which gives M b eQ(c,b) ...... This corresponds to replacing I% vl by Tv b i n. 1 the definition ... A a c for. 1 j. i n f i n i t e l y many c . But then S is infinite since a and a. 1 o ..... R = C (a,B) C CxC : signed angle subtended by the arc @a lies in '. C.
r
of Canada
du Canada
NAME OF AUTHCWNOM DE L'AUTEUR
TITLE OF THESISITITRE DE LA T H ~ E
ON MICROFICHE
r
s-7 SUR MICROFICHE
WOODROW, Robert Edward
Theories w i t h a f i n i t e number of countable models and a
small language 77-
UNIVERSITY/UNIVERSIT~
SI-
FRASER U N I V E R S I ~ ~
DEGREE FOf( WHICH THESIS WAS PpESENTED/ E GRADE POUR LEWEL CETTE THESE FUT P R ~ S ~ N T ~PhYEAR THIS DEGREE C O N F E R R E D / A N N D'&TENTION ~E
DE CE GRADE
NAME OF SUPERVISOR/NOM DW DIRECTEUR DE T H ~ S E
A'
Lachlan
1
Permission is hereby granted to the NATIONAL LJBRARY OF
L'autorisation est, par la prdsente, accordde B la BIBLIOTH~-
CANADA to rnicrofi lrn this thesis and to lend or sell copies
QUE NATIONALE DU CANADA de microfilmer cette these et
of the film. The author reserves other pub1icati on rights, and neither the
. de prdter ou dwendre des exemplaires du film. LFauteur se rgserve o les sutres droits de publication?ni la -, ,
e
.
thesis n a extensive extracts from i t may be printed or other-
th8seni de longs extraits de ce/le-ci ne doivent Btre impriMs
wise reproduced without the author's written permission,
ou autrement reproduits sans l'sutofisatim &rite d i I'auteur.
* --
-
National Library of Canada
Bibliotheque nationale du Canada
Cataloguing Branch Canadian Theses Division
Direction du catalogage. Division des theses canadiennes
Ottawa, Canada KlAON4 L
L
-
.
~ 7
nEw
'
Some c o n j e c t u r e s regarding t h e complexity of t h e o r i g s s a t i s f y i n g .
r e s t r i c t i o n s on language and number of countable models a r e formulated
and discussed.
A theory- T
0
i s constructed which has n i n e countable
models and a nonprincipal 1-type containing i n f i n i t e l y many 2-types. A theory
T
1
i s c o n s t r u c t e d which has f o u r countable models and an
i n e s s e n t i a l extension
T
2
having i n f i n i t e-l y many countable models. 1
(iii)
ACKNOWLEDGMENTS
The author wishes f i r s t and foremost t o express h i s thanks f o r
* the guidance and encouragement given by h i s s e n i o r s u p e r v i s o r Professor A.H. have been made.
Lachlan, without which very l i t t l e p r o g r e s s would The National Research Council of Canada provided
f i n a n c i a l support f o r most o f t h e time t h e author was engaged i n t h i s , work. .Lp
Thanks a r e a l s o do t o t h e a u t h o r ' s o f f i c e mates over t h e y e a r s , k
Robert Lebeuf, J i m Dukarm and Ron Morrow. discussion of t h e d i f f i c u l t i e s of t h e day.
0
They endured many hours of P a r t i c u l a r thanks areLdue
t o Ron who s u f f e r e d through t h e w r i t i n g up and provided a w i l l i n g e a r
&
.t
-and f r i e n d l y support throughout t h a t time. S p e c i a l thanks g o t o Dolly Rosen who performed t h e n e a r ' m i r a c l e of transforming my handwritten manuscript i n t o something l e g i b l e .
*
TABLE OF CONTENTS
.
/ '
Page
Abstract Acknowledgments
C h a p t e r 1.
N o t a t i o n and P r e l i m i n a r i e s jr
C h a p t e r 2.
Ehrenfeucht-like
theories
'$1 D e f i n i t i o n s
C h a p t e r 3.
$2
The (Theorem
$3
P r o o f o f Lemma 2.2
$4
P r o o f .of Lemma 2.3
$5
summary
2-generic
structures
D
C h a p t e r 4.
Q u a n t i f i e r eliminable graphs .
rT
$1 Examples $2
,
Definable equivalence r e l a t i o n s
'$3 Tournaments $4
Undirected graphs
$5
~ i n k ultrahomogeneous e graphs
C h a p t e r 5.
The Theory
c h a p t e r 6.
C 1 , C4 and t h e Theory
To
$1 C1 a n d C4 $2 Conclusion
The Theory
T
1
T
1
>
This work i s concerned
with
those countable complete t h e o r i e s -
which have a f i n i t e number of countable models.
An e l e g a n t c h a r a c t e r -
i z a t i o n of those t h e o r i e s which have one countable model i s b t h e theorem of Engeler [ 3 ] , Ry11-Nardzewski
191 and Svenonius [ll]:
a theory i ~ o , - c a t e g o r i c a l j u s t i n case f o r each 0
a f i n i t e number of n2types,
n
there are
The work of Vaught [12, p. 3201 shows t h a t
no countab3e complete theory -have
e x a c t l y two comt&e
models.
*>
Work of Baldwin and Lachlan [ 2 ] and Lachlan [61 shows t h a t a count*
e
complet'e theory with a f i n i t e number of countable models b u t more than
n
e
annot be s u p e r s t a b l e .
I n a l e t t e r t o Professor Lachlan, Shelah f
u n j e c t u r e d t h a t no such theory could be s t a b l e . conjecture remains open.
To our knowledge t h e
F u r t h e r progress on t h e general problem
appears t o be very d i f f i c u l t .
We s h a l l r e s t r i c t o u r s e l v e s t o t h e o r i e s
which a r e simple i n complexity of language.
The main emphasis w i l l be
on t h e o r i e s with more than one countable model, b u t we a l s o p r e s e n t some r e s u l t s which a r e s t r i c t l y concerned with
o -categorical theories. 0
We s h a l l f i r s t give a b r i e f account of t h e h i s t o r y of t h e o r i e s with more than one model. For f o u r t e e n y e a r s t h e only widely known examples of t h e o r i e s with a f i n i t e number of countable models b u t more than one were those due t o Ehrenfeucht [12, •˜61 .
The archetype of t h e example i s the rational
where numbers under t h e usual o r d e r , and t h e of
Q
6 o s e union i s
Q
.
( ~ ~+ 13 )countable m d e l s ,
D
m
a r e d i s j o i n t dense s u b s e t s
The theory o f t h i s s t r u c t u r e w i l l have I n a l i k e manner c e r t a i n o t h e r countable
r
a model of dense
o r d e r t y p e s can be d i s t i n g u i s h e d by c o n s t a n t s i n
--
l i n e a r o r d e r t o give a s t r u c t u r e whose theory w i l l have f i n i t e l y many -
countable mode 1s. C e r t a i n tkchniques can then be applied t o known examples t o yield others.
For example t h e c o n s t a n t s i n Ehrenfeucht's example may rn
'be replaced by unary p r e d i c a t e s which determine i n i t i a l segments of A t t h e expense of e l j m i n a t i o n of q u a n t i f i e r s
the order.
takes an equivalence r e l a t i o n respect t o a binary r e l a t i o n .are densely ordered by c l a s s with
(n+l)
, and
R
members.
,
which i s a congruence r e l a t i o n wit
E R
.
.
T h e equivalence c l a s s e s under
f o r each
For
n< m
( n + l )-members .precedes t h a t with R
an example
For t h i s example one
with a f i n i t e language can be given [12, $61.
n
E
t h e r e is e x a c t l y one
t h e equivalence c l a s s with
(m+l)
i n t h e o r d e r i n g induced by
Another way of forming a new theory i s t o c o n s t r u c t a d i s j o i n t
union.
Given two t h e o r i e s
models, r e s p e c t i v e l y
uo '
u1
which have
p r e d i c a t e symbols and and
of
W
{p0
, P1 ,
c
Let
P
0
a new c o n s t a n t symbol.
i s t h e u n i o n o f t h e languages of
c}.
2)
The nonlogical axioms of
RV
0'
. .v n
-t
A
j%
P .v
for
l j
p r e d i c a t e symbol of
.
U
i
,i
U
0
W
R
and
m W
, Pl
having .
= 0,l
that
Then t h e language U
1
with
a r e t h e following:
an
nem
be new .unary
We may ass*
have no nonlogical symbols in common.
U1
,
we can form t h e d i s j o i n t union
countable models i n the following manner.
Uo
n
(n+l)-ary
li
\-
L
\
-
A
3)
\
--
--
-
-1~ v . - i f ~ ~ , . . . ~=v c 1 j n
f u n c t i o n symbol o f
-
for and
Ui
'-.
p p
an
f
--
--
(n+l)-ary
j 5 n\.;i
= 0,.1
C
6
4)
The r e l a t i v i z a t i o n t o axiom o f
U ,
P
of each n o n l o g i c a l
i
-
for
i
h
With " l i n k i n g " of t h e .copi,es i n t h e d i s j o i n t union some f u r t h e r c o n t r o l A l i n k between an
on t h e number of c o u n t a b l e models may be e x e r t e d . m- t y p e
p
and an n- t y p e
and for every formula
q
i s an
r
(m+n)- t y p e
>p
r
such t h a t
cp
Linking t h e n r e f e r s t@t h e a d d i t i o n of s u i t a b l e l i n k s .
,
Yet a n o t h e r
4
way t o proceed i s t o form t h e p r o d u c t
of two t h e o r i e s
Uo'ul
Up ,U1
-
\
which have a f i n i t e number o f c o u n t a b l e y o d e l s , s a y E s s e n t i a l l y i t s models are o b t a i n e d from'pode'ls
Formally we assume t h a t A new con'stant
,
c
of
respectively. and
U
0 by a copy o f =N
P
r e s p e c t i v e l y by r e p l a c i n g each member of
M,N
m,n
M
U
1
.
have no n o n l o g i c a l symbols i n common.
UO,U1
two unary p r e d i c a t e s
P
of-P 1
and two unary funcs I
t i o n symbols
p ,p 0
1
a r e added.
The n o n l o g i c a l &ions of
1) The r e l a t i v i z a t i o n t o
axiomsof
U
for
i
P
0
1
are:
of t h e n o n l o g i c a l
i
i = 0 , 1 z
2)
U *U
,>
,
Axioms a s s u r i n g t h a t o b t s i d e
P
the nonlogical
'
i
OQ
. .
symbols o f a)
RvO,.
U
i
.: ,Vri
symbol of
have t r i v i a l i n t e r p r e t a t i o n . -+
Ui
A
j5n
P .u ~j
and
for
i = 0,l-
R
an n-ary r e l a t i o n
u,
=-
., X n- 11 .
d
we w r i t e
I t i s assumed
t h a t no c l a s h o f q u a n t i f i e r s r e s u l t s , and u n l e s s t h e c o n t e x t i m p l i e s IS
otherwise t h a t t h e f r e e variables of
~ ( x )occur among
x0
,...,xn-1
.
-
~f
A
,
x
&----
A
y , a r e two f i n i t e s e q u e n c e s t h e n
L
is
q(x,y)
2 n d
n
i s t h e operation of concatenation of f i n i t e sequences.
x
for
L
.
cx>
If
---
WFwrite
x'.
i s a f i r s t o r d e r l a n g u a g e and
L
new
then
s e t o f formulae whose f r e e v a r i a b l e s o c c u r among
is t h e
L
n
v ~ r . g . f n-1 v
*
is
.
b
L
0
is t h u s the set of sentences f o r
.
Z
L (A) n
denotes
and
1
5
p,
0,
or
among mappings.
n
t o range @,
a formula
@
1
.
@
denotes
(L(A))
X I @, $J, 0 ,
We s h a l l u s e lower c a s e Greek l e t t e r s among formulae and
where
-
i s the l e n g t h of
lh(G)
y)
cp (x
A
Let
I
b e a complete t h e o r y w i t h language
T
sequence o f
new c o n s t a n t symbols.
n
r
A set
. ,
i s a n n-type i n
L
j u s t i n case
consistent extension o f , T
. r
be a
of formulae i n -.
T
x
ahd l e t
~ [ r =] T u {cp(x) : qCr)
L
n
is a
i s a complete n - t y p e j u s t i n c a s e
i_
T[T] ,
i s complete.
1-type i n
T
.
We r e s e r v e t h e l e t t e r
A , T, @
Upper c a s e Greek
p
t o d e n o t e a complete
w i l l n o r p a l l y d e n o t e complete
4
n-types.
that
Unless o t h e r w i s e s p e c i f i e d n-type w i l l mean complete n-type.
is a s t r u c t u r e f o r
If
M
.*
is valid i n
M
.
If
L
r
and
c L
q€L(M) then
M
then
I=
l?
M
I=
means
cp M
means
I=
"
cp
. M T h a s the u s u a l meaning. I f -a i s a n n - t u p l e q ( a ) } , tp(a is a n n-type i n T ~ ( M ) . i n M t h e n tp(a) = { c p C ~:~ M , - -17tp(a,b) = t p ( a b). We say t h a t a realizes q i f qctp(a) . I
7
for all
cpCT
I(T,K) -
,. .
-::..
*'
models o f
T
cardinality.
i s t h e c a r d i n a l i t y o f t h e s e t o f isomorphism t y p e s o f of
power
K
.
If
S
is a s e t ,
IS[
Countable means i n f i n i t e and c o u n t a b l e .
denotes its
P
,
is an inessential extension o f t h e complete theory
T'
i s complete and an extension of
T'
from
by f i n i t e l y
L
c o n s t a n t symbols.
A
A c A
j u s t i n case
and
-L
9 E A
t h e r e i s some
such t h a t whenever
,
\
A
realizes
9 i s s a i d t o generate
In t h i s case
-
.a
,
E M
then
m,n
z-
.
s*
.
t@(a) and
is
let
@
generate
Then
w i l l g e n e r a t e t h e type of
??
If
r
then
i s a 2-type,
i s s a i d t o be i n
A formula 8 -categorical 0
r
of m-types
$
-
b
I1
p,q
-c
tp(g)
over
1-types with
pxq
p
C
r
and
q
C
Tlt1
(
r
1
.
with one f r e e v a r i a b l e
-just i n ease k r each which- c o n t a i n
.
v
0
i s s a i d t o be,
there a r e a f i n i t e number
1C, ( v1. )
for
i < m
.
A graph is a s t r u c t u r e f o r t h e language with one b i n a r y r e l a t i o n
symbol
R
.
If
G
is a graph
i s t h e vertek-s e t of
IGI
members a r e c a l l e d v e r t i c e s while
R
G
G
,
and
i s t h e edge s e t and members a r e t
c a l l e d edges.
Chapter 2 Ehrenfeucht-like t h e o r i e s *
cs
-I
.
-
-
L
~hfhitions
1.
-4-
In t h i s c h a p t e r we g i v e some r e s u l t s which i n d i c a t e a d i s t i n c t i o n I
L
between two t y p e s of t h e o r i e s i n a small language
-
those with only
e
r e l a t i o n symbols and c o n s t a n t symbols and t h o s e which a l l o w f u n c t i o n
The main theorem u s e s s e v e r e r e s t p i c t i o n s on t h e rider o f c o u n i m e models and t h e language.
Before i n t r o d u c i n g t h e s e however we s h a l l
p r e s e n t some more g e n e r a l r e s u l t s , and t h e n o t i o n of b e i n g " l i k e "
an Ehrenfeucht s t r u c t u r e . Vaught's argument of 112; p.3201 t h a t no c o u n t a b l e complete t h e o r y h a s e x a c t l y two isomorphism t y p e s o f c o u n t a b l e models may b e -modified u s i n g h i s Theorem 3.5
[12; p. 3111 on t h e e x i s t e n c e o f prime models t o
give t h e following observatign, I(T,w) = 3
If
then
has countablemodels
T
M
M
0'
1'
andM
C
where n-type
M
0
A
i s prime, -
M1
i s s a t u r a t e d , and f o r each n o n p r i n c i p a l
-a
t h e r e i s a sequence
-
M
i s prime over a.
a b l e models. a b l e model realizes
prime.
A
Thus i f
of
T
.
and
1; C N
B u t then
= A
N
0 T
and
must b e isomorphic t o
N
T
and
and 'any
have prime and s a t u r a t e d count-
such t h a t
N
A
t h e r e i s a couqt-
i d prime
over
and
cannot b e s a t u r a t g d and i%cannot be
is a prime m d e l o f
M
s a t u r a t e d model of M
T
Thus given a n o n p r i n c i p a l n-type
N
tp(a
such t h a t
€ M
The m o d i f i c a t i o n i s t o n o t e t h a t
complete i n e s s e n t i a l e x t e n s i o n of
b
/
These d i f f e k e n c e s a r e r e l a t e d t o c o n j e c t u r e s C 1 , C 2 , &d C3,
symbols.
T
, M1*
is a countable
M
i s the t h i r d c o u n t a b l e model of
T
.
We c a l l
T
M
the middle m o d e l of
.
- -
[m
h o t h e r r e s u l t W c X WE a i s c o v e r e d in7Ependently by - ~ e n d a ,
'-
-
and t h e author- i s : Let
U
be a c o u n t a b l e complete t h e o r y w i t h
Then i f
A
i s any n o n p r i n k i p a l m.-type t h e r e i s a 2m-type
Lemma 2 . 1 I(U,w)
= 3.
while
T
mtm
is not.
)
Proof.
Let
A
i n f i n i t e l y many m-gypes s i n c e
-
a
many m-types o v e r
-
a
b e prime o v e r
M
,
i.e.
realizing
.
There a r e
i s n o n p r i n c i p a l and hence i n f i n i t e l y
-
in
A
Thus t h e r e i s a 2n-type
Th ( M , a ) .
.
' 2 A which is n o t p r i n c i p a l o k e r A -, n -
- 1
~hbose a
realizing
il
~
such t h a t , a
and - I
a
fl
g
since
.
' M
b
for otherwise
1e s t a b l i s h e s
I"
- n
I-
Consider t h e t y p e
-
i s prime o v e r
r1
realizes
a
= tp(a
7m,m
but
and -I
2
%&$
ep
is p r i n c i p a l over
A
cannot b e p r i n c i p a l over
A
,
3
would be p r i n c i p a l o v e r
t h e lemma.
r
a ).
(r) -
i s prime o v e r
M
A
by Lemma 1.1
.
This
@
=3
T b e a c o u n t a b l e complete t h e o r y which h a s a b i n a r y r e l a t i o n
Let *
=
symbol
R
.
%
For
cp C L
define
1
lcpq = ((Rxy A Ry XI
We say t h a t property
i
d
( 7
E
Rxy A 1 Ryx)) A cp(x)
holds o f
cp
l9 (ii)
1
A
. i
-
i s an e q u i v a l e n c e r e l a t i o n on
kT
cp(y)
i f the f o l l o w i n g s e v e S
conditions a r e s a t i s f i e d :
i .e .
A
cp
.
lqyyl A ~ x y A 1~ y + x RX y A l 11
i s a congruence r e l a t i o n w i t h r e s p e c t t o
~ xy 11
pi
i.e .
X~
Rv ir A 1 Rv v 0 1 1 0
(Rzy A 7 Ryz)) i.e.
(R;
where
z
i s dense on
v A 1 Rv v ) 0 1 1 0
rp/xip
.
*
(ftxz h 7 Rzx) )
where
z
i s a new
(cp(z) /\ (Rzx A 7 Rxz) )
where
z
i s a new
32 ( c p f z )
32
-
i s a new v a r i a b l e
A
variable. i.e.
0
Rv v A 1 Rv v 1 0 0 1
i s "without e n d p o i n t s " on
cp/kip
.
and :
( v i i - ) Either f o r each p r i n c i p a l 1-type a r e a t most f i n i t e l y many .l-types
$
A
t h a t t h e r e i s a 2-ty&
((Rv V A T R v v ) V 1 0 0 1
i n pxq X'Py
o r f o r each p r i n c . i p q l 1-type
containing
p q
there
cp
containing
such
cp
containing
%
v ) 0 1 p
there
a r e a t most f i n i t e l y many 1-types
q
conta
ng
cp
such
1 A
t h a t t h e r e is a 2-type
in
pxq
containing
1 4
Roughly speaking p r o p e r t y of
T
E
h o l d s of
t h e s t r u c t u r e o b t a i n e d by r e s t r i c t i o n t o
Ehrenfeucht example:
R
N
i f i n each model
cp
N
resembles t h e
i s a dense o r d e r i n g o f e q u i v a l e n c e c l a s s e s ,
and p r i n c i p a l t v p e s are almost a r r a n s e d i n a seauence.
~~~~~
A model
of t h e complete t h e o r y
M
-
-
whose language i n c l u g e s
T
t J'
t h e b i n a r y r e l a t i o n symbol
f i n i t e number o f formulae
E
(i) property
is s a i d t o be
R
q0;.
...$I t n
holds of
I n t h i s case w e a l s o say t h a t
q
T
i
L
for
is
1
E-like
i f there are a
such t h a t :
i 5 n
E-like.
-
The Theorem
2.
For t h e remainder of t h i s c h a p t e r we assume t h h t t h e o r y i n t h e lahguage w i t h one b i n a r y r e l a t i o n symbol symbols
.
{a : i C } i
We a l s o assume t h a t
T
i s a complete
T R
and c o n s t a n t
admits e l i m i n a t i o n
*
of q u a n t i f i e r s And t h a t it h a s t h r e e countable models.
Our main r e s u l t i s t h e f o l l o w i n g : There i s
Theorem 2 . 1 such t h a t
1V
iTn
.
h o l d s of . q . i
.
cp
i
nCw
and t h e r e a r e formulae
i s w - c a t e g o r i c a l and f o r each 0
i5n
CPOt-.
.
property
Ll
E
The proof of t h i s theorem r e s t s on t h e f o l l o w i n g two lemmas whose p r o o f s a r e d e f e r r e d t o $ 3 and $ 4 . Lemma 2 . 2
Let
'
Then t h e r e i s a formula
holds of
3
E L
1
qCp
b e c o n t a i n e d i n a nonprdncipal l - t y p e such that
kT cp
-+ Q'
land p r o p e r t y
p
.
E
.
Lemma 2 . 3
There are o n l y f i n i t e l y many n o n p r i n c i p a l l - t y p e s i n .2-
The f o l l o w i n g i s immediate:
T
.
- -
Lemma 2.4'1'1f
tp(b)
i s an n-tuple
i n a model
N
A
7-
. (A)
i s t h e unique n-type
such t h a t Y
v
i
= v
j
~ A i f f b= b i j w
i
v
then
T
,
tp(b.1 I
2
~ b1 . 3b : f o r
By Lemma 2.4 and
Proof of t h e theorem from t h e lemmas, Ryll-Nandzewski's
n-j,~
F A if; N
j
of
theorem t h e r e must b e a n o n p r i n c i p a l 1-type i n
T
.
For
n
where
i s an isomorp&sm
K n
n E o
and f o r
n
n Co
C o n s t r u c t by r e c u r s i o n l
P (0) = 0 n
is
A
.
r e a l l y needed i n Lemma 3 . 4 Example 3 . 1
C
.
where
n = (m : m=n)
isomorphic
L
P (m) = m-1 n
and
The C-generic model i s t h e n
to,Pw> =
The f o l l o w i n g lemma p r o v i d e s a p a r t i a l c o n v e r s e t o Lemma 3.4 and s t r e n g t h e n s t h e c o n n e c t i o n between classes o f - s t r u c t u r e s w i t h AP and t h e o r i e s which admit e l i m i n a t i o n o f q u a n t i f i e r s .
\ Lemma 3.5
be a denumerable s t r u c t u r e s u c h t h a t Th (M)
M
Let
a d m i t s e l i m i n a t i o n o f q u a n t i f i e r s , and s u c h t h a t e v e r y f i n i t e s u b s e t of
i s contained i n a f i n i t e substructure o f
M
c l a s s o f f i n i t e s t r u c t u r e s which c a n b e embedded i n h a s t h e amalgamation p r o p e r t y , and
for
Proof.
Let
i = 0,l
.
A, Bo' in
A
0'
B
I
E C
Since
0
Let M
.
C
be t h e
Then
C
i s 2-generic.
andlet
f
,i
: A - t B
i
b e embeddings
There i s n o l o s s o f " . g e n e r a l i t y i n assuming t h a t
are substructures of
B1 B
A, B
M
,
.
M
A
and
B 1
M
and t h a t
f
0 I are f i n i t e and L
is t h e inclusion o f
i s f i n i t e t h e r e are
open formulas which f i x t h e i r isomorphism t y p e s a s s u b s t r u c t u r e s of But
A,
f
(A)
1
s a t i s f y the same open formula and s o
•’1
e l e m e n t a r y s i n c e Th (M) admits e l i m i n a t i o n o f q u a n t i f i e r s f
-1 1
can b e e x t e n d e d t o a n isomorphismeof
B
1
M.
is i n f a c t
.
But t h e n
and an e x t e n s i o n
B'
1
of
'
A
.
Now
shdws t h a t
(B
0
M
U B ') 1
C
generates a m e m b e r o f
.
his argument a l s o
s a t i s f i e s t h e condtions of Lemma 3 . 1 and i s 4
C-homogeneous,
Therefore
.Z
h a s AP and
M
i s C-generic.
Chapter. 4 Q u a n t i f i e r e l i m i n a b l e graphs 1.
Examples I n t h i s c h a p t e r we apply t h e r e s u l t s of Chapter 3 t o graphs whose
t h e o r i e s admit e l i m i n a t i o n of q u a n t i f i e r .
T h e o r i e s a r e assumed t o be
complete t h e o r i e s w i t h one b i n a r y r e l a t i o n symbol e l i m i n a t i o n of q u a n t i f i e r s . i r r e f l e x i v e , i.e.
model
vv
R
,
and t o admit
We a l s o s t i p u l a t e t h a t each model b e 0
.
1Rv v
0 0
This e n s u r e s t h a t t h e r e i s
o n l y 1-type. I n t h i s s e c t i o n w e s h a l l p r e s e n t s e v e r a l simple examples and some basic definitions. W e f i r s t i n t r o d u c e a b b r e v i a t i o n s f o r some b a s i c formulas.
abbreviations a r e
I,
r,
AO,
Al,
A2'
U
These
d e f i n e d as f o l l o w s :
A xy = df (Rxy A Ryx) V x = y 0 A xy = df (1 Rxy A 1
1 Ryx) V
x = y
S e v e r a l well-known. examples a r e t h e f o l l o w i n g : DO
-
The t h e o r y o f - < Q , o
t h e r a t i o n a l s under t h e u s u a l
ordering. n Ek
-
The t h e o r y of an e q u i v a l e n c e r e l a t i o n w i t h c l a s s e s o f power
GA
-
The
Z(A)
k
, where'
15 n
embedded f o r
n € A c w
.
(n+3)
equivalence
,k5
generic structure for the class
f i n i t e graphs i n which t h e
n
Z(A)
cycle cannot be
of
-
-
DOn
The t h e o r y of t h e d i r e c t produet of a &el a n d ' t h e complete graph on
Given 2.
G
.
of: T
-
"G
U
?
((9.9)
:
.
g f G))
of
DO
.
p o i n t s where
from t h e denumerable model
i s t h e graph with u n i v e r s e
R- = ( G x G ) \ ( R G G
Clearly
n
?'
we may form i t s d u a l
T
*
--
T
and r e l a t i o n
G
-
is t h e t h e o r y of
a l s d admits e l i m i n a t i o n of q u a n t i f i e r s .
DO
G
.
is self dual,
w h i l e t h e d u a l s of t h e o t h e r t h e o r i e s a r e n o t i n c l u d e d i n t h e l i s t . The f o l l o w i n g p r o p o s i t i o n g i v e s a way o f c o n s t r u c t i n g new
-
examples from known ones. Let
Proposition 4 . 1 b e such t h a t
To'T1 Let
(AivOvl
be
b e denumerable models o f
structure (ao = a
((a ,a
1
)
1
C A
~ c I= IA~x~B(
by
0,1,2
A.v v 1 0 1
V
To
A,B
0
i,j,k
T ,T
1
0
and
.
Then
and
(\vovl) T1
respectively.
Define t h e
RC = { ( ( a , b ) ( a l , b l ) ) 0 o f
( b , b ) F RB) V ( ( a o , a l ) 6 R A ) ] 0 1
C R~ A bo = b l ) ) , ]
i n some o r d e r and l e t
Th(C)
.
Define
and
';he
Th(D)
:
structure
D
admit
e l i m i n a t i o n of q u a n t i f i e r s . . 1
Proof:
We p r e s e n t t h e proof t h a t
fiers.
The proof f o r
w e can r e t r i e v e
A
is s i m i l a r .
D
and
Th(C)
B
admits e l i m i n a t i o n o f q u a n t i -
The main i d e a i s t h a t from
i n o r d e r t o c o n s t r u c t enough automorphisms I t s u f f i c e s t o show
i n t h e Wreath p r o d u c t of t h e automorphism groups. A
that i f
a
c,d
C
a r e two sequences o f n-elements o f
C
such t h a t
-
&
1 r
c
and i
;i_
R
for
, mc n
r
cRcm*
and
p
i < n ( Z ' z ~ + ~6 ) ( c B i thesequence
c
1
.
U {cA})
- Z , and
.
I t i s n o t d i f f i c u l t t o extend
I c ~ \(UC
€
B
0' 1
We prove by i n d u c t i o n that
may be extended t o
B
U UB
= UB
be as above.
B
0' 1
0' 1
construGt t h e r e q u i r e d
A,B
and
z
n+l
('0
€ B
so t h e sequence
,z
€
nL1
.
z
n
F B
\ A
1-i
Now
can b e s h o r t e n e d .
-
'
- -
Thus i n each case. t h e s h d r t e s t sequence h a s Ll e n g t h 2 i f Y
That
can be extended t o a l i n e a r o r d e r i s c l e a r .
a
I UC I
We now show by i n d u c t i o n on "Cf '
IC
such t h a t denote
Ic~
on
A
extending
uC ,
0
t h e r e i s t h e 3-type
r
3
j
{v