all preprocessed and converted to average range rate measurements in a format acceptable to the GEODYN orbit determi nation program.
The SST data were then combined with the laser, C-Band, and
geoceiver GEOS-3 tracking data in order to compute both the GEOS-3 and ATS-6 orbits. After the orbit computation, a tape was generated containing the SST re siduals (observed minus computed values) along with a tape which contained the information (i. e., station identification numbers, data types and times) which al lowed an exact simulation of the data reduction by the error analysis program.
10
The error analysis program was then used to produce the synthetic SST resid uals.
Both the actual range rate residuals and the synthetic residuals were fil
tered producing smoothed residuals and accelerations.
These quantities were
then plotted in a variety of ways is a means of determining the correlation be tween the actual and synthetic residuals and accelerations. An optimal linear smoother was used for smoothing the SST residuals and for calculation of accelerations.
The heart of the smoother is a Kalman filter.
In the operation of the smoother a forward pass of the data through the filter is followed by a backward pass of the data through the same filter with the forward and backward filtered outputs being optimally combined.
The identical forward
and backward operations assure a symmetrical dependence of the smoothed output on the data. Computational efficiency is achieved by the sequential, recursive operations.
The output of the smoothing process also includes the
first derivative. The smoother is optimal with respect to the following signal and noise proc esses: 1.
The signal is a zero .mean stationary random process with a fading memory correlation function modeled as:
E(S(t) S(t-+-r)) E
S(t)
=
=
U2 (1 +[X IT +
expected value
signal at time t
11
r)
eX2-
S(t+r) = signal at time t+r
T
= change in time
a2
= signal variance
X
= defined by the correlation length
2.
The noise is a zero-mean white-noise random sequence.
3.
There exists no correlation between signal and noise.
The primary parameter whih may be varied to change the smoother character istics is the signal correlation time. The secondary parameter is the signal-to noise ratio. The derivation and characteristics of the smoother are described in consid erable detail by Fang (1976). For these data a correlation length of 1500 km and a data noise of .07 cm/sec were used. After some experimentation this 1500 km correlation length was se lected as optimal for exposing the anomalies of interest-. An example of the ef fect of the correlation length on the observed range rates is shown in Figure 6 where the profiles obtained using filter correlation lengths of 500, 100 and 1500km are shown.
The additional detail displayed when filter correlation
lengths of 500 and 1000km were used oes'not appear to be meaningful.
12
DISCUSSION OF RESULTS In the Appendix a complete documentation of the results for each pass of data is presented.
The information presented for each pass consists of:
1. a plot of the range-rate residuals and the result of smoothing the pass of residuals versus time. 2. a plot of the synthetic range-rate residuals and the smoothed residuals from item 1 yersus time. 3. a plot of the synthetic accelerations and the accelerations determined from smoothing versus time. 4. a scatter plot of synthetic accelerations versus the accelerations de termined from smoothing. 5. a complete listing of the detailed data which were used to derive items 1, 2 and 3.
The format for the data tabulated in item 5 is described below.
Revolution 231 OBSERVATION TIME YYMMDD
HHMM
750426 750426 750426
831 831 831
GEOS-3SUBSAT- RANGE RATE SMOOTHED ELLITE POINT RESIDUAL RESIDUAL SEC
LAT E. LONG
4. -63.02 14, -62.80 24. -62.56
7.68 6.45 5.24
CM/SEC -0,08720 0.08745 -0.10546
CM/SEC
-
-0.02386 -0.01712 .0.00954
SYNTHETIC RESIDUAL
OBSERVED ACCELERATION
SYNTHETIC ACCELERATION
CM/SEC
MGAL
MGAL
0.55848
0.005177
0.64556
0.72234
0.06876
where, Observation Time
= Time of the GEOS-3/ATS-6 range rate observation, year, month, day, hour, minute, second given in col unas noted as YYMMDD HHMM SEC.
GEOS-3 Sub-satellite = Latitude and east longitude of the GEOS-3 sub-satellite Point Range-rate Residual
point. = ATS-6/GEOS-3 range-rate residual (observed-computed) value obtained after computing the orbits with the
13
coefficients through degree and order 12 in the PGS 110 gravity model. Smoothed Residual
=The smoothed residuals were obtained by processing the range-rate residuals through the smoothing program.
Synthetic Residual
=
Synthetic residuals were computed by simulating, through an error analysis program, the effects of the neglect of the higher degree and order PGS-110 coef ficients on the SST residuals.
Observed Acceleration = Acceleration obtained from the smoothing program. Synthetic Acceleration = Acceleration computed for the synthetic residuals. A previous comparison, Marsh and Marsh (1976), of the PGS-110 gravity anomalies corresponding to terms of degree 13 through 22 and corresponding anomalies derived from a mbdel based solely upon surface gravity data (PGS-130, Lerch, 1976) showed excellent agreement over North America, where a large amount of high quality surface data are available.
This comparison established
the validity of the PGS-110 model in this area. In the SST data set analyzed, three revolutions (758, 232 and 231) crossed North America and thus have pro vided an important ground truth test for our analysis techniques.
Figures 7, 8
and 9 present comparisons of the observed and synthetic accelerations for these passes.
The agreement is good along the total length of these profiles and is
particularly close over North America. It is noted that during SST tracking on revolution 758, GEOS-3 was observed simultaneously by four ground stations. This may account for the slightly better agreement along this pass. '14
A test of the consistency and repeatability of the SST data has been provided by the comparison of independent data along overlapping ground tracks.
Figure
10 presents such a comparison for revolutions 240 and 429 and Figure 11 pre sents a comparison for revolutions 254 and 453.
These plots indicate a high
level of repeatability in the data thus providing further confidence in the results. The formal estimate of error in the accelerations derived from the filter with a correlation length of 1500 km, data noise of 0.07 cm/se and a signal to noise ratio of 2 is approximately 0.4mgal. As a check on this estimate the rms of the difference between the synthetic accelerations and the accelerations de rived from the range-rate residuals was computed.
This gave a value of
0.6 mgal, which is in good agreement with the formal error estimate, particu larly since this latter value also reflects errors in the synthetic accelerations. A histogram of these differences is shown in Figure 12 which indicates that the differences have a zero mean and are even approximately Gaussian distributed. This is further verification that the accelerations derived from the range-rate residuals are an independent estimate of the accelerations derived from the high order terms of the PGS-110 gravity model. A close inspection of the graphs and tabulations has indicated a strikingly high level of agreement between the synthetic range-rate residuals and accel erations and the observed residuals and accelerations.
In order to quantify the
level of agreement and examine it for statistical significance, correlation coef ficients have been calculated between,the synthetic and observed range-rate residuals and accelerations for each pass of data. 15
Table 3 presents these correlation coefficients.
The average correlation
coefficient for the accelerations along the 28 passes was 0.55 which is statisti cally significant at the 99. 99% confidence level. That is, if the true correlation were in fact zero, and this type of analysis were repeated'for a large number of cases, only 0.01%of the time would we find a correlation as large as 0.55. Thus the analysis has provided an independent verification of the validity of the terms of degree and order greater than 12 in the PGS-110 gravity model which would imply that gravity anomalies defined by these terms with wavelengths shorter than 3300 km have been independently observed. Close inspection of the plots of the observed and synthetic accelerations has indicated that if certain portions of the synthetic curves were shifted slightly, the agreement would be even better and hence the correlations even higher. For example, note the accelerations between 21 and 31 minutes for revolution 695, and between 32 and 42 minutes for revolution 724.
The justification for
considering these shifts is based upon the results of previous investigations (Black, 1976) which have indicated that in the determination of global gravity fields, errors of a few degrees in the locations of the anomalies are not uncom mon even though the magnitudes of the anomalies have been reliably estimated. It is noted that displacements due to the fact that the accelerations are "line-of sight" have been accounted for in the generation of the synthetic residuals. Figure 13 presents plots of the observed accelerations along the GEOS-3 ground tracks for the revolutions prior to May 20, 1975 when ATS-6 was located
16
at 940 west longitude. -After May 20, 1975, ATS-6 was drifting toward the east at a rate of about 30 per day. Similar results can be observed for passes over the same geographic area in most cases. anomaly patterns.
Visual inspection also revealed
In order to facilitate comparison of these patterns with pat
terns defined by the high deiree and order terms in the PGS-1l0 model, con tour maps of the accelerations have been produced. The acceleration maps were contoured by a computer routine which first grids the data.
There are many ways to grid data and depending on the distri
bution of real data points spurious anomalies can be introduced by this process. The anomalies outside the area of the satellite ground tracks were produced in this fashion and should be ignored.
Machine contouring can also sometimes
produce strange effects within the region containing data and to check this, one of the maps, Figure 14-A (SST-1, 2, 4) based upon revolutions 100, 200 and 400 collected before May 20 was contoured by hand. It turned out to be essentially identical to the machine contoured map. Each map presented herein has been machine contoured.
Since tracks which cross generally do not match exactly in
amplitude, although they usually do so in sign, at these points an average value was taken and the resulting map is hence somewhat smoothed by the contouring process.
The number of ascending (SE to NW) passes are so few that they can
not be considered to yield a reliable map of the gravity over most of South and North America.
Thus the most reliable part of the map shown in Figure 14-A
is that area contained within the envelope of descending (NE to SW) revolutions and within about 30 or 40 degrees of 94 degrees west longitude. 17
Figure-14-B .(SST-6, 7) presents an independent contour map of the accel erations corresponding to the 600,700 series of passes when A'TS-6 was drifting from 94' West longitude to 410 west longitude.
These maps have no reliance on
a higher degree and order gravitational field model, but instead rely only on a field model complete to the 12th degree and order. These independent data sets show basically the same features within 30' - 400 of ATS-6, but the position of ATS-6 is different for each map. The anomalies are largely broad undulating features- striking WNW with a wavelength of about 259 - 30 This is particularly so in the east Pacific.
(2700-300km).
This does not appear to be caused
by contouring or an insufficient number of tracks, and this strike fs not caused by single ascending orbits for there-are none in this region. lantic area the maps are somewhat different.
In the North At
Here the SST-1, 2,4 -map shows a
pattern of broad anomalies while the SST-6, 7 shows a much shorter wavelength pattern. - The agreement here is not close, but this area is well'outside the 30' -
400 circle about the ATS-6 subsatellite point where the accelerations are largely radial. Even within the 300 circle of ATS-6 there ate some rather large dis crepancies between the two maps.
The large bulls-eye anomaly near 2680 lon
gitudeand -12- latitude on SST-1, 2,4 appears alone within a large positive re gion, but on the SST-6,7 map this anomaly is less obvious because this positive band consists also of other anomalies. -The anomaly at 2600 and 5' on the
SST-6,7 map, in particular, does not appear on the SST-1, 2,4 map because no revolutions used in the SST-1, 2,4-map cross this feature.
18
The agreement between these maps can be,made much closer in the area. of the east Pacific if the SST-6,7 map is translated westward by about 4' rela tive-to the SST-1;2,4 map.
The difference in the position of ATS-6 for the data
collection used in each map may account for the apparent phase shift in the anomalies.
The eastward drift of ATS-6 moves the.30? spot centered about
ATS-6 where the line of sight range-rates can be considered. to be almost solely due to radial accelerations.
Unfortunately for many of the later passes in this
series (600-700) their circle of certainty about ATS-6 does not include much of the southeast Pacific, an area of prime -geophysical interest. Model studies show that the largest distortion of acceleration anomalies which-lie outside the .300 circle of certainty comes about principally as a shift in the phase of the measured anomaly relative to the true anomaly.
This could account for the ap
parent longitude discrepancy of 4? between the two SST maps of line-of-sight accelerations. An acceleration map made from combining the two independent sets of SST data (SST-1,2,4 and SST-6,7) shows, of course, a combinationof the features of each data set (Figure .14-C). The absolute accuracy of these maps of SST accelerations is difficult to es timate.
Compared with the 'synthetic range rates computed using PGS-110 the
nearly Gaussian distribution, of differences gives a standard deviation of 0.6 mgal; on 'the eartb~s surface this would be about 6 mgal.
This is considered to
be, within the most reliable area'of these maps, an upper bound error estimate
19
since this comparison also reflects errors in the PCS-110 model. An estimate of the lower bound on error is gained from the study of error propagatioi due to uncefrtaiities in the low degree and order (n, m< f2) gravity field model used to reduce the orbits. The fornial errors on the GEM-10 c6efficients (n, m2 0-1
.j
SYNTHETIC RESIDUALS
C,
-0.o0 c.,'n'
OBSERVED RESIDUALS
-0-
'
-0 .2 1 1--1 0
5
1 1111 1 . 1 1 1 I I I 1I J I I 1 I I 1 I 1 I I 1 I 1 t 1 I 1 1 I I 10
15
20
25.
TIME IN MINUTES FROM APRIL 26, 1975,
30 0 8 h 3 1m
1 35
1
1 40
1 1 45
GEOS-3/ATS-6 SST Range Rate Residuals
Computed Using the PGS-110 Gravity Model Coefficients to (12, 12)
Revolution 231
3.0
SYNTHETIC ACCELERATION-,,,.
c -0.0
,
.
OBSERVED ACCELERATION
-1.5
-
-3. 0
5
to
25 20 15 TIME IN MINUTES FROM APRIL 26, 1975,
30 0 8 h 3 1m
35
40
45
GEOS-3/ATS-6 SST Range Rate Residuals
Computed Using the PGS-110 Gravity Model Coefficients to (12, 12)
Revolution 231
-
3.
x
24
K.-XX
K X ( x
0
-< w
i
0.
x XXx
x
XX )C
x x XXX
2.
-3. -3.
-2,
U.
-1.
1.
OBSERVED ACCELERATION (MGAL)
A-7
2.
3.
REVOLUTION 231 OBSERVATION TIME
.AT __E.
HHMM_
SEC
831 83 1
14. 24.
-62.50 -6Z. 56
831 7504 6~ • 546 83Z 7594M5 32
4:: 4 14. 24.
-:2.036 .0 -61.25 -60.96
WMMD
.
GEOS-3 SUBSATELLITE POINT
7504Z6
•750426 750426
*6 05
15042' 75042C.
832 652
-0 44 . 54 -,so
750116 75026 750 5_
750426
833 Raj
24.
833
4.
-4. -5 0 - 59_06 -57 -58.38
7S0426 75042 6
834 34
4. 14.
-57.66 -57 30
75046 7S0426 I50*26 750426
ol4 A3 854 835
324. !. .4 4.
!--56.55 1 I-55.39
LONG
RANGE RATE RESIDUAL
SMOOTHED RESIDUAL-
SYNTHETIC RESIDUAL
OBSERVED ACCELERATION
CMISEC
-CM/SEC
CMISEC
MEAL
0.C0745-'"-- 0.0172
-0.10546 -0.00964
6.45 !5.24 2*S7 172 -5 359.47 Z58*37
~
35 E23
3 5519 353.:17 352.10 -3501.iz 350.27
-0.00902 0.00591 9.31981 0.09064
0.00"s 0,02529 90005 50 WAS
0. 0 0 41 0.16341
5? 04*04 -0.04831
002091 0.07930 0:050o0 -063650
348.43 47 5 4
-0.01156 0.04535
345.8-0 344.gs 6-57 44."2 343.31
-0 .0 5 414 0.00165 0.00505 "-0.02149
0.00*177
•;"
.5 .722_
.0
S*;8894 tO
RUHRq 0-55221
0.009303
0004722M027'
0.04443 U:WW 0 03560
o0 1276
O .OI&R7
-08L -. C-5----0.00357 -0.00014 -0.00324
39*46 3 3
"12651 -008 532 _
-0:0587 -0 00838
24.
-52.09
337.31
750426 836 T546"836 7SO426
44. 54. 4
-51.22 -50.79 -99
353628
750 26 750426 750426
837 8.37 111-
24* 44: 4 .
-49.45 49:00 -4 .55
333,35 33 22, 53.2
0 088565 -0.0T374 -0o07177
-0:00456 -0.00658@ 1-06005 F, 02
750426
838
14.
-47.L8
330.35
-0.04,605.
-0;011
-0:1 352
750426 750426
838 838
34. 44.
-46;25 -45.78
329.21 328.6
-v=:Bet... --0*104 ,
-o~g5
-0.06893
-44
750426
856
•
335*05
.0
,623
34
_0 00680
-0.07760 . 67 73.8 0.0825
' -0.07165 -0.0199
750426
839
4:
83
327.57
0.|1184
-0o015G
839 839
24. 34.
-43.08 -43 .40
326.52 326.01
-0.06076 -0.044S5
-0.01533 -0;01443
750426
75025 53 0¢0
5* 4.
42:44 -41.95
3270 324.51
"-0.08622 0.05177
750426
4€
24°
-41098
323.5
750 426 750426
840 1, 0
44. 54.
-. 39.99 -39.50
322.60 322.14
-0.01619 -0.12591
750426
841 14. -38.51
321.24
0.04437
750426
841
24.
-38.01
320.79
750426
841
44.
- 37.1
319!9
"75042 710116 750426 750426
02 042 604 =2
750426
*
-M6005 -Z5.5 -- 4€ 4.-3.5
1.
-0065 ,
0.0200 6 -0:000 0.47. 5 -. -e40
-0.04 -0,00571 0.01 0095•.•3
-32.44 -31.93 -31.1k2
3163 315.85 315.4f,
=L0.08933 -0.041000.03952.
-0.00 6970 -0.010J55 -0.01035"
6 3 844
54. 4.
-30.39 -29.87
314.71 314.33
-0.08822 0.07467
-0.00933 -0.4055
a44 -4 844 844 645' 845
24* Z4: 44. 541 4. 14.
-28*03 :28.32" -27. 80 -27,27 -20.7 -26.23
313 59 -0.01296 313.23 "-0.07128 312 57 0.03492 512.'5l 0.014 -0066 31Z.11 a11*e2 -0.01034
750426 75045
845 54
34. 4 .
--25.18 24.66
750426
845
44.
-
75042T .750425 7.50426
846 64 846
14* -43.05 2*-22.55 3 -22*03
309.75
7SO426 750426
846 847
54. 4.
7545 750426
847 847
24, 34.
750426
17So426 '750426 -'750 2 750426 750426 7W4026 S750¢26,
' 11.11. .310.7, 100
"
.25'9
0.0099J6 0.014 35
-a
309.08
-0.02493 0045 0.0396
-20.97 -20144
308.42 3013.10
0.00356 0.10282
0.047LS 0.05111
19*38 -15.85
n0.%5 307.13
0:08UN 0.0S787
6652 0.061114
05
7 :
15--0.|15 1:
f
-0401570.
-0.02074a,
-0
0.044GZ ,0.08848
6
51689.7"
0.17021'
'0146
'
-048062 .
120.214
-042
0.154 0.08822
"275
"-;
-0.o0032"
-0.048675
0*27140'6
-0.03980
"
-. "
03
-D.13202
-0.13372 O ; -8
- 0;02692 0004490
0.005SWB
,..=
'..."
"* 0 45g
•
-. 559, "0:06020'-
~
" "
.693 20:1 -ola'o. 4... * . . 0.11679 0.55"" • 8 0*20855• 0*2rG!52,1 " " " "0
*0
0.1 57 D1*1 .524 0,09008
"
_
~lg3
-0.006S5 0,63Z60 -0.00579- .... . l -0.4004a5" - 005", -a _60D1 0.002155
-O0O565 0.11.2
"
!-006763.
0.016616
-0*00.201
10 at0e5 1.3 24. 374
'
0*I30•00 5888
-Os=050
-0.01418 "-0.000163
::i-4
"
109043
6.08451
0095
-0.00a75 -0.00158
S43- 14 643 24: 34* 843
750426 750426
0.011695
-0.01165 -0.00989
-- '024
"2
2'0 9 ? .3 0.0723
-0.00500 -O.O0A0 -001
7504Z6 750426
.
-
"
07
0007%2
-6
-026
-3,36 4
*-5
:
- - 529504 4 4 "0 -0.362588 -0.2,V02 -0.22714" :
- 0 .008
54
04327232
20.55042
0 Ot04" - 0 .0 133 6
w3
'
"
- "
-0.35127 ,-040g0D
-0.51164
0wI02450
5
. " "
0- 27257';
0.24784 0.00056
341.7 3 4 0 .96
7W0426 75426
0
'
-5.o59 - 5 4 18
14 . 135 83 S 34 .
7504P6 7 0 26
SYNTHETIC ACCELERATION MGAL
0.3785 1 29
'
;"
...
.:
0:4257,, Q00
.. '
r.
0-" F1OAO 0 ? *2432
4
0.3348!i; O 22 . 0.076179
0107 0.13876
t,
/,t) .
0
7 -
ORIGINAL pAEL9 A-8
or
POOR QUALITy
ORIGINWAL PAG2 19
OF
POOR QJ~j
REVOLOTION 231 OBSERVATION TIME YYMMDD
HHMM
750420
847
750426
847
L&
75t6 750426 7826 75026.''848 -
"&lfA~
"848 848 048
-
'5026
85)
7504P6 74-
750426 .750426 750426 t
544.
750426 790fA
* 750426 * .350426
.
S750426
LAT .32 17 7 9 ,
-: r
_,4
.. lZ
3fl6
4
849 849
34. 44.
-12.45 -11.91
850 4. 850 14. ayZ4. '850 34.
-10.84 -10.31
54. 4.
851 51
24. 34.
YW. I
851
54. A',
.
-493 -A
CM/SEC
CM/SEC
0.05091
303.40 -303.10
0.08837 0.00870
0.042P43 0.63755
302.50 302.20
-0.02460 0.01940
0.0 687 0.02123 9.,~f~
0.00905
300.12 29S.83
-0:01224 0.02324
-0.02098 '0.02749
29S.24
-0.02770
-0.04047
-
0.914-0-057472 324 AIG9A
852 852
14. 24.
-3.85 -3.32
298.,5 292.36
-&.03761 -0.20513
7504i26 750426
52 852
45. 55.,
-224 -1.70
297.78 257.49
TO.07 81 -0.08250
-n
1
653
.L
Z9t I ".U
flJ*I...V
'u.vo0%*
853
1'.
-0.62
296.90
-0.05945
-0.06810
'~AA
ARM
pg.
-864n
O0A.4
53 853 8S?_ 854 854
35. 45. Er 5. 15.
0.46 0.99 1.Sa .07 -2.61
296.32 . 296.03 29O6 1 295.45 295.16
-0.01330 -0.00429 0a2inq12 -0.03086 -0.03949
-0.06345 -0.05916 0 0rI26a -0.04693 -0.03915
.
ul.0 5~0
750426'
.Lp5)*
854 '35.-
750426 750426
• 854 855
55. 5.
"Set'
f'6t -750426 750426
855 Z5. -855 35.
750426 750426 750426 750426 .71011 750426 750426
855 S5 856:' S. 856 15. '856 25. 5
856 45. 856 55.
750426 * 750426' 750426 750426
857 857 857 857
15. 25. 35., 45.
5. 8 $58 15. 85046
26
-
..
'..UJ.0
-u.upu.J19-.0Mb
294.57
4177 5.30
293.99 293.69
-0.06779 -0.11297 0.05291
-0.0 08" -0.00013
0.01035
5
A
011
-0
AM
" 0.16031 0.00960
7.99 a .53 9.07 9.61 101 10.68 11.22
292.22 1.2 291.63 291.33 "40 290.73 290.43
0.12415 0.05647 0.04671 0.05842 0 074 0.01262 0.00379
12.29 12.83 13.36 13.90
289.e3 289.52 289.22 280.91
14.7 - 15.50
2880 287.99
55 858 855 859 859 859 859
35 45. 55* 55 15 25. 35.
869 9 0 9 0 9 0
55. 5. 15. 25.
20.82 213, 21.88 22.41
.750426 75a426
9 0 9 1,
55. 5.
7654 6 50Q42L -F50469 750426 7imo1i 750426 150426
9 1 9 1
N50426 750426 _;042 . P50426
9 2 9 2 .9 a 9 3
'
750426 750426 7504Z6 .750426
50426 750426
9 9 9 9
9 9
1 3 2 2
3 3
. '750426 p#50426 750426 750426
9 4 9 4 94 9 4
0.03791 0J03103 0.025dS 0.91900
.
0.00861 -- 0.05220
.
60fUOU4
-1.115935
-0.26165
-0.14741
-U-.9cfr)
0.09258
.11 0.32302
0.43118
6215V94
0.63678
0.73178
03
8~7P
V*00=0d03V
0.69221
0.97728
0.97292
-0.020209
.
0.038091
0.063694
'
9.s.je
0.84223 0.71765
1.114801
0.3945 022250 0.05905 -0.08860 liE
-0.32327
-0.41015
0.766955
r0.53513
-0.57S1 -0597657
-0.59963
0*004522
-0.53501
-0.47163
-0.19504 -. 021739.
34 -0.19852 -0.405990
282.61. 252.47
10.11626 -0.07406-
-0.03116 -0.02914
25. 35. 45. 55. 1 15. 25,
2S.57 26.09 26.61 27.1417-6. 28.18 28.70
201.77 281.43 281.07 280.72 20026280.00 279.64
-0.05410 -0.05453 -0.04462 0.02847 -0O2SS4 0.04513 -0.00037
45. 55. 5%. 15..
29.74 30.26 30.77 31.29
278.90 278.53 278.15 277.77
32.32 32.83
'277.00 276.61 275.81 275.41 275.00 274.58
,a7'
-0.31320
-0.2349
23.99. '24.52
33.85' 34.36 ,3487 35.38
-fl.
-0.041045
-. 00713 -0.01097 -. 036-0*54
366-03:16847 -0.015a5 -0.0179 -0.01933 .0.015356 -0.02095 -0.02457 -0.0268 -002858 -0.03032
5. 15. 25. 35.
-1.126167
-0.58762 -0.52367 -0.45494
0.00672 0.00126
-0.02006 -. 16 0.00362 -0.02199
-
-0.55614 -0.57472
0~.J.V,55O
-'16.57. 2a7:36 -0100090 17.10. 287.05 -0.04758 17 .7 11.11 -*839 2114 '18:17 ,286.42 -004270 18.70 286.10 0.03694 19.23 245.78 -0.00062 19.76 285.46 '0.00942
220Mta
'50426 '50426 150426 "750426
0.05032 00 398 0.05529 0.05611 eei 048J1
'0.05214 0.04829
284.81 8.8 284.15 283.82
,35: 45.
0.031456
0
0.02979 0.03007
0.06451 0.06700 0.04654 0.05577
-0.
-
-0*.51373
-0.5231
'o-a
293.11 292.81
.
-0.50321.
.t04--667A
29.8
A*
75026 .[?46 S7W0426 750426 --750426 750426 750426
01
3.69
6.30" 6.92
-0.*40Ol
-0.49605
0.0 '1l*,et0
b1e
-0.031 0.06750
(5040
f
-0.42871 -0.4600S
6AA44
-0.05244 -0.05759
750426
5.
oe454
-fl49SflA 7
%.SVOAOO fl527
0.05587 -0.06376
-0.349055
-0.33328
0
-.0.00222 -0.00832
3101 '1 3011.71
080
0.0079834
-0.03720 -. 53 -0.212t2
0050480
0054
"fl anlI
MGAL
0.07461
nfl.rl.691
-I
MGAL
0*06129
0.bb
v.v50
SYNTHETIC ACCELERATION
0.1042t
0.06203 0.06I65 1
0.05925 0.057a2
0.02757
OBSERVED ACCELERATION
0.06020
0069 f1*0pp
7504Z6 750426
750426 750426 780':, 750426 750426
-
SYNTHETIC RESIDUAL
0.05016
'
JUL.90
- ...
9tA
.084097 0.07677 0.03598 0.07431
301.60
-85.16 -7.62 -6.55 -6.01
6
042
-9.23
051-5t4:049953
-0S01383
tO
304.01,
-133.,2
hA
8 50 851
0.04300
305.8 305.55 349 304.62
-1-.0,
14.
SMOOTHED RESIDUAL
CM/SEC
E LONG
14. 16.72 24. -16.L9 44.-151 54. -1.59 PA.-T
RANCE RATE RESIDUAL
306.01 306.49
96
flAG9
OCO49
-
SEC 44 54.
849
"of
S75046 750426
GEO -3 SUBSATELLITE POINT
.
-0.02046 -0.01372 -0*O0554 0.00382 * 011, 0.02460 0.03515
0.11378 0,1037a015270 0.11963
0.05442 0.06249 006922 0.07456
0.14659 0.02393
0.Os24 0.08241
0.062.r V~W0
0.08414
-0.06143 0.0493 0.08020 0.03080
0.08382 0.085310.0827 0.08054.
9 4 55. 36.39 273.74 0.11664 9 45 36.89 . 273.31 s. - 0.09110 .................................. 9 5 2& 37.90 27Z.4 0.08950 9 5 36. --38.40 272.00' 0.07608
-0.061252
.- 0.950648
0.05758
0.20398
-0.075703
-0.037698
-
0.53286 8.131059 0.69004 0 a2570 0.9292 A 96 1.01151 0.98418 1.018757 0.80295
0.66607
0.51599
0.367S ,
0.12691
0.04816
.02r
009921
0.07509 0.07087 0.015558-533
0.05899 0.100106% 0.05126
A-9
0 -0.12177
-0.09952
-0.18115 -0.12162
-0.03424
-0.05762
-'0.085f -0.12735
0.030048
-0.27549
-0.38229
-0.62866 -0.74780
-0.355206
REVOLUTION 231
OBSERVATION TIME YYMMDD __HHMM -50426 50426 Af504
9 5 9 5
6
GEOS-3 SUBSATELLITE POINT
46. 56.
A
750426
950426 9 6 16. 9 6 26.
'50426 50426 504 6 /50426
9 9 9 9
)CAAO
.
/50426 750426 '50426 '50426
6 6 7 7
38.B9 39.39
271.55 271.10
0.03410 -0.01827
0.04238 0.02248
1pp.
l7l.-..
.. f-fl07
flf-7
40.38 40.87
46. 56. 6. 16.
41.a5 42.34 4' .8 43.30
270.17 269.70 '268.73 268.24 207.74 267.23 266.20 265.67
-0.05101 -0.10500
8 8
6. 16.
45.69 46.16
264.59 264.03
-009824 -0.10496
-0.06067 -0.05611
G
Lb.
46.84
48j4
47.09
56. 6. 1i. 26. 36.
48.01 41.47 A.2 49.38 49.82
261.73 261.13 2tp.5i 259.89 259.26
9
4b.
3U.ZC
XCO.b
50.71
/50426 '50426
910 910 9n: 10 010 919
16. 26. 36 46. 56.
51.59 52.02 ZZ.IC 52.87 53.29
"50426
911
16.
54.12
252.30
'50426
9 8
36.
'50426 150426 59P Z50426 '50426
9 9 9 9
8 9 9 9 9
9
9
0.00777 0.00523 -! -0.07464 -nA AAI0
TOO.
~ 262.90,
750426
0.01049 -0.00102
44.26 44.74
7 7 6,S
9
!50426 '50426
0.0567B 0.04034
36. 46.-919
PC.
"..44N
1 U~t0
SMOOTHED RESIDUAL CMSEC
-0.02352 -0.03383 0.94390 -0.05089 -fldqn $.A -0.06122 -0.06327 .161
C
9 "5 99 9 9
E.LONG
LAT
SEC
RANGE RATE RESIDUAL CM/SEC
9
56.
.
0.b0b
-U.UgfbLt
SYNTHETIC RESIDUAL CM/SEC
. 0.55230 -0.93690 f-p~
-2.0338 -1.05177
0.051055
i-
WI At
.
n.
O~t
0.32761 0.52675 041V
.rv3S..Odd
-0.04145 .- 0.02175 -0.01114 0 9667i 0.00902 0.o0172
257.57
-0.02248 -0.01340 0.94152 0.03178 0.04206 V.S1U94 0.09425
256.62 255.94 ass::3 254.52 23.79
0.08256 0.01285 &0:132 -. 08700 0.07055
0.02528 0.03494 0.0:277 0.02886 0.02339
0.01364 f087 0.01395 -0.01087
0.00865 -0.02 -0.00976 -0.01976
-03 -0.04947 ' -VUIuooc.-u.Uq4ooo -0.0550 -.007237 , -007681 -0.07966
. 0.84662 1.00583 1.01343 0 97!6? 0.88220. 0.7S002
0.045238
U.QL~fb
0*39856
0.03016 0.049590 -
C.t75
-
0.02124 -04473 Z9% -0.43312 -0.55349
26,
54S93
291,-3
911 911
36. 46.
54.93 55.33
250.74 249.94
:50426 '50426
912 912
6. 16.
56.11 56.50
24B.30 247.46
WI'4 14
48.;-
S6.88
440.sV9
'50426 '50426 '50426 *50426
912 912 912 913
36. 56. 6.
57.25 57.62 57.98 58.33
245.72 244.82 243.91 242.98
-0.09989 -0.03046 -tt.u'c90 -0.03942 -0.07949 -8:09326 -0.09919
/50426
913 913
26. 36.
50.02 59.36
241.07 240.08
-0.14539 -0.02226
-0.07953 -0.07649
'50426 '50426 '50426 '50426 '50426 '50426
913 914 914 914 914 914
56. 6. 16. 26. 36. 46.
60.01 60.32 60.63 60.93 61.22 61.50
238.06 237.02 235.96 234.88 233.79 232.67
-0.03836 -0.08404 -0.00195 -0.07105 -0.08681 0.02270
-0.06458 -0.05555 -0.04576 -0.03421 -0.02154 -0.00602
'50426 r50426
915 915
6. 16.
62.04 62.29
230.38 229.20
-0.04892
0.04554
0.020A6 0.034-1
1.30569 1.28600
'=0.26 150426
915 915
36. 46. 56.
62.78 63.00
226.80 225.57
0.06792 0.14389 -01304
0.06137 .0.07303 0S03 -.
1.136 6 1.00707 0.4607
756426
915
63.22
224.32
-0.070278
-0.054763 -
-0 02 -0.85051 ppU
-0.65328 -0.51718 -0.35929 t018453
~ -v
0.18809 0.37005 0.70006- 0.844$8 0.97392 1.08660 .18000 1024990
A-IGWAO
A-10
-0.2n3478
-6.76017 46-OSPt -. -0.89976 "D.932S7
911
-
0.340393
0fl8H44V
9n~426
1.50426
-6ftf
-0.3020e -0.09660 0 11630
'50426 150426
46.
-048S3120:
-0.99024 "-0.123a Wo -0.66067
-0.09267
-
SYNTHETIC ACCELERATION MGAL
OBSERVED ACCELERATION MGAL
-04120614
0.646 0,
PA
1
GEOS-3 Revolution No. 233 h 20i April 26, 1975, 10
A-n1
GEOS-3/ATS-6 SST Range Rate Residuals
Computed Using the PGS-1 10 Gravity Model Coefficients to (12, 12)
Revolution 233
0.4
SST RESIDUALS
0.2
S
}-
-0.2
SMOOTHED RESIDUALS
,
10T
21
O 2IA0
TIME IN MINUTES FROM APRIL 26, 1975,
30 10h
20 m
452
GEOS-3/ATS-6 SST Range Rate Reiiduals Computed Using the PGS-110 Gravity Model Coefficients to (12, 12)
0.2
Revolution 233
•
SYNTHETIC RESIDUALS t
o
-0-I"
OBSERVED RESIDUALS -0.2 0
5
10
15
20
25
TIME IN MINUTES FROM APRIL 26, 1975,
30 10 h 20m
35
40
45
GEOS-3/ATS-6 SST Range Rate Residuals
Computed Using the PGS-1 10 Gravity Model Coefficients to (12, 12)
Revolution 233
3.o
1..5SYNTHETIC ACCELERATION
A
-1.5 OBSERVED ACCELERATION
1 111I 111I 11111111I
-3.0 0
5
to
11
15 20 25 TIME IN MINUTES FROM APRIL 26, 1975,
-1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11I 30 10 h 2 0 m
35
40
45
GEOS-3/ATS-6 SST Range Rate Residuals
Computed Using the PGS-110 Gravity Model Coefficients to (12, 12)
Revolution 233
3.
2.-
I. -x
X
< a
x
~Xyxx
< O o X
X
x
x
x S0.-
x
X
X
x
Lii
Ix
z
-.
-X
-3.
X
-2.
-1.
x
.1.2. 4
0 SERVED ACCELERATION (M GALS)
A-15
3.
REVOLUTION 233 OBSERVATION TIME
GEOS-3 SUBSATELLITE POINT
RANGE RATE RESIDUAL
SMOOTHED RESIDUAL
SYNTHETIC RESIDUAL
OBSERVED ACCELERATION
SYNTHETIC ACCELERATION
CM/SEC
CM/SEC
CM/SEC
MGAL
MGAL
0.015506
YYMMDD
HHMM
SEC
EAT
E.LONG
7E0426 75042&
1020 1020
44.54.
-45.17 -44.70
302.4 302.10
06.39374 0.29912
0.24633 0.22443
750426 75?JkP6 750425 750426
1021 021 -1021 1021
14. 24: 34. 44.
-4375 -4327 -278 -42.30
301.05 30. 4 300.03 299.54
011245
0.17145 0.1412f 0.20940 0.07679
-2.7061 -287484 -2.96146 -2.96300
1022
4.
-4 1.33
14.
-40.84
-298.56
1022 1022 1022
34. 44.
* 750426 750426
1022 1023
54. 4.
750426
1023
750426
10"3
750426 750426 750426 750426"
750426 .
'750426 750426 750426
*
,
7aort
750426
6.204 0.12010 0.03339
298.08
0.01713
0.01289
-0.05207
-2.73040
-0.01669
-2.51763
-39.85 -30.36
297;15 296.69
-30. -38.37
296.23 295.79
-0.07626 -0.23378 -0.13035
-0.06794 -0.08897 -010678
-0.07812
-0.12142
• -1.07893
24.
-37.37
294.91
-0.43957
-0.14188
34.
-Z36.86
294.48
-0.04409
-0.58548
1023 1024 1024 1024
54. 4. 14. 24.
-35.6 -35.35 -34.85. -34.34
293.3 203.21 292.80 292.39
-0.05027 -0.14052 -0.16148 -0.14816
-0.15C36 -0.15631 -. 15524 -0.15407
10t
go
-
,t~~ -0.03749 -0.10322
l~ -0.14666 -0.14087
-0.24968 -0.16991 -0.12304 b.01469 .fPAI -0.13023 , 0.00116
-0.12513 -0.113S -0.104t0 -0.09299
n
.
1024
4 54.
-33.32 -.32.81
291.59 291.19
750426 750426 750426 750426
14. 24. 34. 44. G.4. 14 .
-31.78 -31.27 -3075 -30.24
750426
.1025 1025 1025 1025 1119 1026 1026
-29.20 -28.68
290.41 290.03 289.65 289.27' 80Of n 28.53 288.37
750426 "750426 750426 750426
1026 1!6 106 1027
34. 44 54. 4.
-27.64 -27. 12 -26.60 -26.08-
287.44 257.08 28.73 286.38
-0.09933 -0.05880 0.00366 0.14607
750426 750426
1027 1027
24. 34.
-25.03 -24.50
285.65 285.34"-
-0.03101 0.11554
-0.00455 -0.00243
750426 * 750426
10 7 1028
54: 4.
-23.45 -22.93
284.66 284.33
0.00792
0.08518
-0.0012 -0.00112
750426
1028
24.
-21.87
283.66
0.00010
-0.00050
, 750426 75 426 50 4 2 4 - -r 750426 750426 - 5UgZ 750426
1028 1028 2 leas 1029 1029
44. 54. 4 '14; 24. ij.
-20.81 -20.28 i975 -1.22 -18.69
283.00 282.68 282.a5 282.03 281.71
-0.04020 -0.04147 0 iilO 0:02047 0.00267
-44.
-17,63
281.08
74040A 750426 1030 750426 1030 7t0426 _1020 750426 1030 750426 1030
4. 14. a4 34. 44.
-16.56 -16.03 15 SO -14.96 -14.43
- 0.4061 n-'S lOS& 0.09561 0.01426 02 Q90 0.13525 '0.0410a
.flU'JL0
30z0
z4.
* 750426 6 7S1042 7501426 750426
031 t83j 1031 1031
4. 14. '24. 35.
-13.36 -2.S2 -12.29 -11.75
278.59 f7S*fl 277.99 277.68
1031 1032
55* 5.
-10.68 -10.14
277.08 276.78
750426 - 1032 1D32 -750426 750426 1032 750426 1032 -Th0-426---033 750426 1033 I 750426 1033
25. 35. 45. 55. So 15. 25.
-9.07 -8.53 -7.99 - 7.46 -6*92 -6.30 -5.84
276.19 275.80 275.59 275.30 275*00 .274.71 274.41
0.31179 0.104'1 0.19701 0.17422 0.12351 0.12794
9.13572 013958 0.14?45 0 '.2 0.14504 0.14478
750426 1033 750426 1033 750426 1034' 750426 1034 750426 1034 750426 1034 754Q1034
46. 55. 5. 15. 25. 35. -5 55.
-4.76 -4.23 -3.69 -3.15 -2.61 -2.07 ...
273.63 273.53 273.24 272.95 272.66 272.37 .. *,
0.13540 0.24443 0.16895 0.06375 0.03960 0.11343
0.14169 0.13919 0.12630 0.13315 0.12977 0.12617
750420
-
-O04
ocw
1029 *f104.
750426' 750426
I
750426 110421
1034' '1035
75062N 750426
l35. 1035
750426
1.
-00-70
p
9S.Vs
2.f
*4t
-0.99 -0.45
7
280.45 250.14 279 g 279.51 279.21
271.78 271.401
1035
0.62 1.16 1.0 2.24
750426 750426
1036 1036
15. 25.
3.32 3.86
269.45 ' 269.16
750426 750426
1036 1036
45. 55.
4.94 5.47
26a.57 268e28
t7.
-
2J0fl
35. 45.50 55.
. 50..6---f
-
270.91 270.62 27.33 270.03
-
-
-
.ll~l
-0.03500 -0.02594 -0.019315 -001228
.13568
0.16205 .16S35 0.06579 0.05635
0.08174 0.08805 0.09441 0.10082
0.07369 0.12497
0.11357 0.11975
0.i.Ea
0.03287 0.134024
0.18440 0.26871
-
0uU02
U.4r
0.52803
-0.043134
0.57793 0.57294
-0.355552
0.48523 0.4052 -0.0SO350
0.30704 0.2023a
0.120254
0 09791i -0.00001 -0.08778 -0.033836
-0.018529
-0.22514 -0.27008 0 A t29869 -0.0815 -0.30505 -0.29977 ' = -0.32617
0.10120
-n.57061
A-16
nnv
0.52876 0.54506
0.09308 0.08339 0.07205
-0.02E327
03a 0.04445 0.02849
-.
*.5,?1
0.14255 0:16592 0.26662
-0.00611 -0.02385
-0.977535
0.57313 0.55683
-
0.12286
0*00726 0.10613
-
0:42337 0.48499 "81 bisiz.000 0.56726 -10080fln .S~ .555 0.59439
-0.3740
-0.00364
0.008611
97015ci
0.11340
"00.04919 -6S- -
0.602J90
-6.0578 -0.05536
-
0.130g9
0.21820
008654 0.75583 '.OOrib 0-44987 0.16013 0.06131
OAC 0.04243 0.04916 CE6ECT.564 . 0:86250 0.06902
I.-~It71
1.12079 .1.07400
0.01774 U~4.~3V.41 0.02941
-
1.202750
Aj,..
0.0,44
0.13552
0.636106
0.81508 0.94199 1:04055 1.10501
-001215
0.05170
-0.10611 -0.00165 0.09510 0.19280 br 0e42259 0.53952-
-0.015539
0.00239 0.00503 0n 9C1
js57A
-0.103832
-0.30e95 -0.070177
0.06862 -0.05667
V.U*t'40
0
-1.175265
-1.97036 -1.66687 -1363528
-0.088406
-0.1440
* 750426
7904A&
-1.81630 -2.1621C
-0.71838. 0.88934 -1.06849
0.339438
0.113043
-0.366160
-1 4yl -1.38464 -1.499e3 -0.05O253
e1.61627 -1.61133
-0.634598
PAGE IS ORIGINAL OF POOR QUALITY
ORIGINAL PAGE IS
OF QUA p()F
HHMM
233
GEOS-3 SUBSATELLITE POINT
OBSERVATION TIME WYMMDD
ITYREVOLUTION
SEC
LAT
E LONG
69
SMOOTHED RESIDUAL
SYNTHETIC RESIDUAL
OBSERVED ACCELERATION
CM/SEC
CM/SEC
CMISEC
MGAL
-0
16803
-0
05802
1037
15.
C.SS
750426 750426 7 et ebC 750426 750426
1037 1037 .... = 1038 1038
'-Zzb2 7504z6
104b 1058
35. 5. .5. S. 15. a5. 3G5
7.63 U.17 B .7 9,24 9:78 2031 10 85
267.10 266.80 266.51 266.21 265.91 265:61 2f5,31
-0.L3302 -0.15506 4 2 -- 0. -. -0.17160 -0.05520 -0.12911 -0.17350
750426
1038
55.
11.92
264.71
-0.21489
-0.14137
750426 750426
1039 1039
25. 35.
13.53 14.07
263.80 263.49
-5.14584 -0.0989g9
-0.13706 -0.13408
750426
1039
55.
15.14
262.88
-5.09441
-0.12719
750426 751426 75a e6 750426 75042&
15. 25. as. 45. 55.
750426
ID40 1040 io 1040 1040 lu.1 1041
15.
16.21 16.74 i; G a;, 17.81 18.34 aUA o~of 29.40
262.25 261.94 26i .C 261.31 26 O.99 eou.01 260.35
-0.16275 -0.20931 a E643 -0.04523 -0.03493 -.. Jo~uzul -0.09006
-0.120A5 -0.11762 a10go ... -0.113e5 -0.023647 -0.11302 A.L-UjUoln --0.11353
750426 750426
1041 1041
05. 45.
20.46 20.99
259.71 259.38
-0.10242 -0.17414
-0.21656 . 0.11672
-0.21328 -0.23400
750426 750426
la@z 1042
5. 15.
22.05 22.58
25a.T2 258.39
-0+11789 -G.14387
-0.12370 -0015627
-0. 2995 -0.21876
750426
2042
35.
23.63
257.71
-0.12677
-0.15117
750426 750426
1042 1043
56. 6.
24.69 25.21
257.03 2566
-0.04017 -0.15451
-0.13546 -0.13717
7504Z6 .75042:
1043 10 3
26. 36,
26.26 26.78
255.99 "255,64
-0.10280 -0.08891
-0.13909 -0.13883
750426 750 26 750.2,; 750426
1045 10 104 1044
56: 61 5L. 26.
ii,83 28:5 fBo87 29.39
254.9z 154mE6 254.2?, Z5".E3
-D.L'9735 =2:013756 _G L HE2 -0.11902
-0.13460 -01013 0. 1370113 0115
750426 750426
1044 1044
46. 56.
30.42 30.94
253.08 252.70
-0.16217 -0.10840
-0.09235 -0.07803
16. 26 1
31.97 32+12
-0.08738 0 124348
(16.
33.51
251.54 251.55 25'A00,11 250.76
-0004511 -0,02733 -0091,1 a6u 130 0.00ca52
6. 16.
-0.01016 0.17079
109
750426 1045 7504 1 :5 750-2 4 5 750426 1045
S.
12.46
264.41
-0.08813 -0.100g4 l -o-B G -0.12131 -0.12575 -0.1341, -0.1Z826
-0o.14094
-o.L3671
0.08242
-
-1.19842 -1.03927 -, -0.71342 -0.55431 -0.39923. -0. 4888
03 3
0.02359
-0.090762
0.1342a
-0.05980
"
0.635435
0.2e746 0.24747 ia 0.12491 0.04555-
0.516688
-0.11107
-0.19873 0.02038g
-0.17941 -0.16049"
0.027075
0.2nR2a 0.4245a
0.021269
1.20245 1.37377
1.41005e 1,3lOlE
0,08556 0 .1Z 02 1 -1 .11035 0.02l1z8 0.12997 .. ......... 0.15714 0.17069
1.1,510 41 4 9 879 1; 1.15621 . 1.2000E 1.20614
7504E6 5 755 4.6 750426 - O. A 750426 750426
B6,0-5 1069 3, 1 654 4 6 , 3 6 .5 6 70 0 6: Z* 7.56 1047 1. ....... 1047 26. 36.56 1047 36. 39.06
248:,71 2 8 28 27 247.42 246.53 246.$5
0.06405 0 06 9 4 00.0927b 0.04355 ...... 0.L2462 0.24407
71014
10
56.
40.06
245.16
0;2662
0.170
0.144466
1.1477Z
7E50 26 750426 750426 750426 750426
10.8 1048 1048 1048 1048
.6. 26:. 365 46. 56.
10 4 1.52 42.01 42.50' 42.98
244o2 243.74 243.25' 242.76 242.25
0,1868 0.2500g 0.22448 0.12016 0.3645e
0.220v30+010 0.22999 0.237.79 0.24332 0.24624
" 0,IE4036
0e53152 0.05516 0.4135 0.19128
750426 750416 750426 7504a6
1049
L6. 3 5. 46.
241.23 207 No92, 240:1-' .239.63
0.23979 160T5R. 0. 0.z5515 0.21854
0.24.
1049 1049
43.94 .2 4e90 45.37
go287 0.21703
8 77 .I - 0m9 57 -I.19384
750426 750426
1050 1050
6. 16.
46.32
23853
0.17925
0.I10546
-1.57526
46.,78
237.96
0.17154
0.16836
750+25
1050
556
47*110
236,60
0.05308
0.12,951
1050 7H0UM 7542 LI
56.
41.62 49.07
235, 61 234.99
6 0,i150 0.05650
0,208653 0.06454
0 #6:
4.7 60.41
257 233.09
0.00656 0.11299
0.02241-Ie15 0.002Z1
5
9 1:,29 51 _73 52:1 52.58
221:75 231+05 3,5 229.69
0.05809 -0:14240 -,109 -0.22400
-0.03433-0.05011 -,b -0.740a
750426 75 62
1052 10 a 1052 1052
46. 56.
53.43 53.84
228.24 227.49
-0,1S96e -0*12533
-0.08787 -0.009a4*
750q2& 750426 750 26 750426
16. 1053 1053 16. 1033*.5+6 46. 1D53
54.2. 54.66 55.85
225.73 225.96 243 223.55
-0.13522 -0.13622 -07 0.00580
-0.081 -0,0791 0 1 -0.06253
750426 750426
1054 1054
6. 16.
56,.2 57.00
22, 221.00
.001936 -0.04325 -0.03521 -0.00005
A-17
'
1
75026 750426
0.002867
1.60546 I= -2018 06 1.59500
0.04284 0.050llz
6. 16: 26+
-0.049676
0.50850
249.95 249.54
i651 1052
0.239837
-0.07259 0.00771
34.S3 35.04
752;6 750426
0.297313
R0.a3274
1046 1046
750426-15 75042 L01
-3= - - -- -
0,a8324 0.32038
750426 750426
7
SYNTHETIC ACCELERATION MGAL
-147001 -t
75U426
75042
267
RANGE RATE RESIDUAL
1.005Z50
0.894333
-6.
437169
-1.70363 , -0.0121517
-1*"401a -ISET113 -1.87477
-1.747534
-1.75499 -0,0g3449
-0.094e54
-1.53092 -1.35715 -1*1 077 -0 8647 -0.30283 -0.00328 0*.21503 0*738 0.72317 0.92836 0.87676 0.77:364
-0.738719
0.567570,
REVOLUTION 233
OBSERVATION TIME SEC
GEOS-3 SUBSATELLITE POINT E. LONG
RANGE RATE RESIDUAL
SMOOTHED RESIDUAL
SYNTHETIC RESIDUAL
OBSERVED ACCELERATION
SYNTHETIC
ACCELERATION
CM/SEC
CM/SEC
CMISEC
MGAL
MGAL
YYMMDD
' HHMM
750426 750426 750426 75D426
1054 1054 1054 1055
36. 46. 56. 6.
57.73 58.09 58.44 5a79
219.21 218.30 217.46 216.41
-0.00291 0.04882 0.01960 -000417
-0.02143 -0.01676 -0.01371 -0.01227
750426 750426 ...... 750426. 750,26
1055 1055 .... 10551056
26. 36. .. -1 56. 6.
59. 4 6 59.79 60.tl 60.42 60.73 61.02
214.4S 213.44 ete.42 211.37 210,31 209.22
208.12
-0.03570 -0.08017 0.*; 0 0.02057 -2025281 0.03604
• 0.04950
-0.01410 -0.017-32 0.02215 .- C0.02873 -0.03727 -004802
750426 75042
1056 1056
46. 56.
61.86 62.12
205.86 204.70
-0.02177 -0.04036
-0.09317 -0.11166
-1.60917
-1.77232
75026 1057 750426 1057 75026 l~.' 750426 1057
16. 26.
62.62 62.85
202.32 201.10
-0,14405 -0.22794
-0.15073 -0.17009
-1.89500
-1.3e48
-0.20906
-0.20556
75426 * 750426
1056 1056
16. 26.
3
46.
LAT
61.31
Z36.0?
v I044~
63.29
1~d
198.61
-0.06101
0v.lI~b
-0.Ol0tZ
0.47915 0.31794 0.10399 0.02413
0.b'4278
-O.2148e
-0.32734
0 ..... 0.012498
-0.56934 ".75638 -0:95329
-0.061103.
-1.17401
-1.70a.
-1.5055e
ORIGINAL PAGE IS OF POOR QUALIY
A-18
GEOS-3 Revolution No. 239
h 18
April 26, 1975, 21
A-19
GEOS-3/ATS-6 SST Range Rate Residuals
Computed Using the PGS-110 Gravity Model Coefficients to (12, 12)
Revolution 239
0.4
SST RESIDUALS
-0-0 . of C)I
-0.2!
S
• •
0.2
o
o
•
TIM
IN
MNTS
FRMARL2,17,1a8
OO.
a ~TIME
9
non
20
2
IN MINUTES FROM APRIL 26, 1975,
30 2 1 h 18 m
3
4a
GEOS-3/ATS-6 SST RLange Rate Residuals
Computed Using the PGS-110 Gravity Model Coefficients to (12, 12)
Revolution 239
U>
SYNTHETIC RESIDUALS
0.1
LU co
-0.0 •
H
OBSERVED RESIDUALS -0.1
-
E.J 2
I 0
I I 5
I I
I I I I t0
t5
II
I I I I I I I. I 20
I I I I I I I I I
25
TIME IN MINUTES FROM APRIL 26, 1975,
30 2 1 h 18 m
35
I
I 40
I I I I
GEOS-3/ATS-6 SST Range Rate Residuals
Computed Using the PGS-110 Gravity Model Coefficients to (12, 12)
Revolution 239
SYNTHETIC ACCELERATION
1.5
a .
C.,
-
-
S.
-
SMOOTHED RESIDUALS
TIME IN MINUTES FROM APRIL 26, 1975,
2 2 h 5 6m
GEOS-3/ATS-6 SST Range Rate Residuals Computed Using the PGS-110 Gravity Model Coefficients to (12, 12) Revolution 240
U-2
SYNTHETIC RESIDUALS
0.1
U
-0.0
-0.1 -
13"
--
10
OBSERVED RESIDUALS
15
20
25
M0
m h TIME IN MINUTES FROM APRIL 26, 1975, 22 56
40
5
GEOS-3/ATS-6,
SST Range Rate Residuals
Computed Using the POS-110 Gravity Model Coefficients to (12, 12)
Revolution 240
3.0
1.5
SYNTHETIC ACCELERATION
OBSERVED ACCELERATION -1.5
-3.0
I 0
5
10
15
20
25
30
TIME IN MINUTES FROM APRIL 26, 1875, 22?
56m
35
40
45
GEOS-3/ATS-6 SST Range Rate Residuals
Computed Using the PGS-110 Gravity Model Coefficients to (12, 12)
Revolution 240
3.C
Sx
2-
X
x
CD
z
-
x
x
C.)C
-J
Xxx *
I
1.5 SYNTHETIC ACCELE RATION
-1.5
OBSERVED ACCELERATION
-3. (3
a
5
10
15
213
25
0354 TIME INMINUTES FROM APRIL 27,1975, 2h 4 2m
45
GEOS-3/ATS-6 SST Range Rate Residuals
Computed Using the PGS-110 Gravity Model Coefficients to (12, 12)
Revolution 254
3.
2.
-4
o z
0
XX
x
1
x
Sxcx
X
o-
x
X
-1.
X
- .I
-3.
-
-2.
I
- II
-i.
o.
1.
..
3
OBSERVED ACCELERATION (M GALS)
A-45
Cs
REVOLUTION 254 OBSERVATION TIME YYMMDD
E LONG
AT
SEC
-HMM
61.49 61.21 60.92 60.62'
14. 24. 34. 44.
330.65 32953 328.44 327.36
RANGE RATE RESIDUAL
SMOOTHED RESIDUAL
SYNTHETIC RESIDUAL
OBSERVED ACCELERATION
SYNTHETIC ACCELERATION
CMiSEC
CM/SEC
CM/SEC
MGAL
MGAL
0.o7E77 29 .013660 - -0.05589 -008394 0.10841
.... 0.02975 0.02654 0.0225 0.01989
-0.005337
2242 2242 2242 2242
750427 750427
2243 2243
4. 14.
60.00 59.68
325.26 324.25
-0.08619 -0.00526
0.01310 0.00957
-0.28461 -0.27523
7504!27 750027 750427
2243 224-3 2243
34. 44 54;
59.01 5867 58.32
767427 rC--r 750437 750427
2244
322.26 321430 320.45 310.43
0.01509 004555 0.09307 -040467
0.00200 -0-00219 -0.006(0 -0.01154
-0.30415 -0.34688 -0.415 -0.45747
-..
-
-~
54
4.
.S7.)7
-
K
--
-l
A
AOll
-flflA6
I.
.1
2244 2244
24. 34.
57.24 56.86
317.62 316.75
0.05365 -0.07210
-0.02185 -0.026e3
750427 750427
2244 2245
54. 4.
56.10 55..71
315.04 314.22
-0.05037 -0.25190
-0.03490 -0.03736
750427
2Z45
14.
5*.3
3.4
750427
2245
24.
54.9
312.61
-0.01127
-0.03814
750427 750427
2245 2245
44. 54.
54.11 53.70
311.06 - 310.30
-0.10363 -0.29301
-0.032i4 -0.02836
750427 75D427
2246 2246
14. 24.
52.86 52.44
308.24 308.12
0.07218 0.02117
-0.017A7 -0.1170
z4O
.4.
b4.01
jol.
0- UB
'104ZI
750427 71-pr
750427 750427 750427
t
2246 -.
44.
1A
750427 750427-
4. 14. Z. 34. 44. 54.
CO
51.58
..
2247 2247 22t 2247 2247
-I
.C
50.71 ,50.27 '530'1 49.37 48.92
306.74 qfl
fl
305.40 304.74 303.47 302.85
46.4r
304.44
48.01
301.64
0.00p61 0
AIO
2248 99.91
IA -fiA
750427 750427
2248 2248
24. 34.
47.09 46.63
300.47 299.90
750427 750427
2248 2249
54. 4.
45.69 45.2Z
298.79' 298.24
750427
2249
24-
44.27
297.18
0.02753
flA
47t70 *A
296.14 295.64 29i ;4 294.65 294.16
-0.00698 -0.04326 0 o11S, 0.069a7 0.09496
?
760g24t
750427 150427
DAS1
2249, 2249 325 2250 2250
r50427 750427 r50D427 750427 -~~' --750427 150427
2250 2250 2251 2251 --2251 2251
'50427 ?50427 p50427 '-042z T504 7
225k 2952 2252 2252 2'S, 2252
'50427 "50427 '50427 '50427
22.35 2253 2253 2253
D50427 '50427
44. 54.
43.31 42.83 '2 .. 41.86 41.37
14. 24. 0 34 ..
44. 54. 4.. 14. -' 34. 44. 4. 1424. 34. A, 54.
.
0pp.
40.39 39.90 39.41 38.91 -9 .. 37.91 37.41 36.41
Q
D0405V
0.08367 0.04075. 0.02404
0.4)360 n.10087
0.20313 0.1056 0002 -0.02539 -0906009
017
87
0.04281 -0.05183
-0.08354 -A
-
0.017974
I'-
0.01296 0.01496 * 1 0.01917 0.021-5
09vpc9C
-0.014757
0.024.
-0.03918 0.01765 .a-002217 0.12817 0 a . -0.00179 0.09420
0.02563 0.02793 009u5 0.03147 0 0-1 0.03319 '0.03289 0.0298 0.02558 0.02042 0.01506 0 0017 0.00125
-0.04824
-0.00634
34.: 44. 54.
31.83 31:42 30.80
286.39 286E01 285.2 285.24
0.00174 -0.05036 -0.1001 -0.11702
-0.02147 -0:02849 -0.03453 -0.04072
2254 2254
14. 24.
29.77 29.25
284.49 284.12
0.03496 0.02706
-0.05003 -0.05336
150427 750.27 r50427 '50427 F5042-/ '50427 F50427
2254 2254 2255 2255 2255 2255 2255
44. 54. 4. 14. 24, 34. 44.
28.22_ 27.70 27.17 26.65 26.13 25.61 25.08
283.39 283.03 282.68 282.32 281.97 281.62 281.28
-0*07224 -.0.09901 -0.05621 -0.03572 -0.14475 -.0.07189 -0.07552
-0.05712 -0.05743 -0.05659 -0.054t4 -0.05126 -0.046134 -0.04139
50427 ,o 7 F50427 '50427
2256 BS" 2256 2256
4* 4. 24. 34.
24.03 23.51 22.98 22.45
_280.59 280.25 279.92 279.58
-0.04969 0.07203 0 -02254 -0.10212
-0.02818 -0.02088 -0.01342 -0.0606
'50427 r50427
2256 2257
54. 4.
21.40 20.87
278.92 270.59
150427 750427 750427 150427
2257 22572257 2257
24.
19.81 "90.98
277.94 977.69
0.09177 0.09344
44. 54.
18.75 18.22
277.30 276.98
-0.04505 0.05997
750427 F50427.
2258 2258
14. 24.
17.16 16.62
276.35 276.04
0.03064 0.07173
0.05181 -0.07065
0.02310 5*5712
- ------
-0.012163
0.14400 fl.1Anfl 0.17798 0.18535 0 IVosa n.18796 0.18742
-0.600430
-0.370503
0.19284 0.19330 0.18446 0.16075 0 HA?0.05613 -0.02616
amrIO
-0.248W6 "0*37002 -0.48781 -0.58990 .gas q -0.70829
0.215785
-0.71903 -0.005189
-0.021019 -
*
-0.033105
-0.019595
-4.66173 -0.60448 -0*3019 -0.46411 -0.32850 -0.26212
-0.081045
-0.334404
-0.10206 -000205 0.10950 0.22817 0.34797 0.46061 0.55697 0.67459 0.69105. 0.6823 0.65344
-0.001417
0.35302
0.314145
Q.20884
0.304952
0.25288 0.2267C 0.018125
(.22210 0.23927
SORIGINAL
A-46
0.022565
0.55056 0.48590
0.03066 0.03381' 0.03958 0.04249
.
0.189.
0.00740 0.01330 "
-0.074487
0.03281 0.07417
0.00955 A-l1All
l7R*70
-0.06393 -0.03947
0.042178
0.006t8 0.00730
287.18"
24.
0.402385
-:4--11-v
0.00692 0.00653
33.37
4.
0.50730 0.56261
-9.003479
fl.A...
0.0389t -0:2'0052 0.17970 0.05179 0 007,12 -0.06500
2253
0.019119
0.39833 0.50287
0.00824
a
...
289.65 2840 22 288.81 a50427 288.39 234 99 287.58.
'50427
0.1176
fS
35.40 34.89 9 23.88
25.91
-0.016181
62454 5
0pfl0
nO0'AV
293.21 292.75 292.29 291.83 " 290.04 290.E1
-,0.234912
00084
.414
-n
AA'
-0.33262 -0.19503
"0.00560 0.00773 0COi 0.00953 0100944
tJ..b0
lbU4.f
4
A
-0.517e8 -0.49815
-0.0E855
-0.00143
0.08939 0.06936 009 -0.06494 -0.04354
7RM407
4.
0.0
0.129950
-A11
0.005
0.062
750427
750427 150427
I
-. 30712 -0.32259 -0.32416 -0.31571
750427 750427 750427 75042?
224
I
0GEOS-3 SUBSATELLITE POINT
0.335772
PAGE IS OF POOR QUALM
REVOLUTION 254 OBSERVATION TIME
RANGE RATE RESIDUAL
SMOOTHED RESIDUAL CM/SEC
CM/SEC
SYNTHETIC RESIDUAL CM/SEC
OBSERVED ACCELERATION MGAL
YYPMDD
I4HMM
SEC
LAT
E LONG
750427 750427
2258
44.
15.56
275.42
0.05356
0.04897
0.29896
15.03 14.49 13.96 - Q2 12.89
275.11 274.80 274.49 27q a 273.88
-0.02211 V0.3426 0.06622 0 '.2 -0.03858
0.05261 0.05648 0.06052 -0.06870
'0.33382 0.36422 0.38384 - 1I*! 0.3770f
12.35
273.58
0.07345
0.07244
54. 4. 14. 'ar 35.
750427 750427 ;iDqnq 750427
2256 2250 2259 ing9 2259
750427
2259
45.
750427 750427 750427 750427
23 23 23 23
0 0 0 0
5. 15. 25. 35.
11.28 10.75 10.21 9.67
272.98 272.68 272.38 272.08
0.11725 0.02851 0.06554 0.17164
0.07809 0.C7954 0.07974 0.07851
750 427 750427
23 0 23 1
56. 5.
8.60 8.06
271.48 271.19
0.01248 0.09291
0o07129 0.06514
1 1
25. 35. 45. 55.
6.99 6.45 5.91 5.38
270.60 270.30 270.01 269.71
0.15421 0.07420 -0.04336 -0.01049
4.C4809 0.03757 0.02602 0.01365
23 2 23 2
15. 25.
4.3Q 3.76
269.13 268.84
-0.01876
S.Z
685
750427 750427 750427 750427
7501427 750427 TZ50.27 750427 750427 750427 750427 750427 750427
23 '23 23 23
1
1
LZ aZZ. 23 23 23 23
~7s497 750427
7504Z27 752 37 750427 750427 l~..CJ
-001.0
1 -0.02609
-0.05057
0.06C893
0.008232
-1.17834 -1.17529
35. 46.
-0.00 -0.54
266.80 266.51
-0.16281 -0.09963
-0.11451 -0.12416 a.ZT 0.2ea7 -0.13852 -0.14260 -0.14444 -0.143R24 -. l.7.C
-0.952e1 -0.83226
25.
Z3 4 13
A
23 4
23 5 24 23 5 23 5
35.
41,
265.93 265.63 465,34 2655C0
-0.12098 -0.09531 -0.17999 -0.17223
-1.77
584.78
..
264.47
-0.13642
-4.85 39 -5.92
264.17 a3 E8 263.50
-0.12159 12730a -0.14742
'-0.13303 -0.123E5 0 11212 -0.00840
35.
-6.46
263.29
-0.11493
-0.08297
43.
t1.V.
e04vUU
-V.11...
6
a3 6
as.
9.6
750%2!7
6
l.1043
-4.31
5. 25.
-7.54 -8.07 -8.61 -9.15
5 6
0-259:
-1.62 -2.16 2Z.70 -3.23
55. S. 15. 25.
23 13 23 23
P
15 is
55.
-0.08720 -0.03891
262.11
-0.01637
261.82
0.50512
-0.00138
261.52
0.OSie
*loi4 §A1207
261.22 260.92 260.32
0.01704 0.00749 -0.0400 0800 006 0.11426
704,7
11
7
750427
23
7
750427
23 7
m ;So 750427 750427
2 23 8 23 8
. 5. 15.
'3L'4LI
ZS C
43
23 8 23 8 23 8 23 9 13 9 23 9 23 9
35. 45. 55. 5. 11 25. 35.
-16.10 -16.63 -17.17 -17.70 1, 27 -18.76 -19.29
257.67 257.56 257.24 256.93 1 2.6 256.29 255.97
0.09533 0.16114 0.1107e 0.16527 0 en? 0.12638 0.04247
g.
-iv.pe
433.03
V..bJet
u.uitV0U
23
y
1,-
..
35.
-12.90
-13.43
259.41
13 2' -14.50 -15.03
259.11 258.60 258.49
13
,33
259.71
dSkld
255.33
0.02461 0.03521 0.05223 .0O R 0.06514
0.04860
0.04291 0.05766 0.05725 L*00004
-0.066143
0.94776 iAT 1.36627
1.246552
0.019840
1.5083 1.3fl 1.60692 _I-q927 1.44043 1.28229
1.216737
0f59
0.43415
Q90752 0.07993 0.08380
')*0122 0.37539 0.33711
U00
.
0.938E6 0.79249 0.58368 .28 0.4695S
0.07059
0.027000
0.21269 0.12316 0.02027 -0.002e 0 156 -0.28889 -0.36836
23 9 2310 2310 2310 2310 2310
55. S. 15. 26. 36. 46.
-20.35 -20.88 -21.41 -21.94 -22.46 -22.99
255.00 254.67 254.34 254.01 253.68
0.01467 0.1412E 0.11713 0,05120 0.08716 -0.03637
0.07469 0.06932 0.06372 .0.05807 0.052 0.04714
750427 750427
2311 2311
6. 16.
-24.04 -24.57
253.00 252.66
0.05304 -0.00672
0.03710 0.03240
-0.39040 -0.36379
750427 750427 751 27 750427
2311 2311 213 2312
36. 46. 56. 6.
-25.62 -26.14 -26.66 -27.18
251.97 261.62 251.27 250.92
-0.00351 -0.04122 0.16975 0.14474
0.02298 0.01789 0.01234 0.00628
-0.37141 -0.41235 -0.41t*l -0.55082
750427 750427
2312 2312
26. 36.
-28.22 -28.74
250.20 249.84
-0.07880 -0.11034
-0.00747 -0.01516
750427 753427
2312 2313
566 6.
-29.78 -20.30
249.10 248.73
-0.05;5 0.12193
- 00315M4 -0.039i4
5042,7 750427
2313 2313
16. 26.
-30.81 -31.33
248.25 247.97
0.01724 .. 11531
-0.04756 -0.05475
AA
AIC
-32.35 -32.87
247.20 246.El
-0.07230 -0.12160
23.33
..
~S
750427 750427
2313 2313
723tR7
ZJiA
0.
2t0. 1
3.lZieal
750427 750s427 750427 750427
2314 2314 2314 2314
16. 26. 36. 46.
-33.89 -34.40 -34.90 -35.41
246.01 245.61 245.20 244.79
-0.21159 -0.01322 -0.00575 0.05803
46. 56.
-.
2315
6.
-36.42
243.95
-0.15713
2315
16.
-36.92
243.52
-0.06900
-0.04963
750427 750427
231S 2315 2313
36. 46. 30.
-37.92 -35.42 -jd.,e -39.41
242.65 242.21
-0.13075 -0.06705 0U.J064 0.06240
-0.03229 -0.02298 -0.i0t -0.00497
2316
6.
241.31
-0.05704
A-47
-0.47601 -0.60661 -0.521S7 -0.52033 -0.50156 -0.46860
-0.68173 -0.72033
-0.103950
-0.325607
-0.74567 -0.73535 -0.023041
-0.70474 -0.64729 -.
- 0.258160
00
-0.44767 -0.31364
0.07507
750427
441.t
-0.003700
-0.06642 -0.07045
750427
(5U42e 750427
0.016436
.. I"
-0.07419 -0.07380 -0.071l4 -0.06832
-0.237338
-0.440
750427 750427 750427 750427 750427 750427
70047-121
l0A~
C1~U30'
UU,02
0.08948 0.09106 0.09167 0.09125 0 O0.8727 0.08364
0V.01'L64
0.69847
-0.01r44
23 6 23 6 23 7
45.
-0.Luidlb
-0.04943 -0.0358
750427 750427 750427
-10.22 -10.76 -11.83
-1.245814
9.313e -0.50194 -0.29657 -U.90b,, 0.17994
0.00.
262.71 262.41
45. 55. 15.
.
-0.067950;zes0
23 3 23 3
23 4
-0.375221
-0.00622 -1.01674 -1.966 -1.14669
-1.16012 -1.15091 -1.13432 -1.10059
5. 16.
0.242302
-0.45997 -0.61964
-0.0!311 -0.066413 -. 07940 -0.09186
23 4 23 4
1' 7?95
0.21880 Al.t1960 -0.00204 -0.14357
"0.10150 0.06193 0.00475 -0.09254
750427 750427 750427 750427
,soge,
0.058320
268.25 267.96 267.67 267.38
iL0fl6Z
SYNTHETIC ACCELERATION MGAL
0.34676
2.69 2.15 1.&i 1.07
C3
750427 750427 750D427 750427 7SV4'7 750427 [ 750427
I.
45. 55. 5. 15.
35 5 5.
750427 750S427 750427 750427
~I
2 2 3 3
ne--...Z
I
GEOS-3 SUBSATELLITE POINT
x69 -0.030228
-0.01766 0.12483
0.25607
0.37193 0.60878
0.71414
0.86832 0.89558 V*0,f137 0.81377
0.031847
REVOLUTION 254
OBSERVATION TIME
GEOS-3 SSATELLITE POINT
56. 6.
-41.87 -42.35
.26.
-43.32
W
230.95 238.45
23"b'
~ 2317
16--&I
MGAL
0.005419
0.56905 0.41644
0.13354 0.11879 I77s 0.0'6058 -0.03054
2316 2317, 2317
MGAL
222 .4
'C6
7
CM/SEC
240.38 2390.91
26. 36.
2Z15
Z7. 7Wt
CM/SEC
A0
2316 2316
750427 =r 4 7 750427 750427 75011 750427 750427
SYNTHETIC ACCELERATION
-40.40 -40.09
1664P?
-
OBSERVED ACCELERATION
CM/SEC
SEC
750427 750427
SYNTHETIC RESIDUAL
E.LONG
HHMM
750427
SMOOTHED RESIDUAL
LAT "
VYMMfD
-;5G-4pT
RANGE RATE RESIDUAL
4.LC*'S
0.04157 0.-n -0.00322 -C.07939 0 .0220 -0.05131 0.0938a.
plA.4
750427 q9ICU7 750427 750427
2318 231" 2319 231 P21 2319 2319
46. qS. 6. 16. 2C 36. 46,
-47.10 43 -48.02 -45.47 0 3 -49.38 -49.82
233.12 MI 231.95 231.35 230.12 229.49
0.05586 0-04449 -0.04339 0.06392 017'7 0.02234 -0.03022
750427 750427 750427 750427
2320 2320 2320 2320
-50.71 -1.15 .26. -51.58 36. -52.01
228.20 27.54 226.8E6 226.18
-0.06216 0.04093 -0.03503 -0.13280
-0.01125 -. 0168 -0.02124 -0.02523
750427 760427
2320 2321
56. 6.
-52.86 -53.28
224.76 224.04
-0.01261 -0'.14156
-0.03017 -0.03082
750427 750427 750427 750427
2321 2321 23 2321
26. 36. 46. -56.
-54.11 -54.52 -54.92 -65.32
222.55 221.78 221.00. 220.20
-0.04912 0.03720 -0.01755 -0.06S6
-0.02824 -0.12499
2322 2322
'16. 26.
-S6.10 -56.48
211.56 217.72
0.02257 -0.0095
-0.00167 0.00566
750427 750427 750427 750427
2322 2322 2324 2323
46. 56. ;. 16.
-57.23 -57.60 -57.96 -58.32
216.90 215.09 214.19 213.26
-0.08278 0.02598 0.07238 0.15184
750427 750427
2323 2323
36. 46.
-59.01 -59.34
211.35 210.37
0'.08e54 0.01514
0.0198 0.02617 0.0312?5 0.034S5 0 0.037E.2 0.0362
2324 7.3 2324. 2324 2324 2324 2325
6, " ,7 . 26. 36. 46. 56. 6.
-59.99 6.,0 ,.fll -60.61 -60.91 -61.20 -61 48 -61.76
208.36 07T0 206.27 205.19 204410 202s98 201.e5
-0.03766 2 0.00772 0.041-14 0.02892 0.02612 -0.06723
l3C3
lo.-
.pc~U4
6. 36. 46.
cuu.,u
-UDJ~vu
2325 2325 2325
750427 7rfl4'7 750427
7504Z7 '750427
1755027 750427 750427 750427 750427 '750427 ".i~
750427 7 1027 750427
-
6.
'6.
-62-28 -62.52 -62.76
199.53" 198.34 197.13
-
-
0.010437
-0.03416
0.009791
0.001912
-0,01to58 0.00396 O.Ozozo 0.)16E2 -0.00973
-0.605924
.0en__________
23Y7 zpi 2318 2318
236.42 235-.89Z 234.81 234.25
0.14215 0.04861
U. 0.0266
46. -44.28 56; -44.475 C. .... z .16.. -45.70 26. -46.16
=
0.391408
-
0.02276 0,02466
Q.U.'
237.45
-A~n
0.00988 0.01547
0.02608 0.02599" 0.02se . 0.02557 0.02505 0.02278 fl.Oflf 0.01793 0.01434 0 01o:" 0.00515 -0.00017
-
?.MC
-C.053487
-0.I2782 .0.,posfl -0.28395 -0.35906 0wa a3~ -0.47845 -0.51396 -0.52011 -. 45607 -0.42650 -0.34334
0222Zn6a
0.349350
-. 12701 -0.00444 -0.004349
-0.0203 -0.01502 0.057078
0.24014 ".3524 10!45619 " 0.54772 0.67692 0.7302
1.083892
0.843326
0.65396 0.57111 0.4560 0.29351 -I0------
-19 --.. 05868 -0.22562
0.02877
-0.49340
0.01637 0.00911 0.00159 -0.00587 -0.01304
-0.65547 -0.69558 -0.70761 -0.69162 -0.64947
Ubu~r
5?,91559 -0.11081 -000098
AOF
-0.02575 -Z073099 -0.03541
-0.59709 -. 42171 -0.33597
PAGE IS ORIGI1AL pOO QUALITY'
-
-
GEOS-3 Revolution No. 268 April 28, 1975, 22h 27m
A-49
GEOS-3/ATS-6 SST Range Rate Residuals
Computed Using the PGS-110 Gravity Model Coefficients to (12, 12)
Revolution 268
03.4
SST RESIDUALS
0-2
.
0
-
0
-
o
-2
SMOOTHED RESIDUALS
-'1 4I I I I I I I I I1I I I I I I I I I I I I I I I I I I I I I I I I | I I I I I I I I I I
a
5
10
15
20
25
TIME IN MINUTES FROM APRIL 28, 1975, 22 h
350 27
m
40
45
GEOS.3/ATS.6 SST Range Rate Residuals
Computed Using the PGS-110 Gravity Model Coefficients to (12, 12)
Revolution 268
0-2
SYNTHETIC RESIDUALS
0.1
U -
-0.0
OBSERVED RESIDUALS -01.1-
-0.2 0
5
10
15
20
25
TIME IN MINUTES FROM APRIL 28, 1975,
]35 2 2 h 27m
40
45
GEOS-3/ATS-6 SST Range Rate Residuals
Computed Using the PGS-110 Gravity Model Coefficients to (12, 12)
Revolution 268
3.0
-
SYNTHETIC ACCELERATION
~II LID
Cn
-0.0
Si-.0
-1.5 OBSERVED ACCELERATION
0
5
to
15
2-0
25
TIME IN MINUTES FROM APRIL 28, 1975,
30 2 2h
2m
35
401
45
GEOS-3/ATS-6 SST Range Rate Residuals Computed Using the PGS-110 Gravity Model Coefficients to (12, 12) Revolution 268
3.
2.
['C
a
C o
-
SYNTHETIC ACCELERATION
j
-
0.
-
7-1.5
",
-
OBSERVED ACCELERATION
- 3.0
I I I I I 0
5
I I 10
I I I I I I I I I I I I I I I I I I 30 20 25 15 TIME IN MINUTES FROM MAY 13, 1975, 0 h 3 m
I I I 35
I I I I 40
I I I I 45
GEOS-3/ATS-6 SST Range Rate Residuals Computed Using the PGS-110 Gravity Model Coefficients to (12, 12) Revolution 467
3.
2.
X $1..
S=96 -0* 5=s5 -fin')9 t ,0zb9s -O.1229C "'.tl6b7 k'.19975 .- 6C47 -. 6C7C - .. -. 4Z52 -0.C8 94 -r.34 38 .I6seb .CtS n2.232,l 7 n*IS145, t . aIV7 -:oZE5 1. 4987 -:*C929I
57
=,
7 2
SYNTHETIC ACCELERATION MEAL 079
C.11610 f.1a(,30 -1,69718
C,106Et3
0*186854
c0ZSr39 0.35511 -
.
734
t,o,)25e5S
11-59 06 f-71842 ".E.743 Q.86Sa? 1.9277b .93493 C.97"4 1.° )228 1. 26C7 I,593 p3e3a
,).9t2506
1.73897d
..q3eS8 ,357q
q.C34277
*24-97 '.67347 ¢3 7 I C.177d9 --o344? -r.C5e10 -'.12111
C.C2F11l
-C.442023
-0.25e a
246 246 247 2:47 247
75('531 75 53i 7EQ5a1 75C53, 760*,31 50531 75S31 750531 750531 750531 75rt531 7505Z1 75D531 750531 75OZ21 750531 75C-Ea1 7505 31 75-D531 75n5l1 75CEI1 75CI331
ACCELERATION MGAL
,13--297 r.ln737
2A6
0.
OBSERVED
RESIDUAL CM/SEC -.
',037,2 C.C.85a
7S5251 75C531 75CZ31 750531
3
SYNTHETIC
RESIDUAL ,CM/SEC
-I
5
, -C9 r.013"9 r14E1Z62 I*L2717 -Ipg5a
-M.23257
-C.$1436 *
-,51
-*33 - ,.z35ee -1.1224 -1.15256 -1,2 134 -1°15e4l I 5
-0.1101413
-,
-. ,69599 -. 55731 - .49140 -r.51427 - .61568
-0.312757
-t.039155
-O.Z79672
-C,67C9 - 0E39
-
o 3 74-
-,I9a68 cl - ,rS743 ',*-1259 ,17 -. 21465 .10 *72 C,4o459
0.114258
0,24416E
(.54302
-0,C14264
0.,q13473
7.
41263
C. 3 62 (,-.?3527 C. 3716 .P3549 s.'42Z9 C2529 e4 3 C.4523T C.55497 .:5624 CS8 - ,(2 O.Z5338 .°46 -. L-257 C. 34.1 C*S'5-T.97663 ¢ .'513
A-151
15) -l~r-454 -1.02 41 -0.94421 -C.81441
-0.365867
4. E5406 .755-95 4. 81014 e.8 075 C.94731 0.963c1 C.95262 1.60.42. ' o46277 0,32sie ,2=22 -7.15276 Q.35S512235 C.12426 D.24432 n.17345 , $ 212,6 Q,.5~a .Z65559 1.36988 10 7672 .31593 .17033 4 -P-.91 -Z, 73 6 -'.Sbl g -. ,77C74 -G.91202 -n.97727
0.3.6T43
*.67C321
C.146315
-,57 -0.37753
-0.113533
PRE
OMNG PAGE BEANI
NOT VMD
GEOS-3 Revolution No. 724 m 3h 49 May 31, 1975,
A-153
GEOS-3/ATS-6 SST Range Rate Residuals
Computed Using the PGS-I 10 Gravity Model Coefficients to (12, 12)
Revolution 724
0.14
SST RESIDUALS S. S"
*S
a
a
-
SMOOTHED RESIDUALS
1
S
tO5
20
25
30
TIME IN MINUTES FROM MAY 31,1975, 0 3 h 4 9 m
35
40
45
GEOS-3/ATS-6 SST Range Rate Residuals Computed Using the PGS-110 Gravity Model Coefficients to (12, 12) Revolution 724
0.2
SYNTHETIC RESIDUALS
0. 1
r
0.0•
OBSERVED RESIDUALS
-0. I
1
-0.2 0
5
0
15
20
25
TIME IN MINUTES FROM MAY 31,1975,
30 0 3 h 4 9m
35
40
45
GEOS-3/ATS-6 SST Range Rate Residuals
Computed Using the PGS-110 Gravity,Model Coefficients to (12, 12)
Revolution 724
3.0
1.5
SYNTHETIC ACCELERATION
c-f
c -0.0
"
(0
OBSERVED ACCELERATION
-3.0 0
5
10
15
2)
25
30
TIME IN MINUTES FROM MAY 31,1975, 0 3 h 49 r
35
40
45
GEOS-3/ATS-6 SST Range Rate Residuals Computed Using the PGS-1io Gravity Model Coefficients to (12, 12) Revolution 724
3.
2.
-J
e
x
x
z
X~
o3 LU
*XX cx
4CqS5 00221
0.294z 0.1117
00959
0Sae OII-.SAL PAGE1 .~:2115 ~4PO0l O QULIT
REVOLUTION 724
GEOS-3 SUBSATE WLTE POINT
OBSERVATION TIME
RANGE RATE RESIDUAL CMSEC 3.12419 ° 4d~c
SMOOTHED RSIDUAL CM/SEC CoCT 4e 07jla5
YYMMDD 7505 1l 750531
HHMM SEC 25. 4 7 35. 4 7
ILAT 47.1. .
E. LONG 27k.ot 27-l. S
750531 7b05 1 -7-.D-S1
47
.5. b. IS-
.. 72 4 .Z5 44.76
7eot7 P7k.--3 e779=
-0.0217¢ 0.1476a O.C755
5. d aI 4b.
3 . o .2.3
E75.,o 74..i
-O. 751 ).o01az
52.
q7.tc
L74.72
-O.iI4E
J-
270-.2
-O.O10l
C.,1,.3
-0322 -. 14200
. W- E
750531 750531
4
7505:31
41 4 I-
,
7551
E;.
.5
750531 750531
4I
1E.
43,40
27.77
41 9
5.
41.35
Z72.24
750531
41 S
5.
41,55
o S. 15. t .
30.-4 2a..1 3 . 5
Z71.j9 a7C.-
. 45. 66..
37.95 2-7.4 S ..S
zos.-C2 26t; Poa° 0
J5. 5,
36.. Z .14
e6 77 67.j-5
37-7 Z4.55 55,04" ;13.91 2-1.4 20.69 -23.38 -1.*8 19I.35 iGo79
5E.E7 2&C.47 25.9 257..& 2 7,C6 25c..6 Z5EA 24.CS a2.70 2c53 z.2
7505'I1 750S51 7505a i 750531 750531 7605U31
41 -10 -. 1rd 41035 .1c 410
7150531 7553
411 11
5. 4115 35. 411 5-41 ----415 75 S5. 12 750551 5. I'53 '-l21 . 41r 7505-41 2 . 750521 4 5. 412 7 50521_ 41 3e. 7505i1
7505wl -75057553
413 15, 750551 Z. 41'3 750531 -17 3=. -'75053-Z 4b. 417 750531 = . _17 -7"13 414 75053l 15. 414 7650531 51 4 T50b a: J5. 414 750531 414 45. 7605--l -41,-.. 75 05H3. 115 -50531. 41-' I. 7505-1 20. 41. 750531 3 . 415 750531 5. 410 7505m1 S. 416 750531 15. "553 WI6 4162E 5. 760EZI
41 417
35. 'E. ES. -b. 15o 3. 45. 55.
5231
41d -- 41)
55. 5.
750531
416
7S05.31750531 7-S551 -750531 "-5U1 750531 -75 31 760531
7
-
416 4216 41. 4 1417 -
3
.
750521
2t.-b
-0.0 4
C.¢7a7o G.C7082 C.Ce 5 2
q
-0°167I5 0.317 9.4 -0.20-9 1 -e I -0.1027 -0,C 371.5 -0.1!552 -0.0445o -C -0.---gg.7
-0oc&37 -Q.cllj3 -C.1!328 -01394
4Z..t 17..8 2 5.I I9.%79 16.1577 el.47 16.00 2ti.11 I7.¢7 25.27 272145 2,195 2,690 2cC.05 - I ' ,17 251.70 12b.. 28G.25 6124 Z51.Cl 14.60 23C,75 40.7? 250.-5 1j.ss z5.7e257¢.1; 257.. Z.19 257.cc 21.44 4.,7 27.9t
0O.IzI44 0 -0.2t .1ew 06.12723 J .142P -O.G192 0.lq915 -0°.O715 0.07151 -1.2"483 0. 127ez 0.0523 O].Oe4 7 -O.05354 0C.1001 0.i32-O.C]L
-C.145C5 -0.1-91 CC54 1-317 -C.12572
856.!4 .a.02
-0.3157 5 O.CC
-C.
12.40 41a4E.
.
1
3 125 -i.15ic? -1.475 -^C4ES
-. 2C, -C055I
-C.1242061
5524 -CC200.9S797 -0.33951 -1.1414E - .01174 -0.41a12 0.146E ,31; 0.12 .012E4 0. 165 01.3172 0..517.33 0.41a2d -0.0c2e4 1593 n.'34Z-°25 1..?01 ).3075
0.582 0727
-071931 .07e
-0.277496
0.73Eqi7
0156
0.2t775 0113194
.')5.
C.OE5 0,0A717 0 820
-0.071i4
-0.t27
-c°2 Ccso17-0
CQ.1C113 0.C1
.16578 -0.CG172 .06458
2bl,26
-0.751919
0*0A181 -0.9 36 -3.9e02P
-C.075C5 -,o 120 -c.05es?
1.925.1Z=0e 7 H49 - 6.66 24a l-1.56
12.q3
-0.7115
° .9R6
Gc_19e7 0°5 .o O ,07g56 C,;Z45i O.C=b67
-C.0252 -0.019i2
196
1.2151S 1.6313 1.3 o231.
0,119e75 9.0137 0.025E 0.01357 0. 3055
Z51.13 254..7
-0.O342
-0.21051 -1.5a8&6 0.76E22 .145;0 0.S72 1,415
2Z5.70 2E=.-.a 2 -. Cc ?S., 2.75 2--4. 3
-J.17 - 4.00
172
'3.9213 -C13A082
13
C.-C.10oiE2 Glt 230 -O,3Z45 C.C057S t22 C -C.C 200 -. C711
-1.114E2 -. 12 -a.30,3-6
-0.6475?
-0131 -C.12155 -,)CE16 .c10t -OoL G97 -O.Iccl2
SYNTHETIC ACCELERATION MGAL -0.24 9 6
-1.0553
-C.IC057 -0.12592
OBSERVED ACCELERATION MGAL 0.09235 4 44 a
-I.E37G6
do.55
-0.12s90 -C,0c27 -C.C1423 -0.C165t1 0o-75
19.52 i.79 16.,0 17 17.10
372
-0.C11 e--41
-0°03Z4 -0.12251 -0.ICc23 -3.103L0 -0.17bZ6 -OiZP-1-716 -.
3.39 19.1a
SYNTHETIC RESIDUAL CM/SEC C.C ¢I 5
-°C -C.01d0 -Ce0
50
.,19ZIA-15 5
-07S4
-. 03A4 ¢I579
.CC5
-. Oa27-1 -21084 -0.Z2172 217 -0,? -0.6725 -,1.7;542Z551 -015S - .oza9? -0.16331
-1.2e 3 -n.0,57
-.
4
q
REVOLUTION 724 GEOS-3 SUBSATELLITE POINT
OBSERVATION Time YYMMDD 750.
HHMM
1
7bORZ1 750531
7505Z1 750531 7 331
750"Ji 750 zl
24b -et
750.31 7535.-l 75.0ZJ1 750531
50O 32
4 4. 7 147 1 7 4Z7
7 5 750
-27 447
1 -31
ACCELERATION MGAL
-I.CLt7
-Cocq277 5
-C.02Z741
C
240.7S 240.tC
"OC(.4 -P. -ODd1 -ColI140
-1.14404 -o.Ct g -C.CE876
-0'5 -1 oG9
221! .49.01
-3,3 483 -G. " i73
-SCCC73 -3G€00.30721
1.22iss
-1
S2E.ll 2 7-. EZ,7
-0o30 0.)))7d
-C*Oceg sq -Sn57
0.35.1a 36219;o817
4*01 -?. 7 -11.01
2L.
t. 3 o ¢ bc. 3.. .
750b23 : 7505 1 750 -l 7505-1
753t521 7b501l
SbYN'THETIC
ACCELERATION MGAL
zc. ... to.
2cL-
750%31
OBSERVED
RESIDUAL CM/SEC
-.
0,
42t 4 7
SYNTHETIC
RESIDUAL CM/SEC
¢
o9
-ld01b
2J.-7.-
-.. 1 -14..3 -14..7
--=1,oz
2oo " ,t;3 J, : EZ7l z3zoq
0G 1 0 ;7S4 0. 4 19 OOq: -0 )o
¢I
-c-C[ 5 .02 9 -0.93175 -C.00C7
-34 ---J.Oq
231.-5 1.1
-3o3 n - 01.i;
-c0430 -JnOC b70
-,
-¢,0C5
-
c,
-7,0 :1 :7 -Z71 -S . -. 17 -Ioa
°
,
75063,Jl
2.9
750 jj 75Oo31
4j3, -J3
I..
-,°7
7505--l
=3
D
-3oC
7 5
al
:
l
•RESIDUAL ELONG CMI EC
L.AT
4..
2Qb~
3
.-- S
-E d-, :°4:2. a3d;.lo .3:Z 7e
l7
,
1
;7cS
-,c2 0 3:014Z -o50.2
E
0.-a. P
.
RANGERATE
SMOOTHED
SEC
24c.-1 Z50.43° 2 3
3jcb.0 .
.c
-3043
C029 3o23q2
72
O.Z~S7
0.3145
-0°1317e
-0..e5g
-0.5=134
-06i17 -04536
.411 oeg&
OC53
.555
-3°0245
-3O736
C.S1C7
3.02334 2,E1
'1.ICdg6
0. 5,47 -004715e
0.405494
-0.6104,
-3.44A65
0-.117
oC
c 0127 ¢M 17 ¢° 2712 0.1371 O,.occa -C7C37
-1.63159
-O.0C7Eg -C.)C751
-O.CO
.OC?9A0160e
0. 2591 Os-.265e2 -0.11254
-0.3717
-n 0o 4S6
-0.2E340717
d
--o.22e35
5
.0l3401
-0.1456S
,la)--35316 -0.Z537
-. 293
GEOS-3 Revolution No. 730 m
h 55
May 31, 1975, 14
A-161
, GEOS-3/ATS-6 SST Range Rate Residuals
Computed Using the PGS-110 Gravity Model Coefficients to (.12, 12)
Revolution 730
SST RESIDUALS
0.2"
a
.
aIM
SMOOTHED RESIDUALS
MI
20
23 1
TIME IN MINUTES FROM MAY 31, 1975,
4 14 h 5 5m
33
40
43
GEOS-3/ATS,6 SST Range Rate Residuals
Computed Usihg the PGS-110 Gravity Model Coefficients to (12, 12)
Revolution 730
SYNTHETIC RESIDUALS
1.0
C)
-1.1
OBSERVED RESIDUALS
-0.2
1
0
5
t1
15
20
25
30
TIME IN MINUTES FROM MAY 31, 1975 14h 5 5 m
35
40
45
GEOS-3/ATS-6 SST Range Rate Residuals
Computed Using the PGS-110 Gravity Model Coefficients to (12, 12)
Revolution 730
3.0
SYNTHETIC ACCELERATION
,.
< -0.0-• -1
-
3.0I 0
OBSERVED ACCELERATION
I I I 5
I I 10
I I I I I 15
I I I I I I 20
I
I I I
I I I I
I I
35
30
25
TIME IN MINUTES FROM MAY 31, 1975, 14
h
55
m
I
I
I I IIII 40
45
GEOS-3/ATS.6 SST Range Rate Residuals
Computed Using the PGS-110 Gravity Model Coefficients to (12, 12) Revolution 730
3.
x xx
x
(9
z
x
0
X 4 xX X x
c F9X.
i>
x 3
-1.
X
x X
C
o-
x
x
x x
) x
-x
-2.,-
X
-3. - . -3.
-2.
I
I
-1.
0.
1.
OBSERVED ACCELERATION (M GALS)
, t
t;
7
A-165
2.
REVOLUTION 730 GEOs-3 SUBSATELLITE POINT
OBSERVATION TIME YYMMDD
SEC
HHmm
RANGS RATE
SMOOTHED
SYNTHETIC
OBSERVED
SYNTHETIC
RESIDUAL CU/SEC
RESIDUAL CMISEC
RESIDUAL CM/SEC
ACCELERATION MGAL
ACCELERATION MEAL
E. LONG
LAT
145L
44.
- t J.7
-1co C
-I)
7:9 z
7505j!
4&6
14.
-63.67
17o
-).!
j57
7505al1 750.-1
4I5t 14b,
---. 14.
.o? - =4.1 t
E5.19 1-
7505 l1 7505,11
I. 7 1 57
, I..
-e
11 .G¢ ;.?c
1..7 1457 14S75
34. , 4.
. ,a1 S -4.16°7
-15 53 1 5 7505Ll1!458 750E21 14 6
. Z4. 4o
-L3.07 -c .Jj -6C.14
I., 5i*si 5t. 7
7505-1 55I 7505-L
4. 14.
-Cbo12 -C5,10 cob
35Z.17 35Z.74 31J
-t.
3istll-.00
0
.C3201 3-.
-oCe 54
C.oCe0E1 00
-C.
7bo
-1
7505--1 75--05-1 "750d31
-750o3
75)5;1 -71505 1 7505i1
7531.3 -750-5s: 750
31
-750531
1459 1-53 l 5 b
I' 15
°
.5s
2
4*
-53°0
3E*t
0 0
14. *. ,
-Q..5t --
34". C*17 t°17
3'44 .z0 .
15 C
Z..
15
C
4o
,Sl -L-,
15 15
0
o
1t 15
D
5
.
14.
.- =3.79
750531
15 1
.3 .
-C-34
4.
750521
15- 1
--
53 I 7-- S31 750E31 750b3l 7505-1
1 I 1Z 15 - " 4. It Z 14. It 2 4 It
--55oE2 °0 -.
75&&;it-2, 75031~ lb 7.505.31 it -750521 15 75052 5 _755 1 75053l1 t56
7505=1
15
"750=-l
I5
2 2 73 7
4. 4. o . 14. 4. 4.
1'-g
14.
lb
7505 i 750531
.
t51 i
15 u 15 6 151 C
*
34. 54. 5 ,
.
&. 60E5 . --41I -st
Z4, .4. 5. .
D
C .c5
b
a .12 ;CC7
-;0c72t
.;z
5 I.3 I, ).:1374
,
i0.7S
-37.0-o* -3 o7 -2.41
7so 7UA 243CI-
3~ ~~
-)..+144
15
l
3.+
i71
9.)E
27
gCC 99 -0.05421
-0.15 ,2
z7
C 5
0.lt532
012o=
0.iz57
0.6q1651
t.2115, io?77901 1.1- 4c
1).E5p
0C
3°O.7
o1e75
1- Zll
.3
,1.,3 9
1-344-
005 :
C5
r1.F .-1 771
3*4I
I,1 .g
1o ] 0.27 .3157P
2 .C; t O
C017 C. 27=
:; 10 0.911 I 1.217 l° Z
0,7C
.2411~
-C.103I
515
.
2 C4
OCt33
-n 91517
|0537
cc,1!
-^C .
C
15t
0.,0 035;
C. ¢. 1
0.5S
).2 379
0
1 -Coccae7
Oo
57
1162
11.22ee -n.21;12
-o 1 -0.050C1 -1 -I.P1E5 -. 2
-. 5ee80g
-.1. 6917
-0.6
-0.,1
e7
- .0?2 -t) 2121
-n.
36
fCH411;
C.1-773
-O* 79el 0.114SE
. 1. Ee17
J..14g
C.1C C 0.:7-E4
).121 346
0o.,)ZE73 -, .7 50 0.t711
;OO
1,c
17
0.1
3
-0.115242
o7aI -°3
-0
03
.5e 1.3-14"1 1.5ii5i
.1 4 0.10 17 -4 C
-),oel ob 2 30 ,15
~
.04S'5e
.O3tS4 Q..2791 O 1c c,1717 -1.0t7t17 *I C 0.1599
-0.ca.-I
43 6.007
-
0,1a41 0.1236S
29!1e3
1.2697i,3
.3°3.3c E3.006 E
01.2t' 2;3 C74
15 -:
7
151 7
-0oC.2t O.GC -CI0 0 -3.I01 5
C 1204 J
4.
7505341 -750 -'-;
0 3 -30,1224
-0.
I.IZ751 n.122ai
1s2
19'Z 0 *7.10637 0i.1 +10%
4
7b.)531
-C.1300c -r.,E5CE -C. 7135
b c1 -5b -t7.94
15
L51
-0,I1453 -4. 157 Z -0.01773
-0.)75ol
7505 .1 5il 7505 1 I1- z
750b'l1 750551
-ColE;22 -C,14t i -;13.593.5i
2 5.t2
750531
151 15b E
-3.21105 -I.11 2( -).311i0
.0 e ?
.7
~
-0.16Z64
-t9.3,
34.
31,
1 .13 3,2GC.a? 33'Zct0 -C..275
7 02(, o,0 3?E.14 P)2. l 3 z0 ,to C.,-, 0.11 .+. .t4
IoG1 G
I -O,¢ZS
-0.cc,5A -C. C.C5
-0.1.44 -0*171tt0e33 - .171¢
51
3 14. 24°
753
23 -3!i°:
II
-
0o29I72
4
1ol
.t
1 7
-C .. C
-. 1 zO,!946
1.t7 --
315 4
"Is 3
1
j
i
-Co. C F0
-Cot-0t17 1D.I ;-7'
-4.* o
15
750531
341.
. 0.24;77 -r.17777
54.
750551l
1
-a..7t -. 1.,7 ° - 0 . o -- I o3 -11 -3O1E=
J5 34,
4
2,4
-
-22o. E
-o 4.im,7 ° -64.Io -.
It 1 19 L
7505
7,EcS tvI~
145 1
750 7505i1
7505 Il
1
o
1
-)°3500
,C
l
Z.1 J 2 0.140Z
* 3
;
C.0177 0.171b 3CI6z-q7
OC ~ 'CL1a ~ ~ olrl C1.
44
.14 -°6
7.02-P,61.031
C. Co I 4)4 +C~l 0.17335
-o
o0.34
9.a
n99
227
t
77 3,&
0. 421
-9 114
O.7
q
25
317
-qo 4 -0. 212 -3.537CE
~ . ~~~OIIA 70529
-. a OP
PA1
I5S1.-.9
RLEVOLUTION 730 GEOSSUBSATEL-LITE POINT
OBSERVATION TIME HHMM
YYMMOID
SEC
LAT
-1.373 g
-1.I377
E7. 1 27 .- 0
-0.1;3. -0.,,.L52
44E -QIz79 "C.15E1-0
-O..BIZ 75 3
-- Ioi5 -Z,.47
z7s.-E d7S.C0
-0.1761--1).1=32
-O.it572 -C.1CE4
-'J,7? V£.7, -t-, .5 -2. .1 -ZL.I. -i -I, .12 - I t15 -4..c7 -1ts3 -1,03
7E.tS 277.o 277 2771ot 27c.tC d776.41 27,.C L7E, 27toI7! 27t.,5 27E-to
-0-819e -0,1iC2¢ -]IC2 l ?c 4zO i -0.214 7 -9.19.z - .9a1ae -,771 -9s3cJe 52C -15 -,)oG=3B
- .C152 - .12 '40 -. - 9'2 -3.1354-0i79 - 4 C -0.I 2b -C.16758 -0.1t714 -L.1t572 -C.i134
-1,.t8 -!Z.GI
274.-4 3¢7-.E
3 --n.11975
3
-2.5 -3o
1512 1515
l5c. t5.
-Z..1 ---,.-C
I=. Lb
3:. 1514 750t-! It17 LI* 750 -1 7505ZI 1 7535-4= 1 t1 7505 lIbl 25. 1517s 7t931~ jt. IBI 7o5J! E lz1=750531 S;. I151I 7E,05,i 5. Itt -7505 1 Io° 161. 7do3l Lb. 151, 7541
7505 1 7o5 31
151o 75j6 1 1 I17b053
7 0 -1 7b-3531
, 1519 15 1I.
-11.29 I--I0 1 5. 15 i 750 Zi -2e.3; Igb lI7 75,0531 5, 7505I 15 It -. Z. Jb, 517i 7bJ5,1 -1.;d .= 151I 7505,1 -5, 1517 7.03 1 L£21. -4.7; ln5==!tl °t -59.l 12tl 753331 7053
7505zi 15I. 7t05;1 7505-11
151a idlo
7.€5s 7 7. C
-C.1112e -0.OI 72
1513 -
. 54.
2I, 7.---S 27-z7 Z5,t
705 ;2 .-271. ; 71 .67 17E.30 71.02
-0.I02 7 -O.05lq7 -0. odl! -a.C52j7 -0.12711 -0.19= 4 -0.09140
,I5E
, c
. .C 04
2b1.75 E zt 44
21C.) at-.1c 85.z5c.z 2675A
-.
.jdg
-0 13 -3.1tU57
151. 75J5jI I ti 2 753o31 15 F3 7.0.31 1511 75).31 162 759531 1 51 , 7t0-31 lt'e 750t2l 1520 750531 t, 750321I 21 7505Jl jt5 750b-1 15--l 7305 1 1E.1 7t0531 It 1 7to FS
-17.39 " l .
. Ia.d8 l -5o. 3.E 6. 14 S !2.3s S. -1 2.26 -1.71 I . t55I. -1.20 1 -1. =, -1 .V 5. - *34 It.
15 1 750s31 15Z 750 'L1 1 547 75053 " Ic7537 'I 750 21 f-27593311 -.tzz 750b i 1527 750= l I b, = ?S0511
-0.351727 t4.C
-o. 7.;e 525 3 .29 21--7.44 -5.0 0.12 S52 0.C7;6 264.70 -. SL * f i-J 91 4n7 20 5 lO.7 -1,3o c4= EdA.S2 -.. 7 ;.C1762 2.2°7C ?1,l 0L1 1 4 .13 0.0 25E o7 5
i0 13, t31;3 -. 35°8 -0o5 St. -0.13cs: ZtElC l. c4. 1*7 -0.2I-57a 2cc m .°ib I .6I 5.o 7 0o31~C045 -0.01769 51o;5 -0 o2
ib loa 750531 1.2 7 0521 lI~ 15 a 7D5 76.1 31 7505Ji
1524
75935 750331 759.31 7531
1524 152* 152= lba
=5
~
- .57
25 .7Z ae5€° 2C7 a 5775 t7.47 Z-e.la
-0 12 -0.01708 -- ,.LQ2742 -. odb1e 05.C .33214 -).,676E -0.5314 -a0 3¢a72 -0.1.05 7 5 - 05
55. 5. 1-, 'E. t.' 40* 5t. 1I.E
.0, t.
.6. 7505-
2 .2t 2uI.bo 17. 8 4,15
25 9 P56. t E5,.3 a, 1 50e
S 27.t6C~t
Itz
-15C7-77 -. =b -
-t6
E7-
-7.7I
-'.
,-=.7 --It.2I1 -17.1 4z.
2o.
OBSERVED ACCELERATION MGAL
-0.132E7 -1.1 34
-253
1
0.11171
SYNTHETIC RESIDUAL CMISEC
-0.9 930
2..
750',31 75053%
1. 9
SMOOTHED RESIDUAL CM/SEC -o'coC39
lb13'
"-752tal
E. LONG
RANGE RATE RESIDUAL CM/SEC
0-11 14 ),','3S4 0.jlg1 397
-r.olE963
1
-,
2
-C14 67 -I.Ec
-1.37;29 -01.2 72 -1.12026 -,152 0 975@ce 1B.75535 .S392 -0.2737E 1.008E3 0.p714s 1.o7e2 0.3719 1 0.3E359
0.52 H9
*57
-o011
-2033859
.
2
-0.91119739
0.7510
0,
0.152R0
.I4570
-Q.CIBt 411 -3 o42 -C.15399 -3.153S4 -)01 C.58 -C.1455 C
1391G60 01.335--e
SYNTHETIC ACCELERATION MGAL
-C.00
542
-o11 2QI
0.0236S
-0.,1753¢ -0o17P90
-0.12172
-0.0152s
-0.09127
0157 0.4232
1.-0,25 7
R
14476
1C.507e8
- ,E -C.C5415 -0.12,4
1.06
3.312 0.714t!9
00290
0.70719 0.7941 e 0.75 ).6971e°753 0.7024 1.75aC7 iI0312
1,05459
1.4&73a
0.3217 0°7149
0.1576
-1.16da
-C.121b -0.llj74 -¢,C2900 -O.C 252 -.)o02375 -0c1ct? 2 -O.C*749 E5
-O.BO -C.B19 5 -040 33 -Z.34260¢5 -O.C 723 -0 )12 -0.'7422-.
C025
.0.454 C£50
0.CE15 -C.7 ,0.123
-101ias) -C.0 k1E2 -C.crt 70 0.I35 3 -C.1C~ e 0.1032a -C0,135I.O 3 °I 0.2 90 0C.1J10 -O.Ct- -0.0tIE4 -1.C4'l 51 -0.O1 *95 -. 0-337
5
0.cce C.*OSC O.0 0l2 OC409Q5
2cA06716
7 1
-*.l$5
.57e
0.21E
-0726
-0
842
055
-0o315E
-0.31I052
-I.12441 1. 15 -. -0.024
-07115
41
12 -0
0.27482
06E00
-0.0335
0.a9gt
0.194w3
0.37124
001C
059 .7S3 370.4505
-. -9"3i91
- *1435
-0.1!I41 -0.7124
REVOLUTION VIO3 OBSERVATION TIME
GEO$-3 SUSSATE LLITE POINT •RESIDUAL LAT E. LONG
RANGE RATE C JSEC
SMOOTHED RESIDUAL CMISEC
-7 6a .--I O 750531 1-30 7505 1Ina53
I.. 2,° 3..
1 .4z 1-,G5 0D.4.
2.9*z 24;.C2 2 671
0.JE232 9.C7713 3. 222
C.CGS0" C°C9=01 G, sIg
760531 7.0531 ---. 0-*31 750521
15za 1531 " 131 1 31
5.. 6. 16-
I1.ts 2.0 2z!-59 zjo,
2.2oC4 2 7°7! 17.-'e iJ4 £7.C4
3.oz#s5 0o! 9546 O.13 a 0,197C7
o.CqtZ? CC46 0.093Lt 0.0"DT
750531
1531
Z4E°Z7
0.ln4-1
0.cease
1531
b, 5..
24.17
750531
t.°O 2
24c63
5.CA7€c
0°07,302
750531
1532
1..
25.7b
750531
1532
26.
Z3.27
24t.-12 244£Se
0.125)3 -3.9216G
O,C675 U°CtZ4
1532 7051 -mobal1.,1534 153J 750531 750531 1533
4..
77.:32
6. 16.
2J°3 'jded
1 .442 Z4--*5 .92 24!*ee 243.1;
0.122bi 0.=5IeI4 -0.1033S 1.0349C
C.3t,125 0,0 G,14 . 0.0 22
YYMMDD
750531
HHMM
SEC
C*05C57c
- .Oc5s7 0.04"10 0.06444
C.027191
).0220,6 -0.oe3il - 11sq2 -07 ;
-C.CI4530
-C.042142
-).3?36% -A,67 -9 11 -*m6
O 1.. E'. 3..
53.0J
7535---
l53E
C.
j4,E3
2
d.95
D.14277
0,0297
-23
750531
15 5 46. 53 3o° 1535 ' b. 1.3-- 56.
-5.5
-3c.12
0.03254
0.12146
Z5.0= 5 -7,c
zi7.71 .37.7 23ed~5
)0,0546, -0.1715 0*1.,48C
0.314 I 0.014E2 -Q,5C767
-0.54112 -).17738 -i!*5ea -1.221;
1,° 0b J.. 4 . b..
2 0 3o°= 39.56
23E°Se 2 ,. 4 235.03 Z9*m 4.t2 2;4.17
4,03
23-Z 2
C*.)CGEC-59 -0.O3506 -C.CbtE7 -I.C7t3l) -o.C 564-19)5 -C.L1162 -C.135;I -C015t25 - C¢1CC24
7 -1.7734c -1.aE4 4
lb.
-0.,8612 O* Ia -0.14207 -0.ces.2 -0.182;e -0° 0422 -).1--222
-O.21,3E -'3*EAE2 -01 2
-0.21990 -C.2-11-1 -C.Z4ci
-1.13641 -0.96239 -0.181'a
-. 1la -0.337--7
-c.aE3e1
-0.41 02
750531
.2 L 750532 750531
3*J.4J
750531 760531 -75 -T 750531 5--/
153. 153o 1536 15ZG .5
750631
1537
750531
1537
-7.J53T -E37 75J531 1536
-
310.95 .104z
4-3.05 4 0.54
3m.70
So. o
-12.98 4 .4D
2 1.Z8 20C.15
ZQDJ5 1,
15ja
Ia.
4- . 4
4S0.,4
750531 750i33
1536 1536
3c. 46.
4 *J,
4.bq
2a*1 .2E.64
0,03619
-).S032" -n,4z3e3
5L.
1533
C,0
2-1
0.C315s 0.0iot1 0.02s76 ,0E, 2s1
--. 035388
0.020-
-0.2570b
A-168
SYNTHETIC ACCELERATION MEAL -0. 12
192
-0.61781
-0°47 ei -I.E2426
15a3 153 _1534 153 1534
7,30531 -1 0631 750531
74.9
OBSERVED ACCELERATION MGAL
2.2-°5 0.07176. 20.0-.22q 241i* l.cal¢5 Z41.-Z 3.00C27 24g5 0.a3 -).C57EE 24&C.5 -. 1-11 .15 -0.6931
750 531 73 531-
15-3
SY'NTHETIC RESIDUAL CM/SEC
-I.Z7110 -'.15!7 -5*T8--12 -A.I ° 9 -0.310S4 1.07664
-0.613442
-0.16297q
0.3300j97
1.13125 3
-1.91613 -I°a 11 -1*726e
4
9
0.06e246
0.003193
GEOS-3 Revolution No. 737 June 1, 1975,
m 1 h 5 9 x
A-169
GEOS-3/ATS-6 SST Range Rate Residuals
Computed Using the PGS-110 Gravity Model Coefficients to (12, 12)
Revolution 737
0.4
SST RESIDUALS
0.2
-0-0 ,
101
!a
SMOOTHED RESIDUALS
-
0
5
11520
25 TIME IN MINUTES FRlOM JUNE 1,1975,
03
o1 9m
i40
.45
GEOS-3/ATS-6 SST Range Rate Residukis
Computed Using the PGS-110 Gravity Model Coefficients to (12, 12)
Revolution 737
0.2
SYNTHETIC RESIDUALS
--
0.1
_
-0.0
-
OBSERVED RESIDUALS
0
5
10
15
20
25
30
TIME IN MINUTES FROM JUNE i,1975, 0 1 h 5 9m
35
40
45
GEOS-3/ATS-6 SST Range Rate Residuals
Computed Using the PGS.110 Gravity Model Coefficients to (12, 12)
Revolution 737
3.0
SYNTHETIC ACCELERATION
1-5
OBSERVED ACCELERATION
-3 .0 -1 I 2
5
III IIIIIIIIIIIIIIIIIIIIIIIII IIIII I 10 15 20 25 30 35 40 TIME IN MINUTES FROM JUNE 1, 1975, 0 1 h 5 9 m
45
GEOS-3/ATS-6 SST Range Rate Residuals Computed Using the PGS-110 Gravity Model Coefficients to (12, 12) Revolution 737
3.
2.
x
1.
xx z
X
-J .-
0.
xXXXx
0°X
X X Xx Y
x
x
zx
XX
X
X
xx
x x
-.
-3.
-2.
'
-1.
0.
OBSERVED ACCELERATION (M GALS)
A-173
2.
3.
REVOLUTION 727-
YYMMOD
HHMM
750601 750601 750601 750601
159 159 159 159
.
SYNTHETIC RESIDUAL
O8SERVED ACCELERATION
SEC
LAt
E LONG
CMJSEC
CM/SEC
CM/SEC
MGAL
0.1921 0.00867 -0.0366 -012817
-0.0021 -0.01077 -0.01901 -0.02686
14 24. 34. 44.
64.85 64.93 65.00 65.05
21.58 20.17 18.75 17.33
-0.79076 -081730 -0.8023 -0.74706
0.017773'
2 0
4.
65.12
14.46
0.00545
-0.04066
2 9
24.
65.14
11.59
-0.16143
,0.05058
750601 75060! 750601 750601
2 0 2 0 2 1 2 1
44. 54. 4. 14.
65.1! 65.07 65.02 64.96
8.72 7.29 5.86 4.44
-0.0098 .10.136 -0.50994 -0.05556
-005652 -0.05611 -0.055 7
-0.06180 0.02761 .10Z70
-0.05439
t.16498
750601 750601
2 2 1
34. 44.
64.80 64.70
1.62 0.22
-0.0400a -0.04902
-0.04975 -0.04659
0.25989 0.29926
750601 750601 750601 750601
2 2 2 2 2 2 2 2
4. 14. 24. 34.
64.47 64.33 64.19 64.03
357.46 356.10 4.1.15 353.42
-0.54Ze
-0.03886 -0.03444 -002973 -0.02475 0fl lO, 7 -0.013
-0.28706
0.010440
750601 750601
2 2 2 3
54. 4.
63.68 63.48
350.79 349.51
750601 750601 750601 750601
2 2 3 2 4 2 4
24. 54. 4. 14.
63.07 62.37 6211 61.85
346.98 343.34 342.16 341.00
-0.19494 -0.06241 0.05848 0.05077
0.00469 0.02407 0.03120 0.03694
750601 750601 -060i 750601 750601 75.01 750601
2 4 34. 61.30 33a.74 0.03179 2 4 44. 61.01 337.64 0.24768 24.....................................?6 2 5 4. 60.41 335.49 0.13868 2 5 14. 60.10 334.45 -0.07430
0.04543 0.04774 a04373 0.04865 0.04750
Z4.
b9.1f
44J.4.
2 5
34.
59.46
332.41
-0.06787
0.04307
:0.28813
750601 750601
2 6 2 6
4.,' 14.
58.4 58.08
329.51 328 67
-0:06689 0.33427
0.03480 0.03240
-0.19962 -0.17F14
750601 750601 75D3o1 750601 -75lfft 750601 750601 7S003 750601 750601
2 6 2 6
34. 44.
57.36 56.99
326.76 325.88
-0.08180 0.00614
0.02879 0.02739
-0.1355 -0.11P46
z
*4.
bo.o-.
J.ze.0
56.23
324.16
Z
b
b
2 7
4.
I7'
2 2 2 2 2
..
.1
55.45 5505 5.65 54.a5 53.84
322.51 321.71 SEE 92 320.15 319.39
9f
z6 Cbbv
14 *
84.t
31d~3
1J.VUdrfl
Q.UCIIJO
750601
Z
8
24.
53.90
317.92
0.14478
0.01996
150601 750601
2 2
8 8
44. 54.
52.16 51.12
316.90 315.81
0.04708 70.11101
0.01708 0.01532
750601 ?50601
2 2
9 9
14. 24.
50.85 50.41
314.46 313.80
0.09712 0.12831
0*011e1 0.00984
750601
-2 9
44.
49.52
312.52
0.09783
0.00792
1r50601 150601 59690 150601 '50601
210 210 ale 210 210
4. 14. il 34. _44.
48.62 48.16 47.31 47.24 46.78
311.29 310.68 Z19,09 305.51 308.54
0.02254 0.06756 03t 0.0±848 0.04071
0.00826 0.00929 2.01021 0.01296 0.01522
50v.0,
"50601 '50601 0.. 750601 '50601
I50501
...
211 2SOAt 211 21 211 2.. .. -211 212
D.'t
4. 14. 24. 34.
...
0.014U
Ip0.32
54. 4.
45.85 4 4.90 44.43 42 OR . 43.47 42.99
307.61 ,38 307.27 306.73 306.20 ZOE 305.16 304.65
0.23~
.41
0.01958 0.02132 0.02276 0.02380 Q 5 0.02495 0.02503
0.30572 0.15339' a seeee -0.13828 -0.23343 .4013
-_0p~
-0,037220
-0.03202 -0.02212 9.0195 -002065 -0.04781
-0.06r55
-0.10640
-0.054719
-0.18167 -0.16720
0a.99178i1
0.08666 0.15889 a-20qq 0.23665 0.2306e *..t
0.051759
42.02
.03.66
4,05357
0.02434
'50601 '50601 750601
213 213 213
41.05 40.56 40.06 39.57 39.07
302.69 302.21 301.75 301.28 300.83
0.07614 0:97740 0.03536 -. 07429 -0.02479
0.02232 -02059 0.01824 0.01513 0.01110
213
44..
38.08
299.93
0.04826
0.00022
-0.556a3
214 214 2;1
4. 14. 21
37.08 36.56 I6O9
299.06 298.63 291.n 2
0.06985 -0.04857 9 1;1 lQI2
-0.01408 -0.02219
-0.72107 -0377507 aO2cop"
A-174OF
:0Zee3Z
0.18889 0.14545 0.09798 0.05390 ....... 0.00224 . 0.00807
44. 54. 4. 14. 24.
'50601
0.639524
-0.07558
212
50601 * '50601 -69601
-0.214301
-0.16157 0'.17700
21Z, ?4,
212
-0.656948
1.0tfl
'50601
5060!
01Q41
-0.06574
J
0.05957 -0-03769 Q.10109 0.19683 -. g . q -0.08594 -0.00534
0.385177
.lpl
0.02528 0.02399 0.02355 0.22313 0.02-56 0.02191
0.55753 0.61915 0.59288 0.53182 -
Afloasa
0.03814 -0.07522 0.03713 0.14366 -6.02010
0.074991
0.49866 -0.001458
o09et
-0.04144
"
-0.017478
-0.00812
0.04534
0.u.i'0. 1
gO
7, 24. 34. 7 7 ai 7 54. 8 '4.
0.010tj
-
-0.351722
0.37276 0.40F5 0.43472 0.45556 0.4293
. 0.04948 -0.1415 -000567 0.01070 -0f 0582e 0.07461 0.11961
AA
SYNTHETIC ACCELERATION MGAL
-0.002981
750601
'50601
I
SMOOTHED RESIDUAL
750601
20 0S60
-
RANGE RATE RESIDUAL
GEOS-3 POINT SUBSATELLITE
OBSERVATION TIME
0.571843
0.063060
0.030668
0 0"1fl0O
-0.251558 -0.09763 -0.15055 -0.21506 -0.28897 -0.37184
-0.620160
0TO7;tT
OO
REVOLUTION 737 OBSERVATION TIME
GEOS-3 SUBSATELLITE POINT
SEC
LWT
E LONG
RANGE RATE RESIDUAL
SMOOTHED RESIDUAL
SYNTHETIC RESIDUAL
OBSERVED ACCELERATION
SYNTHETIC ACCELERATION
CM/SEC
CM/SEC
CMtSEC
MEAL
MEAL
YYMMDD
HHMM
750601 750601
214 214
34. 44.
35.57 35.06
297.79 297.38
-0.2240a 0.00251
-0.03903 -0.04715
150601 liMM1 750601 150601
215 15 915 215
4. 14. 24. 34.
34.05 33.54 03.03 32.52
296.56 296,16 Z95.76 295.37
-0.06874 -0.05011 -0.06451 -0.08068
-0.06091 - 00A8 -0.06917 -0.07072
50601 50601
215 215
54. 4.-
31.49 30.98
294.60 294.2a
-0.016eg 0.00542
-0.06891
216 216, 216 216
24. 35: 3g 55.
,29:94 3 22al 1 28.39
293.46 23c 93 C9D 927 a00979 292.36
-0.05857 - -0.07356
-0.06717 -0.05235 5o~7 0,4 -0.04407
755127 760601 217
5 25.
735 26.63
291.64 291.29
0.03676 -0.17477
-0.03947 -0.03883
750601
217
45.
25.78
290.59
-0.03601
-0.04066
-0.21478
7561 IS0601
2115 21s
, 15.
25.7.1 24.21
2211:4 289.55
:o006147 -0.22705
-90*0420 -0.04692
-BM'7 -7,23708
750601 50601
218 218
35. 45.
23.16 22.63
28E.E8 28e.54
0.07670 -0.25234
-0.04981 -0.04955
-*.083e7 0.02727
219
50601
'19 1561 219
5. 5 25, 35.
21.58 10 fll 19.99
287.88 8,5 4 715 1572 286.90
-0,23 0 00 8 0:1 1 -0.04040
-0.04613 31 -,48 S11U -0.0 -0.*03185
150601 150601
219 2z0
55. 5.
18.93 18.40
286.26 205.94
-0*08se7 -0.03723
-0.01703 -0.00e37
25, 356 45, '55.
1734 16.81 16.27 15.74
285.31 284.99 284.68 284.37
-0.01282 -0.*055 .01!67, 0.0857.
0.01048 0 1, .Q0029NSAZ9 0.0 8ej
- 0028222 0.05362
'0.25371 0.05517 0o08Z97. 0.O0E21 84R .063" 0, e119
o078 -0.08022 3 -0 37414 -0.47607 -0.44746
50601 1506011 601 '50601
'50601 -1501501 -
M561 2 220 220, 220
; 5 001 1500601
2221 221
18. 25.
154.867 14.14
283,.15" 283.44
-50601 :50601
13.07 154
'50601
221 45. 22., SS, 22 az0z0 425.
L1.47
282.E3 2: ,53 "1.0 222 281.93
0.0730E 0*07235 0.1 a 7 0.43962
15OF601 150601
222 222
35. 45,
10.40 9.86
281.33 281.03
-0O.055E4 -0.11251
0.405351 0.04912
1,50601 I5b01 750601
23?551 5. 223 15. ezj 25° 223 35,
8.25 ?.,I 7.18
P.7 .3 280.14 219.E4 279.54
-0.:01T3219 89 0.01878 OOfb2O 0 06472
0004410 5 0.03788 O,054S 0 03367
F50601 ?5D501
223 224
55. 5.
6.10 5.56
278.96 276.66
0.05706 0.11196
0t031e4 0.031-46
750601 750601
224 224
25. 35.
4.49 3.95
278.08 277.79
0.00530 0.09462
00066 0.02974
750601
224
55.
2.88
277.20
012439
0 057
750601 750601
225 225
15. 25.
1.80 1.26
275.oz 276.33
0.09645 0.09243
0.017tZ 0.01150
750601 750601
225 "225
45. 55.
0.19 -0.35
275.75 275.46
-0 02920 -0,04288
-0.00431 -0,013q2
750 01
226
15
-1.43
274 a7
0.01024
750601 750601 5......... 60 750601 75306,1
226 226
35. 46.
227 5: 227 '1 5
-2.50 -3.04 5.8 -4:12 -4 65
274.29 274.00. e7a.71 273.42 273.13
750601 750601 750601
Z27 35, 227 '45. 227 55.
-5.73 -6.27 -6.60-
272.54 272.25 271.95
780601 S750601
228 a28
15. 2S.
-7.68 -8.41
274.36 271.07
750601 7506 01
228 P26
45. 55.
750601
229 75001
750601
Z29
46.
-12.70
•750601 750601
230 230
6. 16.
-13.77 -14.30
16. -11.09 ~g25.-1163
Q.000913
- 0 55154 -1.407F' -,,.24002 -0.05790
0.40401 0.022626
0.50573 0.48824
1.036065
-
026353
0.09410 -0.02879
(1.27099 0 ,82 .17870 0.567G?
-0,051L40
-0.6i9954
0,89SS6 9945
-0.463421
D.80448 -O*08ecal
-0.0
192b
no: 5 8 ,01 0.440415
-053046 -1).22433 -1:152 1 -0 09370
-0.034305
Qt925b7
-0.01991 -0.00137 9.019330
-. ).0074e -0.04503
0.!55149S
'-0.205$7 0.034405
-0.45615 -0*592a5
-0.110028
-0.82941 -0.01664
-0.03556
0-,0300 -1.03819 -1.00E 4 P.93364 -0.83127 -0.69772
-0.07686 -0.21375 -0.14219
-0.1091O -0.11177 -0.11225
-0'.123451 -0.12631
-0. L0631 -0.09992
270.47 270.18
-0D.09148 -0.07520
-0.08097 -0.06881
265.58 25_28,50
-0.0S627 -
-0.04037 10.',
268.67
0.00177
0.00773
1.46300
268.06 267.76
0.09955 0.07219
0.03966 0.05482
1.37576 1.30065
A-175
-0o040161
0.73422 0.80641
-0.05647 -0.06958 a 96095 ,-0.08956 -0.09777
"
0.395969
0.33907
0.04961 -0.13129 0. 07:5 "-0.11802 -0.09770
,
0.213802
n.28313
-0.06591
150621 7506, 1 'r5O601
-9.49 -10.02
-0.790aZ -6.74530
• -
-0.014270
-0.35379 0.D15474 0.05305 0.4667S 0.66831
0.173552
1.0 2517 1.17083 OOD2S7g
1.37822 1,03712
0.388032
REVOLUTION 737
OBSERVATION TIME YYMMDD
HAMM
75D601 750601 50601
230 230 230
GEOS-3 SUBSATELLITE POINT
RANGE RATE RESIDUAL
SMOOTHED RESIDUAL
SYNTHETIC RESIDUAL
OBSERVED ACCELERATION
SYNTHETIC ACCELERATION
CMISEC
CM/SEC
MGAL
MGAL
SEC
LAT
E LONG
CM/SEC
36. 46.
-15.37 -15.90 -16.43
267.14 266.W3 266. 2
0.21800 0.04012
231
56. 6.
266.21
0.09803 0.05841
750601 750601
231 231
36. 46.
-16.56 -19.09
265.28 2e4.94
0.09226 0.26333
750601 750601 750601
6. 16. 26. 36.
-20.15 -20.68 -21.21 -21.73
263.97 263.64 263.32
-S-0 750601 750601
232 232 232 232 2' 232 233
.
-23.31
750601
750601
5.
-16.97
~ -22.79
264.30
fa~l
262.5 262.32
0 510672 0.2034 0.23976 0.19043 0 0LtO [l 0.18259 0.12133
0.08268 0.09571 0.1q772
1.12806 1.0480 0.97880
0.11890
0.91740
0.14672 0.15T67
0.058212
0.1630Z 0.16497 0.16490 W.16276
0.057902
0.15224 0.14403
750601 750601
233 233
26. 36.
-24.37 -24.69
261.64 261.30
0.18724 0.10656
0.12218 0.10893
750V60I 750601
244
233
46. 56.
2b.401 -25.94
260,S6 260.60
0.10b36 0.00694
0. 09449 0.07871
750601 750601
234 234
16. 26.
-26.98 -27.50
259.90 259.55
0.16989 0.04994
0.0448 0.02718
750601 75061 75
234 234
-2.54 -29.06 - 9.58 -20.9
258.83 258.46 259.09 257.2
-,0.05129 -0.1364 -0.08781 -0.03539
000795 -0.02480 -0=0400 -0.05548
256.57 256.59 25 46 255.801 255.42
-0.0234 -0.20537 9.0481 3
-0.08032 -0.09015 -0404
-0.03970 -0.07003
-0.90440
0.69772 0.58650
0.211686
0.29282 0.11374 -0.08063 -0.28209
-0.239203
-0.66616 -0032-4 0.030479
- 4.10678 -1.22274
0.036570
-1.56326 -1.59860
235
750601 750601 750601 750601 750601
235 235 34
36. 456. 56.
-31.12 -31,6 -490.6
236 236
6. 16.'
-32.66
750601
236
36.
-34.19
254.6
-0.25852
-0.011237
750601 759601
235 ,~iou 237 Ca
56. 4. C.
-35.20 -35.71 p'
253.80 25359 255OA.4d
-0.11760 -0.03694 -0.0
-0.11020 -0.10737 tO.UOYM
750601 750601
237 237
26. 36.
-36.72 -37.22
26254 252.11
-009534 -0.02793
"-0.00933 -0.09456
750601 7Sc01 750601 750601
237 23; 236 238
56. tC2 6 -. 156. 26.
-3822 -3.7 C6 -39.21 -39.70
251.24 25.E4 250.34 249.88
-0.12227
-0.0107
0.46003
-0.00501 -0.0 -0.0
-00.22o.4S -0.0245 -0.06-0. -. 02498
0.42 64 0.53638
750601 750601
238 238
46. 56.
-40.69 -41.1
24.15 24.48
-0.10733 -0.04141
-0.05122 -0.04270
0.45350 0.77439
750601
239
16.
-42.1
247.51
0.04614
-0.02346
0.9248
750601 750601
239 239
36. 46.
-43.12 -43.60
246.51 246.00
-0.01058 -0.03500
-0.00324 0.00653
0.96254 0.91433
750601 ..J52fl1 750601
240 P19 240
6. -44.65 *6,-4.464-45.02 16.
244.56 247.71 244.43
9.05700
0.2364
-0.0050 009815
-0.8013 003011
750601 -,Z209401 750601
240
36.
-4597
241 29
26. 56.
-48.28 -46.90
243.34 -:6240.46 24221
0.16735 047197 -0.157 0.02509
0.03787 090ia 0.0203D -0.032878
0.03706
-0.726
750601
241
36.
-48.73
239.5
0.08232
0.02546
-0.44003
750601
241
56.
-40.63
238.62
0.99233
0.01495
-0.48640
750601 760601 750601 750601 750601
242 242 242 242 242
16. 26. 36. 46. 26.
-5052 -50.96 -51.3 -51.83 -52.25
237.33 236.68 236.01 235.62 234.63
0.00846 0.00590 -0.02776 -0.04405 -0.18742
0.00416 -0.00099 -0.00581 -0.01022 -0.01411
-0.48854 -0.46620
750601
243
16.
-53.1
200.00
0.0065
750651
239
6.
T. 22
-47.3
24.6
0669 tlb~1
-0.00940
-1.93372 -0.77074 -.04140 -0542748 -0.29131
gp1
-0.10877
0.0203
-0.604410
-1.55899 -1.49149 ,12376J9 4004 -,
750601
-
-0.594996
"0 -0.4'065
46. 56. 6. 16.
33.17
00 .046
0.00619 0.2860 -0.33528 -0.29131
-0.038212
0611 -"
0.435l 7 0.45357
0.68607 -0.q0174 0.52068
0.17655
0.765 0.332564
17171
0.1535 0 431 680.4138 0.16166
-0.42602
-0.37685 -0.31732 -0.9640Z
ORIGINAL DAGE IS
A-lP
-
Q
"
GEOS-3 Revolution No. 738 3h 35
June 1, 1975,
A-177
GEOS-3/ATS-6 SST Range Rate Residuals
Computed Using the PGS-I10 Gravity Model Coefficients to (12, 12)
Revolution 738
G3.1
SST RESIDUALS
0.2
*
SMOOTHED RESIDUALS
t-
0
-
IL1
13
2
1
m h TIME IN MINUTES FROM JUNE 1, 1975,03 35
1
40
43
GEOS-3/ATS-6 SST Range Rate Residuals Computed Using the PGS-110 Gravity Model Coefficients to (12, 12) Revolution 738
0.2:
0.1
--
SYNTHETIC RESIDUALS
,-/ 0.0
-0. 1
'
OBSERVED RESIDUALS
-0.2
0
5
0
15
20
25
TIME IN MINUTES FROM JUNE 1, 1975,
30 0 3h3 5m
35
40
45
GEOS-3/ATS-6 SST Range Rate Residuals
Computed Using the PGS-110 Gravity Model Coefficients to (12, 12)
Revolution 738
3.0
SYNTHETIC ACCELERATION
1.5
CD
Co
S
, -1.5
OBSERVED ACCELERATION
3.
i I I I I I I 0
5
I I I I I I 10
I I I 15
I I I
I i
20
25
I I I
TIME IN MINUTES FROM JUNE 1, 1975,
I I I
30 03 h3 5m
I I I I
I I I I II 35
40
45
GEOS-3/ATS-6 SST Range Rate Residuals Computed Using the PGS-110 Gravity Model Coefficients to (12, 12) Revolution 738
3.
2.