thermal properties of soils and rocks

14 downloads 0 Views 12MB Size Report
Sundberg, J. 1982: Metoder for bestamning av varmebverforande egenska- per i jord och berg. (Methods ..... 7065), scanner (AR elek- tronik), constant current source (Philips PE 1541) and a switch box. ...... normal moran, klass I I . En betydligt ...
THERMAL PROPERTIES OF SOILS AND ROCKS

Jan Sundberg

GEOLOGISKA INSTITUTIONEN Publ. A 57 1988

GEOLOGISKA INSTITUTIONEN CHALMERS TEKNISKA HOGSKOLA GOTEBORGS

och

UNIVERSITET

THERMAL PROPERTIES OF SOILS AND ROCKS

Jan Sundberg

Publ. A 57 Dissertation ISSN 0348-2367

Gotebot^ 1988

Postadress

Gatuadress

Telefon

Telex

C h a l m e r s University o f Technology

41296

Sven Hultins gata 8

0 3 1- 7 2 1 0 0 0

2369 G H A L B 1 B S

a n d University o fGoteborg Department of Geology S-412 9 6 G O T E B O R G

GOTEBORG

{Gothenburg} SWEDEN

THERMAL PROPERTIES OF SOILS AND ROCKS Jan and

Sundberg, Department o f Geology, Chalmers U n i v e r s i t y o f Technology U n i v e r s i t y o f G o t e b o r g , S-412 9 6G o t e b o r g , Sweden.

ABSTRACT Knowledge o f t h e thermal p r o p e r t i e s o f rock and s o i l i s v a l u a b l e i n ' many d i f f e r e n t areas. Equipment f o r t h e a n a l y s i s o f t h e r m a l c o n d u c t i v i t y has been developed. Laboratory o r i n s i t u d e t e r m i n a t i o n s o f thermal p r o p e r t i e s can b eperformed under s t a t i o n a r y and t r a n s i e n t c o n d i t i o n s b ymany d i f f e r e n t m e t h o d s . Two k i n d s o f p r o b e m e t h o d s , t h e s i n g l e - p r o b e and t h e m u l t i - p r o b e method have been i n v e s t i g a t e d . Theory and d i f f e r e n t s o u r c e s o f p o t e n t i a l e r r o r s , f o r i n s t a n c e l e n g t h diameter r a t i o and i n f l u e n c e o f sample boundary, have been t r e a t e d . S u g g e s t i o n s t o a v o i d such e r r o r s have a l s o been made. D i f f e r e n t types o f t h e o r e t i c a l methods f o r e s t i m a t i n g thermal conduct i v i t y have been described and analyzed. The s e l f - c o n s i s t e n t a p p r o x i mation has been adopted and applied t o c a l c u l a t e t h e thermal c o n d u c t i v i t y o f d i f f e r e n t types o f rock and s o i l . The method has been d i r e c t l y applied t o c r y s t a l l i n e rock and t o extremely porous s o i l . I n m i n e r a l s o i l , s a n d s t o n e and l i m e s t o n e d e t e r m i n a t i o n s , i t was necessary t o modify t h e method and introduce a contact r e s i s t a n c e between t h e g r a i n s . Vapor d i f f u s i o n , unfrozen and f r o z e n c o n d i t i o n s , i n c l u d i n g u n f r o z e n water have a l s o been t r e a t e d . The method has been v e r i f i e d b y t h e r m a l c o n d u c t i v i t y measurements o na number o f c r y s t a l l i n e and s e d i mentary rocks and 600 s o i l s . A method Introduced e a r l i e r f o r computing the thermal c o n d u c t i v i t y o f rock/mineral from measurements o n a m i x t u r e o f p u l v e r i z e d r o c k / m i n e r a l and water, has been e v a l u a t e d . The r e s u l t i n d i c a t e s t h a t t h e u s e o f t h e mean v a l u e o f Hashin-Shtrikman's bounds t o c a l c u l a t e t h e s o l i d phase c o n d u c t i v i t y may I n t r o d u c e l a r g e errors. The s t u d y a l s o t r e a t s t h e content, mineral distribut p r o p e r t i e s o f rock and s o i t a r y volume (REV) o f soil

I n f l u e n c e o f changes i n temperature, water i o n , vapor d i f f u s i o n , e t c ,o nt h e thermal l , and discusses t h e r e p r e s e n t a t i v e elemenand rock.

An e x t e n s i v e s t a t i s t i c a l s t u d y o n c r y s t a l l i n e r o c k has been p e r f o r m e d based on more than 4000 measured and c a l c u l a t e d thermal c o n d u c t i v i t y values. S t a t i s t i c a l i n t e r v a l s were created f o rd i f f e r e n t types o f rock. A guide has been developed f o r c a l c u l a t i n g t h e thermal p r o p e r t i es o f s o i l based o n9 0 0 m e a s u r e m e n t s . Keywords: Thermal c o n d u c t i v i t y , thermal p r o p e r t i e s , rock, s o i l , needle-probe, m u l t i - p r o b e , method, s e l f - c o n s i s t e n t , Hashin and Shtrikman, determination, errors, axial-flow. ISSN 0348-2367 Publ. A57 1988

i

PREFACE Following t h e o i l crisis at the beginning o f the seventies, extensive e f f o r t s ensued t o develop ways o f s u b s t i t u t i n g t h e o i l u t i l i z e d f o r h e a t i n g b y o t h e r e n e r g y f o r m s . T h e E a r t h H e a t Pump G r o u p a t t h e C h a l mers U n i v e r s i t y o f Technology t o o k p a r t i n t h i s work. The group was formed i n t h e l a t e s e v e n t i e s and c o n c e n t r a t e d i t s e f f o r t s on d e v e l o p i n g h e a t pump s y s t e m s c o m b i n e d w i t h h e a t s t o r a g e i n g r o u n d . T h i s r e s e a r c h w o r k was made p o s s i b l e t h r o u g h t h e f i n a c i a l s u p p o r t o f t h e Swedish Council f o rB u i l d i n g Research. A s u b s t a n t i a l part o f t h i s work h a s b e e n c a r r i e d o u t u n d e r t h e l e a d e r s h i p o f P r o f . K. G o s t a E r i k s s o n , the Department o f Geology, Chalmers U n i v e r s i t y o f Technology. One o f t h e most i m p o r t a n t f a c t o r s a f f e c t i n g t h e p e r f o r m a n c e o f s u b s u r f a c e h e a t i n g systems a r e t h e thermal p r o p e r t i e s o f s o i l s and r o c k s . S i n c e knowledge o f t h e s e t h e r m a l p r o p e r t i e s was l i m i t e d , work was initiated t o further explore this area. This thesis presents results from t h i s work. The t h e s i s comprises a summary, t h r e e r e p o r t s and one paper. The p r o j e c t was c a r r i e d o u t i n t w o phases. The f i r s t phase was p e r f o r m e d d u r i n g 1 9 7 9 - 1 9 8 5 a n d r e s u l t e d i n r e p o r t n o . 1 , 2 a n d 3. R e p o r t n o . 2 has b e e n w r i t t e n i n c o l l a b o r a t i o n w i t h Jacob J o n s s o n a n d Bo T h u n h o l m . My p a r t o f t h e w o r k i s d e s c r i b e d i n t h e p r e f a c e t o r e p o r t n o . 2. T h i s f i r s t phase, which c o n s t i t u t e s t h e main p a r t o f t h e work, has been f i n a n c i a l l y supported by t h e Swedish Council f o rBuilding Research. The second phase was p e r f o r m e d d u r i n g 1988 and i s r e p o r t e d i n paper no. 1 and t h i s summary. T h i s l a t t e r phase has been funded by t h e Chalmers U n i v e r s i t y o f Technology and t h e Swedish G e o t e c h n i c a l Institute. Since t h r e e o f t h e r e p o r t s a r e w r i t t e n i n Swedish, an e x t e n s i v e summary h a s been made i n E n g l i s h . T h e a i m h a s been t h a t t h e E n g l i s h summary f u l l y cover t h e whole work and make f o r a f r u i t f u l r e a d i n g . I n some cases t h i s summary has been e x t e n d e d r e l a t i v e t o t h e background m a t e r i a l due t o e x p e r i e n c e gained d u r i n g t h e work. T h i s has been p a r t i c u l a r y t r u e when d e a l i n g w i t h e x p e r i m e n t a l methods. T h i s work was p e r f o r m e d a b o u t 8 y e a r s a g o . Some p a r t s o f r e p o r t n o . 1 and 2 w e r e l e s s i m p o r t a n t f o r t h e d i s s e r t a t i o n o r d e s c r i b e d i n a b e t t e r way i n the summary. These p a r t s o f r e p o r t no. 1 and 2 have been excluded f r o m the thesis. I w a n t t o e x p r e s s m y g r a t i t u d e t o P r o f . K. G b s t a E r i k s s o n f o r h i s support and encouragement throughout t h e e n t i r e course o f t h e work. I e s p e c i a l l y w i s h t o t h a n k my a d v i s e r d u r i n g p h a s e 2 , D r . G u n n a r G u s t a f s o n , f o r h i s good guidance, v a l u a b l e s u g g e s t i o n s and c r i t i c a l comments. The

d i s c u s s i o n s w i t h a l l my c o l l e a g u e s a t t h e D e p a r t m e n t

i i1

o f Geology

have been most v a l u a b l e . I n a d d i t i o n t o those already acknowledged i n t h e r e p o r t s , I w o u l d l i k e t o s p e c i a l l y m e n t i o n my c o l l e a g u e s a t t h e E a r t h H e a t Pump G r o u p , I n g v a r R h e n a n d P e t e r W i l e n , who h a v e c o n t i n u a l l y g i v e n me c r i t i c a l s u g g e s t i o n s f o r i m p r o v e m e n t s . I n 1978, i t was p r i m a r i l y D r . S v e n - A k e L a r s o n w h o i n t r o d u c e d me t o t h e w o r l d o f h e a t f l o w a n d t h e r m a l c o n d u c t i v i t y . I w o u l d l i k e t o e x t e n d my t h a n k s f o r his support d u r i n g t h e work. I a l s o thank Dr. L a r s 0. E r i c s s o n who, d r a w i n g o n h i s e x p e r t i s e i n a r e l a t e d f i e l d , h e l p e d me w i t h v a l u a b l e comments. My t h a n k s Institute

a l s o t o Dr. Jan H a r t l e n and t h e Swedish f o rsupport and understanding.

Geotechnical

I a l s o w i s h t o t h a n k a l l o f t h e o t h e r s w h o h a v e h e l p e d me p r o d u c e t h i s m a n u s c r i p t : M r s . Ann-Marie H e l l g r e n , who helped t y p e phase 1 , M r s . Eva Dyrenas, f o r t y p i n g phase 2, M r s . R u t g e r d A b r i n k , who made t h e d r a w i n g s f o r p h a s e 2, M r s . E v a R a l d o w , who c o r r e c t e d my E n g l i s h a n d M r s . Lena K a r l s s o n f o rv a l u a b l e a s s i s t a n c e w i t h l a b o r a t o r y a n a l y s e s .

Linkoping

Jan

i n November 1988

Sundberg

iv

REPORTS AND PAPER COMPRISING THIS THESIS

T h i s t h e s i s c o n t a i n s two p a r t s . The f i r s t p a r t i s a ne x t e n s i v e t e x t w h i c h s u m m a r i z e s , e v a l u a t e s and e x t e n d s some p a r t s o f t h e s e c o n d p a r t . The second p a r t c o n t a i n s t h e f o l l o w i n g r e p o r t s and paper and w i l l b e r e f e r r e d t o i n t h e t e x t b y t h e r e p o r t o r p a p e r number. Some p a r t s o f r e p o r t no. 1 and 2 a r e l e s s i m p o r t a n t f o r t h e d i s s e r t a t i o n o r d e s c r i bed i n a b e t t e r w a y i n t h e summary. These p a r t s o f r e p o r t no. 1 a n d 2 are e x c l u d e d f r o m t h e t h e s i s . The e x c l u d e d p a r t s a p p e a r s f r o m t h e c o n t e n t s o fr e p o r t no. 1 and 2 .

Reports Sundberg, J .1982: Metoder f o r bestamning a vv a r m e b v e r f o r a n d e egenskaper i j o r d och berg. (Methods f o r d e t e r m i n i n g t h e thermal p r o p e r t i e s of r o c k a n ds o i l - i n S w e d i s h ) . C h a l m e r s T e k n i s k a h o g s k o l a , J o r d v a r m e g r u p p e n , R e p o r t No. 5, G b t e b o r g , Sweden. ( R e p o r t no. 1 ) . S u n d b e r g , J . , T h u n h o l m , B., J o h n s o n , J . , 1 9 8 5 : V a r m e b v e r f o r a n d e e g e n skaper i svensk berggrund. (Thermal properties o f Swedish rocks - i n S w e d i s h ) . S w e d i s h C o u n c i l f o r B u i l d i n g R e s e a r c h , R e p o r t R97, S t o c k h o l m , Sweden. (Report no. 2 ) . Sundberg, J., 1986: V a r m e b v e r f o r a n d e egenskaper i svenska j o r d a r t e r . V a r m e k o n d u k t i v i t e t , s p e c i f i k v S r m e k a p a c i t e t och l a t e n t varme. (Thermal p r o p e r t i e s o fSwedish s o i l s . Thermal c o n d u c t i v i t y , thermal c a p a c i t y and l a t e n t h e a t - i n S w e d i s h ) . S w e d i s h C o u n c i l f o r B u i l d i n g R e s e a r c h , R e p o r t R104, S t o c k h o l m , Sweden. ( R e p o r t no. 3 ) .

Paper Sundberg, J., 1988: The s e l f - c o n s i s t e n t a p p r o x i m a t i o n a p p l i e d t o t h e r m a l c o n d u c t i v i t y o fc r y s t a l l i n e r o c k , s e d i m e n t a r y r o c k and s o i l . In m a n u s c r i p t f o r p u b l i s h i n g . (Paper no. 1 ) .

V

CONTENTS ABSTRACT PREFACE R E P O R T S AND CONTENTS

i PAPER COMPRISING T H I S T H E S I S

1.

INTRODUCTION

2.

E X P E R I M E N T A L P R O B E METHODS FOR THERMAL P R O P E R T I E S Measurement technique Theory Equipment Calibration Sources o f error

2.1 2.2 2.3 2.4 2.5 3. 3.1 3.2 3.3 3.4 3.5

i i v v i i i

1 DETERMINING 4 4 5 10 13 13

T H E O R E T I C A L METHODS FOR D E T E R M I N I N G T H E R M A L PROPERTIES Introduction A p p l i c a t i o n t o rock A p p l i c a t i o n t o s o i l and porous rock Accuracy Computing t h e thermal c o n d u c t i v i t y o f rock from measurements on p u l v e r i z e d w a t e r - s a t u r a t e d samples

21 21 23 24 28 28

4. 4.1 4.2 4.3 4.4

T H E R M A L P R O P E R T I E S OF R O C K S AND S O I L S D i f f e r e n t thermal t r a n s p o r t mechanisms Influence of various characteristics Representative elementary volume Thermal p r o p e r t i e s o f rocks and s o i l s

31 31 32 36 37

5.

CONCLUSIONS

42

REFERENCES

44

APPENDIX: REPORT

No. 1

Metoder

f o r bestamning av varmeoverfbrande

egenskaper

i jord och berg

49

REPORT

No. 2

Varmeoverforande egenskaper

i svensk berggrund

REPORT

No. 3

Varmeoverfbrande egenskaper

i svenska

PAPER

No. 1

The s e l f - c o n s i s t e n t approximation applied t o t h e thermal c o n d u c t i v i t y o f c r y s t a l l i n e rock, sedimentary rock and s o i l

vii

jordarter

77 ...

149

279

1

1.

INTRODUCTION

K n o w l e d g e o f t h e t h e r m a l t r a n s p o r t p r o p e r t i e s o f r o c k and s o i l i s l u a b l e i n many d i f f e r e n t a r e a s . Some e x a m p l e s a r e t h e u t i l i z a t i o n storage of ground heat, geothermal heat flow determinations and d e t e r m i n a t i o n s o f h e a t l o s s f r o m b u r i e d c a b l e s and p i p e l i n e s .

vaand

The t h e r m a l p r o p e r t i e s o f a m a t e r i a l depend on a number o f p r o p e r t i e s s o m e o f w h i c h can be t i m e - d e p e n d e n t . The t h e r m a l c o n d u c t i v i t y o f c r y s t a l l i n e r o c k i s m a i n l y i n f l u e n c e d by t h e f o l l o w i n g f a c t o r s : mineral composition temperature isotropy/anisotropy fluid/gas in micro fissures Q u a r t z has a t h e r m a l c o n d u c t i v i t y s e v e r a l t i m e s h i g h e r t h a n t h a t o f o t h e r common r o c k f o r m i n g m i n e r a l s . The q u a r t z c o n t e n t i s t h e r e f o r e i m p o r t a n t f a c t o r . The t h e r m a l c o n d u c t i v i t y o f r o c k d e c r e a s e s as t h e temperature increases.

an

I f the t e x t u r e of the rock i s a n i s o t r o p i c a l , thermal c o n d u c t i v i t y i s a f u n c t i o n of the d i r e c t i o n of the heat flow. I f the micro f i s s u r e s in the rock are f i l l e d w i t h a i r instead of water, the thermal conductivit y d e c r e a s e s r a p i d l y w i t h s m a l l c r a c k p o r o s i t y (< 1 % ) . A t a l a r g e r scale the ordinary cracks also influence heat transport. In a d d i t i o n t o the above mentioned f a c t o r s , the thermal conductivity o f s o i l and s e d i m e n t a r y r o c k i s a f u n c t i o n o f t h e p o r o s i t y and the degree of water s a t u r a t i o n . T h e r m a l c o n d u c t i v i t y d e c r e a s e s as p o r o s i t y i n c r e a s e s . M o r e o v e r t h e r m a l c o n d u t i v i t y s h a r p l y f a l l s when the degree o f s a t u r a t i o n i s below appr o x i m a t e l y 50%. A t u n s a t u r a t e d c o n d i t i o n s and a b o v e r o o m temperature, v a p o r d i f f u s i o n and r a d i a t i o n become m o r e i m p o r t a n t w i t h increasing temperature. B o t h t h e s e h e a t t r a n s p o r t m e c h a n i s m s can be a d d e d t o t h e t h e r m a l c o n d u c t i v i t y and f o r m an e f f e c t i v e t h e r m a l c o n d u c t i v i t y as a function of temperature. M e a s u r e m e n t o f t h e r m a l c o n d u c t i v i t y can be c l a s s i f i e d as i n s i t u m e a s u r e m e n t and l a b o r a t o r y m e a s u r e m e n t s . I n s i t u m e a s u r e m e n t s a r e p e r f o r med a t n a t u r a l a n d u n d i s t u r b e d c o n d i t i o n s . One p r o b l e m a t i n s i t u m e a s u r e m e n t s i s t o k n o w how r e p r e s e n t a t i v e t h e m e a s u r e m e n t i s due t o n a t u r a l c h a n g e s i n e.g. w a t e r c o n t e n t . I f a p r o p e r e v a l u a t i o n can be made on s u c h t i m e d e p e n d e n t v a r i a b l e s , i n s i t u m e a s u r e m e n t s a r e , i n general, preferable. L a b o r a t o r y m e a s u r e m e n t s c o m p r i s e a s m a l l e r s a m p l e v o l u m e . The result of such measurements i s r e l i a b l e , provided the f o l l o w i n g points are

1

2

fulfilled: the sample i s undisturbed the sample volume i s representative o f t h e s o i l / r o c k the volume a f f e c t i n g t h e measurements i s representative of t h e sample c o r r e c t i o n i s made f o r t e m p e r a t u r e d i f f e r e n c e s between l a b o r a t o r y and f i e l d c o r r e c t i o n i s made f o ro t h e r t i m e - d e p e n d e n t v a r i a b l e s ( e . g . water content) Calculations o f t h e thermal conductivity o f earth materials from volume f r a c t i o n s o f m i n e r a l s , pore gas and pore f l u i d o f f e r many advantages. Knowing t h e changes i n , e.g. temperature and water content, i t i s possible t o c a l c u l a t e t h e change i n thermal c o n d u c t i v i t y . E s t i m a t e s c a n be made f r o m t h e r e s u l t o f a g e o t e c h n i c a l i n v e s t i g a t i o n . An a n a l y s i s o f t h e s e n s i t i v i t y o f t h e t h e r m a l c o n d u c t i v i t y c a n be made f r o m p o s s i b l e v a r i a t i o n s 1n t h e v o l u m e f r a c t i o n s . T h e o r e t i c a l c a l c u l a t i o n s o f e l e c t r i c a l t r a n s p o r t p r o p e r t i e s have been performed already during t h e l a s t century. However, t h e o r i e s o f elect r i c a l t r a n s p o r t can be t r a n s f e r r e d i n t o o t h e r areas o f t r a n s p o r t such as h y d r a u l i c c o n d u c t i v i t y a n d t h e r m a l c o n d u c t i v i t y o r v i c e v e r s a . T h i s has been done r a t h e r e x t e n s i v e l y f o rboth rock and s o i l m a t e r i a l However, erfipirical and semi-empirical s o l u t i o n s have dominated t h e f i e l d . An i n t e r e s t i n g t e n d e n c y i s t h a t e x p e r i e n c e g a i n e d i n o n e a r e a of e x p e r t i z e was sometimes d i f f i c u l t t o apply t o t h e work i n other areas. Several

terms that describe thermal

transport

T h e r m a l c o n d u c t i v i t y , A. ( W / ( m . K ) ) : t h e a b i l i t y transport thermal energy. Thermal d i f f u s i v l t y , K (m^/s): temperature differences. Thermal thermal

the ability

a r e defined

below:

of a material t o

o f a material

t o level

capacity, C (J/(m^,K)): t h e capacity o f a material t o store e n e r g y . C=QC, Q : d e n s 1 t y , K g / m ^ , c : t h e r m a l c a p a c i t y , J/(Kg,K).

These thermal

properties

a r e r e l a t e d t o each other

2

as f o l l o w s :

3

A s e l e c t i o n o f d i f f e r e n t methods t o determine thermal c o n d u c t i v i t y is summarized i n t h e t a b l e below: Method

Determining

property

Comment

Multi-probe method

Conductivity Diffusivity

T r a n s i e n t f i e l d and l a b o r a t o r y method. Applicable t o rock and s o i l .

Single-probe method (needle-probe)

Conductivity (Diffusivity)

T r a n s i e n t f i e l d and laboratory method. A p p l i c a b l e t o rock and s o i 1 .

Divided-bar method

Conductivity

Stationary laboratory method. Applicable t o rock.

THS-method (Transient hot strip)

Conductivity Diffusivity

Transient laboratory method. Applicable t o rock, fluid, (soil).

Theoretical calculation

Conductivity Thermal capacity

Calculation from rock m i n e r a l c o n t e n t and soil mineral content, p o r o s i t y and w a t e r c o n t e n t

The a i m o f t h e work has

been:

to develop Instrumentation f o r measuring thermal c o n d u c t i v i t y , primarily of soils to investigate potential probe method

errors using the transient cylindrical

to e v a l u a t e d i f f e r e n t t h e o r e t i c a l methods f o r determining the t h e r m a l p r o p e r t i e s o f s o i l s and r o c k s to evaluate the a p p l i c a b i l i t y o f using thes e l f - c o n s i s t e n t approximation f o r calculating thermal conductivity to recommend t h e r m a l p r o p e r t y v a l u e s f o r rocks the b a s i s o f m e a s u r e m e n t s and c a l c u l a t i o n s t o i n c r e a s e t h e knowledge and u n d e r s t a n d i n g t r a n s p o r t i n s o i l s and r o c k s

3

and s o i l s ,

of thermal

on

4

2.

E X P E R I M E N T A L P R O B E M E T H O D S FOR

T h e m o s t common m e t h o d f o r d e t e r m i n i n g s o i l i s t h e p r o b e m e t h o d . Some r e a s o n s

DETERMINING THERMAL PROPERTIES the thermal conductivity of for i t s popularity are:

the t h e o r y i s s i m p l e i t can be e v a l u a t e d g r a p h i c a l l y short time o f measurement easy insertion i n soft m a t e r i a l a p p l i c a b l e t o both f i e l d and l a b o r a t o r y b o t h c o n d u c t i v i t y and d i f f u s i v i t y ( t r a n s i e n t m e t h o d ) can be termined. The probe method i s a l s o o f t e n used f o r f i e l d measurements o f w h i l e t h e m o s t common l a b o r a t o r y m e t h o d f o r m e a s u r i n g t h e r m a l t i e s o f rock m a t e r i a l s i s t h e s t a t i o n a r y divided bar method .

de-

rock, proper-

Report no. 1 t r e a t s d i f f e r e n t methods o f e s t i m a t i n g thermal c o n d u c t i v i t y . The main p a r t o f t h e work i s concentrated on d i f f e r e n t probe methods. 2.1

Measurement

technique

A heat generating probe i s i n s e r t e d into t h e ground. A temperature measuring gauge i s i n s t a l l e d i n t h e probe a t h a l f l e n g t h . A t t i m e t = 0 , a constant e l e c t r i c a l power i s turned on. The increase i n temperature w i t h t i m e i s r e g i s t e r e d . A f t e r a s u f f i c i e n t t i m e , t h e power i s turned o f f and t h e t h e r m a l p r o p e r t i e s a r e e v a l u a t e d f r o m measurement data and a mathematical expression. The s i n g l e - p r o b e method i s f i r s t d e s c r i b e d i n t h e l i t e r a t u r e by t h e two Swedes S t S l h a n e and Pyk ( 1 9 3 1 ) . Today, n e a r l y 60 y e a r s l a t e r , e s s e n t i a l l y t h e same method i s used. The measurement t e c h n i q u e has o f course been f u r t h e r d e v e l o p e d , e s p e c i a l l y d u r i n g t h e l a s t t e n y e a r s . The method has been used and described i n t h e l i t e r a t u r e s e v e r a l t i m e s , s t a r t i n g i n t h e f i f t i e s and l a t e r o n . I n Sweden, S a a r e and Wenner (1957) made a v a l u a b l e c o n t r i b u t i o n t o f i e l d m e a s u r e m e n t s o f the t h e r m a l c o n d u c t i v i t y o f d i f f e r e n t s o i l s . The m u l t i - p r o b e method i s a v a r i a n t on t h e s i n g l e - p r o b e method d e s c r i bed a b o v e . The m e t h o d was d e v e l o p e d a t t h e d e p a r t m e n t o f G e o l o g y , C h a l m e r s U n i v e r s i t y o f T e c h n o l o g y , f r o m an i d e a o f Dr D a v i d M a l m q v i s t . The m e t h o d was f i r s t d e s c r i b e d by L a n d s t r o m e t a l (1979) and was s u b s e q u e n t l y e x a m i n e d and e l a b o r a t e d by t h e a u t h o r ( S u n d b e r g , 1979). The m e a s u r e m e n t t e c h n i q u e i s e s s e n t i a l l y t h e same as t h a t o f t h e s i n g l e - p r o b e method. However, t h e temperature m e a s u r i n g gauge i s p l a c e d a t a c e r t a i n d i s t a n c e away f r o m t h e p r o b e s u r f a c e , see f i g u r e 1. Of course i t i s a l s o p o s s i b l e t o use a c o m b i n a t i o n o f t h e s i n g l e p r o b e and t h e m u l t i - p r o b e method .

4

5

POWER-SUPPLY

REFERENCE TEMPERATURE MEASURING PROBE M E A S U R E M E N T OF A POTENTIAL DAILY T E M P E R A T U R E W A V E )

0,06-0,20m

Figure

1.

( D E P E N D S ON T E S T I N G

MATERIAL!

The m u l t i - p r o b e method.

Another v a r i a n t o f t h e s i n g l e - p r o b e method i s t h e s o - c a l l e d h a l f space probe method. The method i s simple t o use on hard rock. Since i n such m a t e r i a l i t i s d i f f i c u l t t o d r i l l holes f o r t h e probe, t h e design cons i s t e d o f encapsulating a needle probe i n a m a t e r i a l w i t h a low t h e r m a l c o n d u c t i v i t y . The m a t e r i a l i s g r i n d e d away u n t i l t h e probe i s f l u s h w i t h a f l a t surface. The sample o f rock material i s also prepared w i t h a f l a t s u r f a c e and placed d i r e c t l y a g a i n s t t h e h a l f space probe t o measure c o n d u c t i v i t y .A d e t a i l e d d e s c r i p t i o n o f t h e h a l f space probe i s performed by Sass e t a l (1984b). S i m i l a r measurement e q u i p m e n t i s c o m m e r c i a l l y a v a i l a b l e u n d e r t h e name Q u i c k T h e r m a l Cond u c t i v i t y M e t e r (QTM). T h e QTM-method 1s e v a l u a t e d by S a s s e t a l (1984a).

2.2

Theory

The i n f i n i t e l i n e source t h e o r y f o r t h e s i n g l e - p r o b e and t h e m u l t i probe method described i n r e p o r t no. 1 i s v a l i d , provided t h e following conditions a r e met: c o n s t a n t h e a t i n g power homogeneous t e m p e r a t u r e d i s t r i b u t i o n measurement i n f i n i t e line source.

5

at the start of the

6

If

heat

and

starts

the

to

distance

T

=

j "

^

at

t=0,

the

X

thermal

power,

conductivity,

W/(m,K)

K

=

thermal

diffusivity,

m^/s

r

=

radial

- n o . l , eq

(1)

i s derived

eq.

u

a

=

lin-log

u

Euler's

i s small

T

In

B-[-ln

=

(1)

(long

B-(-1n

-

the

time

u

diagram,

in

figure

slope

of

the

asymptote

eq.

(3)

the

1n

figure

2.

V

-

from

the

following

s:" n=1

constant=

shown

From

t

m

n =

time

W/m

distance,

Rewriting

Y

the

t

thermal

T

at

^

=

report

T

- f - ^ x

A. =

equation.

If

temperature

(1)

u

4

In

produced

B-E^(u)

E, ( u ) =

q

be

r i s :

-

or

heat is

conduction obtained.

n ]

(2)

n-n! 0.5772156649....

small

r)

eq.

(2)

can

be

simplified:

v).

eq.

The

general

expression

(3)

(3)

results

in

a

straight

thermal

conductivity

and

thermal

the

diffusivity

can

be

can

be

diffusivity

determined

by

line.

This

evaluated from

the

using

T=0

is

from

the

intercept.

and

2:

= t -2.^46 0

However, the figure

2,

due

the

to

a

determination small

error

logarithmic

in

of the

K

I Srather slope

scale.

6

will

uncertain. have

a

As

strong

I s seen effect

in on

t^

7

T

— —^—-.—if-1n(4K/r^) Figure

2.

l n ( t ) * Y

Temperature r i s e v s 1 n ( t ) f o rt h e case where no thermal contact resistance exists.

When u s i n g t h e m u l t i - p r o b e m e t h o d i n i n s i t u m e a s u r e m e n t s , t h e d i s t a n ce r i s n o r m a l l y b e t w e e n 0 . 0 5 a n d 0 . 2 m d e p e n d i n g o n t h e t y p e o f t e s t m a t e r i a l . However, t h e s i m p l i f i e d eq. ( 3 ) can n o t be used w i t h i n a reasonable measuring time. The procedure used t o c a l c u l a t e t h e thermal c o n d u c t i v i t y and t h e t h e r m a l d i f f u s i v i t y i s based on eq. ( 2 ) . By m i n i m i z i n g t h e f u n c t i o n f ( T , \, x, t ) , w e d e t e r m i n e t h e v a l u e s f o r X. a n d

f(T.

X., X . t ) = [ T ( X . , X , t ) - T ^ j j g ] ^

^obs

~

temperature

A d e t a i l e d d e s c r i p t i o n o f t h e procedure i s given i n report no. 1 . I f r can be d e t e r m i n e d e x a c t l y , a good v a l u e f o r t h e t h e r m a l d i f f u s i v i t y can be d e r i v e d . B l a c k w e l l ( 1 9 5 4 ) h a s d e v e l o p e d a n e q u a t i o n t h a t i n v o l v e s b o t h t h e mat e r i a l i n t h e probe and a p o s s i b l e contact r e s i s t a n c e a t t h e probe surface. Blackwell also presented a long-time solution (see report no. 1 ) . I fu i s s m a l l enough t h e l o n g - t i m e s o l u t i o n can be s i m p l i f i e d : T = B - ( - l n u - Y + 2-A./(rH)) H = t h e conductance a t t h e probe surface,

The l o n g t i m e s o l u (3) p r o v i d e d t h a t sistance i s low). c i t y o f t h e probe.

(5) W/(m^,K)

t i o n s i m p l i f i e d t o eq. ( 5 ) i s transformed into eq. t h e contact conductance i s high (thermal contact r e Equation ( 5 ) i s n o t Influenced by t h e thermal capaThis e f f e c t i s i n t h e higher terms o f eq. ( 5 ) , see

7

8

eq. 5 . 2i n r e p o r t no. 1 . I n c l u d i n g t h e t h e r m a l c a p a c i t y o f t h e p r o b e i n t h e e x p r e s s i o n makes i t p o s s i b l e t o use a s h o r t e r measurement period, e s p e c i a l l y f o r f i e l d probes w i t h a large diameter.

T

A T DEPENDS ON THE CONTACT RESISTANCE ( 1 / H )

-ln(4x/r^) F i g u r e 3.

+ y

Temperature r i s e v s l n ( t )w i t h a thermal resistance at the probe surface.

contact

As c a n b e s e e n i n f i g u r e 3 , a c o n t a c t r e s i s t a n c e a t t h e p r o b e s u r f a c e o n l y r e s u l t s i n p a r a l l e l movement o f t h e slope when u s i n g t h e s i n g l e probe method. However, the time u n t i l a l i n e a r r e l a t i o n s h i p emerges i s i n c r e a s e d . The t h e r m a l c o n t a c t r e s i s t a n c e i s t h e o r e t i c a l l y presumed to be a thin skin with vanishing thermal capacity. S e v e r a l a u t h o r s have t r i e d t o c o m p u t e b o t h c o n d u c t i v i t y and d i f f u s i v i t y t a k i n g i n t o account the contact r e s i s t a n c e . These e f f o r t s were based o n e i t h e r a p p r o x i m a t i v e s o l u t i o n s , ( B l a c k w e l l , 1954) o r curve f i t t i n g p r o c e d u r e s (Beck e t a l , 1956). I n both cases, t h e determinat i o n o f c o n d u c t i v i t y was r e l i a b l e b u t t h e d i f f u s i v i t y r e s u l t w a s s t r o n g l y d e p e n d e n t o n t h e c o n t a c t r e s i s t a n c e . L i n and L o v e ( 1 9 8 5 ) , have analyzed i n s i t u thermal p r o p e r t y d e t e r m i n a t i o n s i n cased boreholes. As a n e x a m p l e o f p r a c t i c a l d e t e r m i n a t i o n s . B e c k ( 1 9 7 1 ) has u s e d B l a c k w e l l ' s long time s o l u t i o n t o estimate the thermal c o n d u c t i v i t y of rock from i n s i t u measurements i n cased boreholes. F r o m a n e x p r e s s i o n g i v e n i n C a r s l a w and J a e g e r ( 1 9 5 9 ) , L i n d q v i s t ( 1 9 8 3 ) d e r i v e d a n i n t e g r a l s o l u t i o n and has u s e d t h i s t o d e t e r m i n e the thermal c o n d u c t i v i t y i n lake bottom sediments using a large diameter probe. This s o l u t i o n excludes the contact resistance at the probe s u r f a c e , which i s probably a v e r y good assumption c o n s i d e r i n g the method of a p p l i c a t i o n .

8

9

K r i s t i a n s e n ( 1 9 8 2 ) s o l v e d t h e i n i t i a l e x p r e s s i o n g i v e n by Blacl25

(u25 (dashed line).

T o p r e v e n t a n e f f e c t o f t h e s a m p l e b o u n d a r y , a 2 cm d i a m e t e r c i e n t f o r a c l a y s a m p l e ( K = 3 . 2 - 1 0 ' ^ m^/s, t = 1 5 0 s, r.=5-10"'* a n d a 4 cm d i a m e t e r i s f o r a r o c k m a t e r i a l (K=10'*m^/s).

Not

only

is m)

suffi-

conduction

O t h e r t y p e s o f t h e r m a l t r a n s p o r t can o c c u r , p a r t i c u l a r l y i n s o i l . E x a m p l e s a r e v a p o r d i f f u s i o n , r a d i a t i o n and c o n v e c t i o n . T h e s e t y p e s o f t h e r m a l t r a n s p o r t a r e d e s c r i b e d i n r e p o r t n o . 3. To a v o i d unnecessary i n f l u e n c e on t h e t h e r m a l c o n d u c t i v i t y . I t i s i m p o r t a n t t o p e r f o r m t h e measurement under c o n d i t i o n s s i m i l a r t o real c o n d i t i o n s . For example, t o m i n i m i z e v a p o r d i f f u s i o n and r a d i a t i o n i n a l a b o r a t o r y m e a s u r e m e n t , t h e t e m p e r a t u r e can be l o w e r e d .

A potential

error

i n water-saturated coarse

material

L a b o r a t o r y measurements on sand r e v e a l e d a tendency t o w a r d s a l o w e r thermal c o n d u c t i v i t y at water s a t u r a t i o n , compared t o t h e c o n d u c t i v i t y o b t a i n e d f o r a s l i g h t r e d u c t i o n i n water c o n t e n t . T h i s i s shown f o r s o m e s a m p l e s i n r e p o r t n o . 3, f i g u r e 8 . 9 . T h e m e a s u r e d c o n d u c t i v i t y a t w a t e r s a t u r a t i o n can be 1 0 - 1 5 % l o w e r . T h i s f i n d i n g i s i n c o n t r a s t t o w h a t was e x p e c t e d , s i n c e w a t e r i s a much b e t t e r c o n d u c t o r t h a n a i r .

19

20

One e x p l a n a t i o n c a n be d e c r e a s e d c o n t a c t w i d t h b e t w e e n t h e m i n e r a l g r a i n s . Because o f a low v e r t i c a l pressure i n t h e upper p a r t o f t h e sample, t h e grains a r e " f l o a t i n g " I n t h e water. Since t h e thermal cond u c t i v i t y p r o b e m a i n l y u s e d i s o n l y 4 cm l o n g , t h e m e a s u r e m e n t i s m a d e o n l y 2 cm b e l o w t h e s a m p l e s u r f a c e . Another p o s s i b i l i t y i s a sort o f thermal contact resistance between p r o b e and sand. T h e p r o b e d i a m e t e r i s a b o u t t h e same as t h e g r a i n s i n a medium grained sand. T h e r e f o r e , an o v e r r e p r e s e n t a t i o n o f water close to t h e probe i s possible. This results i n a longer measuring time before t h e probe can sence t h e real c o n d u c t i v i t y i n t h e sand. I f t h i s I s n o t t a k e n I n t o a c c o u n t , t h e t h e r m a l c o n d u c t i v i t y may be u n d e r estimated. T h e s e p o t e n t i a l e r r o r s may be r e d u c e d by u s i n g a s l i g h t l y l a r g e r p r o b e and e x e r t i n g a s l i g h t p r e s s u r e on t h e sample s u r f a c e . The f i r s t e x p l a n a t i o n seems t o be t h e most p r o b a b l e t o t h e above m e n t i o n e d o b s e r v a tion. T h e r e i s a p o s s i b i l i t y t h a t t h e measurements a l s o could be i n f l u e n c e d by a n o n - r a d i a l heat f l o w , d i s c u s s e d above. However, t h e s e c o n d i t i o n s can n o t account f o r such a b i g d i f f e r e n c e I n thermal c o n d u c t i v i t y .

20

21

3.

THEORETICAL METHODS FOR DETERMINING THERMAL PROPERTIES

3.1

Introduction

The t h e r m a l c a p a c i t y o f r o c k a n d s o i l c a n b e e a s i l y computed f r o m a volume i n t e g r a t i o n . The thermal c a p a c i t i e s o f d i f f e r e n t m i n e r a l s a r e tabulated i n report no. 2 . The t h e r m a l c o n d u c t i v i t y o f c o m p o s i t e m a t e r i a l s , such a s s o i l a n d r o c k , i s much m o r e c o m p l i c a t e d t o c a l c u l a t e . P a p e r n o . 1 i n c l u d e s a n overview o f d i f f e r e n t approaches t o t h e s u b j e c t . The bounds suggested b y H a s h i n a n d S h t r i k m a n ( 1 9 6 2 ) a r e c o n s i d e r e d t o be t h e b e s t b o u n d s f o r t h e t h e r m a l c o n d u c t i v i t y o f a n i s o t r o p i c c o m p o s i t e m a t e r i a l . H o r a i a n d Simmons ( 1 9 6 9 ) s u g g e s t e d t h e mean o f H a s h i n a n d S h t r i k m a n ' s , u p p e r (x.^^) a n d l o w e r (A.^) b o u n d a s a n e f fective thermal conductivity:

x.g

= {X^ + \^)/2

"

(l-^max^ax) +

^1

( 1 4 )

\ \

^min '^"^min%in'

^max =

^ )

'^min =

\

^max "

^max'_^

''min ^ '•^ * - m i n ' '^max = ^ ^ " ^ - W " ^

^ i n

=^^i

* W ' ^

O^-^min'"'' * ^min'"^

^'N'^^in' v^= v o l u m e

fraction

D i f f e r e n t t y p e s o f d i l u t e s u s p e n s i o n t h e o r i e s have been s u g g e s t e d , ( M a x w e l l , 1 8 9 1 and R a y l e i g h , 1 8 9 2 ) . A disadvantage o f d i l u t e suspension t h e o r i e s i s that they a r e o n l y v a l i d i f t h e volume f r a c t i o n o f one o f t h e c o m p o n e n t s i s much l o w e r t h a n 1 i n a t w o - p h a s e s y s t e m .

21

22

The g e o m e t r i c mean h a s o f t e n been u s e d a s a good a p p r o x i m a t i o n o f t h e e f f e c t i v e thermal c o n d u c t i v i t y o f rocks and s o i l s . However, compared t o t h e other e q u a t i o n s mentioned, t h emethod lacks a r e l i a b l e physical background.

G

= n

K. i

(15)

1

1=1

The s e l f - c o n s i s t e n t a p p r o x i m a t i o n ( h e r e a f t e r named SCA) o f a 2-phase m a t e r i a l was suggested by Bruggeman f X S S f ) . T h i s has l a t e r been redeveloped f o r n-phase m a t e r i a l . The method assumes each g r a i n t o be surrounded by a u n i f o r m medium w i t h t h ee f f e c t i v e thermal conductivity ( f i g u r e 8 ) . I n a n-phase m a t e r i a l , t h ee f f e c t i v e thermal conductivity can be e s t i m a t e d f r o m t h e f o l l o w i n g e x p r e s s i o n b y a number o f I t e r a tions: 1

"

"i

'i=i"«-i'-VS m = The dimensionality

Figure

8.

o f t h e problem

A r e a l composite medium and t h e s e l f - c o n s i s t e n t approximat i o n w i t h an e f f e c t i v e medium s u r r o u n d i n g t h e g r a i n .

D a g a n ( 1 9 7 9 ) c o m p a r e d t h e r a t i o b e t w e e n t h e SCA a n d t h e g e o m e t r i c mean equation applied t o hydraulic conductivity. A very i n t e r e s t i n g observ a t i o n made t h e r e b y w a s t h a t t h e g e o m e t r i c m e a n c o i n c i d e d w i t h SCA f o r 2 dimensions when t h ec o n d u c t i v i t y i s l o gnormally d i s t r i b u t e d , s e e f i g u r e 9. T h e g e o m e t r i c mean i s t h u s a s s o c i a t e d w i t h t h e r m a l transport in 2 dimensions.

22

23

s t d - dev. F i g u r e 9.

The r a t i o between d i f f e r e n t equations and t h e geometric mean v e r s u s t h e s t a n d a r d d e v i a t i o n f o r a l o g - n o r m a l d i s t r i b u t e d c o n d u c t i v i t y . A r i t h m e t i c a l ( 1 ) and harmonic ( 6 ) mean. Hashin and S h t r i k m a n ' s upper ( 2 ) and lower ( 5 ) b o u n d s . 2 - d i m SCA a n d 3-d1m SCA CM.

H 3.2

3

Application t o rock

I n r e p o r t no. 2 t h e mean o f Hashin and S h t r i k m a n ' s bounds i s a p p l i e d to t h e thermal c o n d u c t i v i t y o f rock. Measured c o n d u c t i v i t y values were compared w i t h c a l c u l a t e d values, estimated from t h e m i n e r a l content. The t h e r m a l c o n d u c t i v i t y v a l u e s w e r e d e r i v e d f r o m o u r own m e a s u r e ments, r e s e a r c h work on geothermal energy a t CJialmers U n i v e r s i t y o f Technology and f r o m measurements performed by Horai and B a l d r i d g e (1972b). The r e s u l t s showed g e n e r a l l y good agreement between measured and c a l c u l a t e d c o n d u c t i v i t i e s . However, t h e f i n d i n g s o f Horai and B a l d r i d g e s h o w e d a d i s c r e p a n c y o f a b o u t 103! b e t w e e n m e a s u r e d a n d c a l c u l a t e d v a l u e s . Horai and B a l d r i g e concluded t h a t eq. ( 1 4 ) o v e r e s t i m a t e d t h e t h e r m a l c o n d u c t i v i t y b y 5%. The bounds o f Hashin and S h t r i k m a n seem t o be t h e best e s t a b l i s h e d b o u n d s f o r a m a c r o s c o p i c a l l y h o m o g e n e o u s a n d i s o t r o p i c m a t e r i a l . However, t h e s u g g e s t i o n by Horai and Simmons (1969) t o e s t i m a t e t h e e f f e c t i v e c o n d u c t i v i t y f r o m t h e mean v a l u e o f t h e bounds, i s n o t necessarily true. The s e l f - c o n s i s t e n t a p p r o x i m a t i o n has a r e l i a b l e p h y s i c a l background. I n o r d e r t o e x a m i n e t h e a c c u r a c y o f t h e m e t h o d , we c a n c a l c u l a t e t h e thermal c o n d u c t i v i t y o f c r y s t a l l i n e rock. A comparison w i t h measured v a l u e s i s made i n p a p e r n o . 1 . The no.

c o m p a r i s o n i s p a r t l y based on t h e same m a t e r i a l as u s e d i n r e p o r t 2. T h e m a t e r i a l was s u p p l e m e n t e d w i t h t h e w o r k o f E r i c s s o n (1985)

?3

24

and D r u r y a n d J e s s u p ( 1 9 8 3 ) . B o t h SCA a n d t h e m e a n o f H a s h i n a n d Shtrikman's bounds a r ei ngood agreement w i t h measured v a l u e s . T h e o n l y exception i sthe measurements by Horai and Baldridge mentioned e a r l i e r . A p o s s i b l e e x p l a n a t i o n i sdiscussed i ns e c t i o n 3.5.

3.3

A p p l i c a t i o n to s o i l and porous rock

Farouki (1986) provided an i n t e r e s t i n g d e s c r i p t i o n as w e l l as a c r i t i cal review o f a score o f methods f o r c a l c u l a t i n g the thermal conductiv i t y o f m i n e r a l s o i l s . Farouki compared the c a l c u l a t e d values obtained by a p p l y i n g t h e d i f f e r e n t m e t h o d s w i t h t h e m e a s u r e d v a l u e s r e p o r t e d i n the literature. F a r o u k i i n v e s t i g a t e d methods by Johansen (1975), de V r i e s (1952, 1963), K u n i i a n d S m i t h ( 1 9 6 0 ) , Gemant ( 1 9 5 0 ) . K e r s t e n ( 1 9 4 9 ) , Woodside and M e s s m e r ( 1 9 6 1 ) a n d McGaw ( 1 9 6 9 ) . He f o u n d t h a t , i n g e n e r a l , J o h a n sen's method provided the best agreement w i t h measured values, even i f o t h e r methods, f o r instance de V r i e s ' , were p r e f e r a b l e i nc e r t a i n cond i t i o n s . T h e method b y de V r i e s i sbased o n M a x w e l l ' s (1891) t h e o r y extended t oellipsoidal inclusions. In t h e method b y Johansen, t h e g e o m e t r i c mean i sused t o c a l c u l a t et h e thermal conductivity o f water-saturated soil. I n the unsaturated state, the c o n d u c t i v i t y i sc a l c u l a t e d by i n t e r p o l a t i n gbetween a semie m p i r i c a l e q u a t i o n d e s c r i b i n g t h e d r ys t a t e a n d t h e w a t e r - s a t u r a t e d s t a t e . T h e method by Johansen i sdescribed i n r e p o r t n o . 3. T h e method was e a r l y adopted by the Department o f Geology, Chalmers University o f Technology. Johansen's method i sused i n r e p o r t n o . 3 i norder t o compare 9 0 0 cond u c t i v i t y measurements on soil samples w i t h calculated values. A f t e r an e x t e n s i v e c o r r e l a t i o n , i n c l u d i n g c h a n g e s i n t h e c o n s t a n t s o f J o h a n sen's e x p r e s s i o n , good agreement was achieved when d e a l i n g w i t h mineral soils. Johansen's method has a big advantage i n i t s s i m p l i c i t y . C a l c u l a t i o n is e a s i l y performed i nthe w a t e r - s a t u r a t e d s t a t e . However, the method does n o ttake i n t o account the vapor d i f f u s i o n which i ss u b s t a n t i a l i n h i g h p o r o u s m e d i a a l r e a d y a t 20''c. T h e m e t h o d i s n o t a p p l i c a b l e t o peat and does n o ti n c l u d e v a r i a t i o n s i n the c o n d u c t i v i t y o f t h e m i n e r a l g r a i n s i n t h e d r ys t a t e . T h e l a t t e r h a s s m a l l i n f l u e n c e o n normal p o r o s i t y , b u tbecomes more e s s e n t i a l a t v e r y l o w p o r o s i t i e s . In r e p o r t n o . 3 a good f i t i sachieved between measured a n d c a l c u l a t e d values f o r peat by applying Johansen's method. However, l a t e r research has shown t h a t t h e m e a s u r e m e n t s p r o b a b l y w e r e i n f l u e n c e d b y v a p o r d i f f u s i o n , w h i c h i sw h y t h e good f i t might be j u s t a c o i n c i d e n c e .

24

25

In

order

t o develop

plications

and that

a method

that

resolves

t h e disadvantages

the

self-consistent approximation

The

modified

The

self-consistent approximation

proximity

self-consistent

between

proportion medium,

t h e water

mineral

phase

conductive thermal

passage

more

problems. e

We

p,

defined

and

s o i l .

s t a t i s t i c a l a r e i n

water-saturated

t h e highly

will

conductive

The most thereby

i s a function

grains.

A contact

thermally

reduce I t s

o f t h e

contact

resistance

must

SCA-method.

description

like

and e v a l u a t i o n

no. 1 discusses

distribution

p must

measurements

surface,

p=x-(1-e^)

o f porosity.

Paper

o f t h e contact

t o determine

a t t h e contact

from

size

p

grains

o f t h e size

would

grain

that

a

thickness.

f o rt h e original

t h e pore

a function

is

surrounds

that

, s o l e l y f o rt h e contact

between

factor

is

o r less

t h e mineral

t h e o r e t i c a l treatment

ratio

rock

o f t h e material, which

o f varying

a brief

ap-

method,

o f t h e

SCA-method.

certain ratio,

t o porous

(SCA) assumes

phases

by a f a c t o r

introduced

rock

o f Johansen's

f r a c t i o n s . I n a porous,

layer

no. 1 presents

modified

A

be

i s extended

v i a t h e mineral

between

therefore

A

a

conductivity

resistance

Paper

phase

with

feasible f o rporous

approximation

t h e various

t o t h e volume

i s also

Thus,

p

resistance

some

kind

and t h e grain

I s introduced. i s a function

o f both

f o rt h e porosity

interval

20-95%.

o f p. p

X

porosity

t o t h e contact

means,

diameter.

The factor

a t h e o r e t i c a l determination by empirical

Involves void

i.e. determine t h e

surface

and i s proportional

be determined

o f a

The

conclusion

i s correlated

Outside

and

resistance.

this

t o

Interval,

i s uncertain.

If

t h e heat

flow

dimensional,

a t t h e grain

then

the

influence

the

grain.

o f t h e contact

The harmonic

tion

a t t h e grain

v i t y

represents

named and

contact

t h e harmonic

(figure

contact

can be

phase

1 0 ) , divided

correction

resistance.

assumed

can be used

on t h e thermal

o f t h e mineral

a dimensionless

t h e thermal

surface equation

resistance

mean

contact

mean

conductivity

by t h e grain

factor

The a-values

=

adry

=

c M 1 - p ) A y +

( i / ( p A

g

+ c - ( i - p ) A

a

+

(a),

(17)

{ ^ - c ) { ^ - ^ ) / \ ) ) / x ^ e g

(18)

o f

f r a c -

conducti-

subsequently

f o rt h e

(1-c)(1-p)A^))/A.g

25

t o be 1 calculate

and w a t e r / a i r

t h e d r y state a r e :

a,s a t

t o

saturated

26

X xl x^ x^

= thermal = = =

c o n d u c t i v i t y o f t h e m i n e r a l g r a i n s , W/(m,K) -"w a t e r . W/(m.K) -"d r y a i r , W/(m,K) -"cement i n t h e g r a i n contact r o c k , W/(m,K)

a t porous

p = 1 - 0 . 1 2 8 3 3 - n + 0.064'1-n^ + O . o J g V n ^

f O.IS'

n c c c

= =% = =

porosity fraction r h r sandstone 0.30 limestone 1 soil

Figure

10.

Conditions a tt h e grain contact. The breadth o f t h e section through t h e contact i s represented bya.

For thermal c o n d u c t i v i t y c a l c u l a t i o n s on sedimentary rocks, we i n t r o duce a c o r r e c t i o n f a c t o r c. I t takes i n t o account t h e b e t t e r thermal contact duet o cementation between t h e m i n e r a l g r a i n s a s compared t o s o i l . To c a l c u l a t e f o ra s o i l (c=1) t h e last part o feq. ( 1 7 ) and ( 1 8 ) disappears. The c o n d i t i o n s a t t h e g r a i n c o n t a c t a t d e c r e a s e d w a t e r s a t u r a t i o n a r e a p p r o x i m a t e d w i t h t h e l o g a r i t h m o f t h e degree o fw a t e r s a t u r a t i o n , S^. T h i s i s s u p p o s e d t o b e a r a t h e r g o o d a p p r o x i m a t i o n , s i n c e t h e g r a i n contact i s t h e p a r t o ft h e pore space l a s t drained. «tot = ( A - 1 o g ( S ^ ) ^ l ) ( « 3 3 t - « d r y ' * « d r y A = 0.95 "tot "tot

= "sat = "dry

\ 1 ^ = °

26

'^9'

27

Thus, t h emodified s e l f - c o n s i s t e n tapproximation and 3 p h a s e s c a nb e w r i t t e n a s : K

? v./(2).^ + \ . ) ] - ^ e = 3 " ^ [.^^ 1 e 1

f o r 3 dimensions

(20)

h

= r e l a t i v e humidity (=0 a td r y state, = 1 a twater above t h ew i l t i n g point) A.^ = c o n t r i b u t i o n o f v a p o r d i f f u s i o n t o t h e e f f e c t i v e conductivity o f a i r .

content thermal

The v a p o r d i f f u s i o n c o n t r i b u t i o n a t t h e g r a i n c o n t a c t i s c o n s i d e r e d b y i n t e r p o l a t i n g b e t w e e n a i n c l u d i n g x.^^ I n s t e a d o f x ^ I n e q u a t i o n ( 1 8 ) , ( a ^ g ^ y ) . a n d a i n c l u d i n g x.^, a s u s u a l , f°tot.a'"tot

=

'"tot,v-°tot,a' ' " t o t . a

Ky^Q

= 0 . 2 4 = 10-X.g

'^D

W/(m,K)

X^ = 0 . 2 4 i s o b t a i n e d a t a t e m p e r a t u r e o f a p p r o x i m a t e l y 4o''c. A t t h i s t e m p e r a t u r e , \ h a sv e r y l i t t l e i n f l u e n c e o n x ^ ^ . A t t e m p e r a t u r e s a b o v e 40*'c, a^.^^, i n e q . ( 2 1 ) c a n b e r e p l a c e d b y "tot,V I n a t o t a l l y f r o z e n s t a t e X^ i n e q . ( 1 7 ) i s r e p l a c e d b y A-^^-g. The f u n c t i o n ( A - l o g ( S ^ ) + 1 ) i n eq.(19) i s r e p l a c e d b y due to another form o f drainage. I n f i n e g r a i n e d s o i l i t i s common w i t h u n f r o z e n w a t e r d u e t o a p a r t l y frozen s t a t e . This i s considered by i n t e r p o l a t i n g between t h e thermal conductivity i n t h eunfrozen andfrozen state.

^=^-'Woz- W

(22)

* W

i|i= S h a r e o f u n f r o z e n w a t e r

o ftotal

water

^unfroz"

conductivity i n unfrozen

^froz

conductivity i ntotally

The 1. and res

= Thermal

content state frozen

state

m o d i f i e d s e l f - c o n s i s t e n tapproximation i s evaluated i n paper n o . C a l c u l a t e d values o f s o i l a r e compared w i t h measured a t unfrozen frozen state anda tsaturated, unsaturated andd r y state. The u l t shows good agreement between measured a n d c a l c u l a t e d c o n d u c t i 27

28

v i t y . F a i r l y good agreement i s a l s o achieved saturated with a i r , o i l o r water. Since t h e method i s r a t h e r inconvenient i s u n d e r d e v e l o p m e n t f o r PC-DOS. 3.4

f o r sedimentary

t ouse, a computer

rock,

program

Accuracy

The t h e r m a l c o n d u c t i v i t y o f homogeneous a n d i s o t r o p i c rock i s c o n s i dered t obe determined from t h e mineral content w i t h i n 1 0 %o f accuracy. I f a number o f measurements a n d c a l c u l a t i o n s i s p e r f o r m e d o n d i f f e r e n t samples, t h e margin o fe r r o r should be reduced ( s e e paper n o . 1 ) . I n s a n d s t o n e t h e a c c u r a c y i s g e n e r a l l y + 1 5 % a n d i n l i m e s t o n e ±10% independent o fwhether t h e pore space i s s a t u r a t e d w i t h water, o i l or a i r . In s o i l t h e accuracy depends o n whether t h e m i n e r a l content and s o i l type a r e known. T h e thermal c o n d u c t i v i t y o f a w a t e r - s a t u r a t e d m a t e r i al canbe determined w i t h i n *10% o f accuracy i f t h e mineral content i s known a n dw i t h i n +25% o f accuracy i f t h e m i n e r a l c o n t e n t i s assumed t obe normal according t os o i l type. A t low water content t h e uncertainty i s higher. 3.5

Computing thermal c o n d u c t i v i t y of rock from measurements on p u l v e r i z e d water-saturated samples

Horai a n d Simmons (1969) used a new method t odetermine t h e thermal c o n d u c t i v i t y o fminerals. They measured t h e thermal c o n d u c t i v i t y o fa m i x t u r e o f pulverized mineral andwater using t h e probe method. T h e m e a s u r e d v a l u e w a s s e t equal t o t h e mean o f H a s h i n - S h t r l k m a n ' s bounds ( e q . ( 1 4 ) ) a n d t h e t h e r m a l c o n d u c t i v i t y o f t h e m i n e r a l w a scomputed a t known water c o n d u c t i v i t y a n d p o r o s i t y . T h emethod was a l s o used b y Horai (1971) andwas extended t orock b y Sass e t a l (1971) ( i n s t e a d of u s i n g t h e g e o m e t r i c mean e q u a t i o n ) a n d H o r a i a n d B a l d r i d g e (1972a,b). The thermal c o n d u c t i v i t y values o f di*'ferent minerals (Horai a n d Simmons, 1969. H o r a i , 1971) h a sbeen w i d e l y used. Horai and B a l d r i d g e (1972b) c o m p a r e d i n d i r e c t l y m e a s u r e d v a l u e s o f r o c k w i t h calculated values derived from t h e mineral content. They found a discrepancy o f 1 0 %and suggested t h a t e q . ( 1 4 ) overestimates t h e t h e r m a l c o n d u c t i v i t y b y 5%, s e epaper no.1 . The p o s s i b i l i t y o f m a k i n g a s y s t e m a t i c e r r o r I na p p l y i n g eq. ( 1 4 ) should be considered, since t h e equation i s used three times i nt h e comparison: 1) C a l c u l a t i n g t h e c o n d u c t i v i t y o f t h e s o l i d r o c k phase u s i n g needle probe measurements o n a m i x t u r e o f p u l v e r i z e d rock andwater a n d at a known water c o n d u c t i v i t y .

28

29

2) C a l c u l a t i n g t h e e f f e c t i v e thermal c o n d u c t i v i t y o f t h e rock the c o n d u c t i v i t y o f t h e m i n e r a l s .

from

3) T h e t h e r m a l c o n d u c t i v i t i e s a p p l i e d t o t h e m i n e r a l s i n 2 ) were determined by Horai (1971) i n an e q u i v a l e n t way as i n 1 ) . A s y s t e m a t i c o v e r e s t i m a t i o n o f t h e c o n d u c t i v i t y b y 5% u s i n g e q u a t i o n ( 1 4 ) , as s u g g e s t e d by H o r a i and B a l d r i d g e , w o u l d mean t h e f o l l o w i n g in a comparison e q u i v a l e n t t o t h e one mentioned above: 1) T h e m e a s u r e d r o c k c o n d u c t i v i t y i s u n d e r e s t i m a t e d by 5%. 2) The c a l c u l a t e d rock c o n d u c t i v i t y i s o v e r e s t i m a t e d by 5Z. 3 ) T h e m e a s u r e d m i n e r a l c o n d u c t i v i t y i s u n d e r e s t i m a t e d b y S%. The t o t a l

deviation will

t h e n be - 5 % , d e s p i t e

thecorrection.

Another possible explanation f o rt h e discrepancy i s that t h e e r r o r i n eq. ( 1 4 ) i s n o t c o n s t a n t , b u t depends both on volume f r a c t i o n s and the r a t i o between t h e thermal c o n d u c t i v i t i e s under c o n s i d e r a t i o n . E a r l i e r i n c h a p t e r 3 i thas been shown t h a t a t h e r m a l c o n t a c t r e s i s tance f o rp o r o u s m a t e r i a l s must be i n t r o d u c e d i n t o t h e s e l f - c o n s i s t e n t a p p r o x i m a t i o n . T h e d e v i a t i o n b e t w e e n SCA c o r r e c t e d f o r s o i l a n d the mean o f Hashin-Shtrikman's bounds i s drawn up i n f i g u r e 11 f o r a 2-phase m a t e r i a l as a f u n c t i o n o f t h e volume f r a c t i o n o f t h e water phase and t h e r a t i o between t h e e f f e c t i v e c o n d u c t i v i t y and t h e cond u c t i v i t y o f t h e water phase. I n can be seen i n f i g u r e 11 t h a t t h e e r r o r o b t a i n e d w i t h e q u a t i o n (14) i s h i g h l y dependent on both volume f r a c t i o n and on t h e c o n d u c t i v i t y r a t i o . The 166 d i f f e r e n t d e t e r m i n a t i o n s o f t h e c o n d u c t i v i t y o f d i f f e r e n t m i n e r a l s , p e r f o r m e d b y H o r a i ( 1 9 7 1 ) , w e r e made a t a p o r o s i t y o f approx. 30-35% f o r t h e water-mineral m i x t u r e . The f i g u r e s f o r the p o r o s i t i e s o f i n d i v i d u a l samples a r e no l o n g e r a v a i l a b l e ( K i - i t i Horai 1988, personal communications). Thus t h e c o n d u c t i v i t y o f t h e m i n e r a l s i s underestimated by approx. 0-10%, depending on t h e conduct i v i t y r a t i o between t h e m i n e r a l and water. A p o s s i b l e e x p l a n a t i o n f o r t h e discrepancy i n Horai and Baldridge's (1972b) comparison o f thermal c o n d u c t i v i t y o f rock i s discussed i n paper no. 1 . However, t h e m e t h o d d i s c u s s e d i n w h i c h m e a s u r e m e n t s a r e made o n a s o l i d - w a t e r m i x t u r e , seems t o be a d e q u a t e and r e l i a b l e i f an a c c u r a t e equation i s used f o r t h e c a l c u l a t i o n o f t h e s o l i d phase.

29

30

A ( ,

Figure

11.

HS

mean - SCA HS mean

soil)

D e v i a t i o n b e t w e e n t h e m o d i f i e d SCA, e q . ( 2 0 ) , a n d t h e mean v a l u e o f H a s h l n - S h t r i k m a n ' s bounds, eq. ( 1 4 ) .

30

31

4.

THERMAL PROPERTIES OF ROCKS AND

SOILS

4.1

D i f f e r e n t thermal transport mechanisms

T h e r m a l e n e r g y c a n be t r a n s p o r t e d i n e a r t h m a t e r i a l b y c o n d u c t i o n , r a d i a t i o n , c o n v e c t i o n a n d vapor a n dwater d i f f u s i o n , s e e f i g u r e 12 and r e p o r t n o . 3 . A t ambient t e m p e r a t u r e s , t h e r m a l c o n d u c t i o n i s a b s o l u t e l y dominant ( f o r c e d c o n v e c t i o n d u e t ogroundwater movements disregarded). A t higher temperatures and intermediate degrees o f s a t u r a t i o n , vapor d i f f u s i o n c o n t r i b u t e s more a n dmore t ot h e e f f e c t i v e thermal c o n d u c t i v i t y o f a i r (^gv^^a * ''^ V r i e s , 1 9 5 2 ) . A t a b o u t 60°C, t h e v a p o r d i f f u s i o n i s o f t h e s a m e s i z e a s t h e t h e r m a l c o n d u c t i v i t y o fw a t e r . A t h i g h e r t e m p e r a t u r e s , t h i s means t h a t t h e e f f e c t i v e thermal c o n d u c t i v i t y c a nbe higher a t i n t e r m e d i a t e s a t u r a t i o n compared t o f u l l s a t u r a t i o n ( s e er e p o r t no. 3 and paper no. 1 ) . R a d i a t i o n c a nbe o f importance i ncoarse m a t e r i a l s a n dunder r a t h e r dry c o n d i t i o n s . Natural convection can i n f l u e n c e t h e thermal process at high temperature gradients. Vapor d i f f u s i o n c a na l s o be i n v o l v e d i n d r a s t i c changes i n t h e thermal p r o p e r t i e s . High temperatures, g r a d i e n t s and thus heat f l o w s , a r e common i n b u r i e d d i s t r i c t h e a t i n g p i p e s a n d e l e c t r i c t r a n s m i s s i o n cables. Such c o n d i t i o n s i n sand induce a m o i s t u r e movement i n t h e d i r e c t i o n o f f a l l i n g temperature. This throws t h e system o u to f e q u i l i b r i u m a n d induces a m o i s t u r e movement i n t h e o p p o s i t e d i r e c t i o n , i n the direction o f least water content.

1. C O N D U C T I O N I N SOLID A N D LIQUID 2. C O N D U C T I O N I N A I R 3. R A D I A T I O N P A R T I C L E TO P A R T I C L E A. V A P O U R

DIFFUSION

5. C O N V E C T I O N I N P O R E A I R

Figure

12. Different (1975)

thermal t r a n s p o r t mechanisms, a f t e r

31

Johansen

32

I f t h e heat f l o w and temperature pass a c r i t i c a l p o i n t , unique f o r every s o i l t y p e , t h e m o i s t u r e movement due t o m o i s t u r e g r a d i e n t cannot compensate f o rt h e increased moisture movement under temperat u r e g r a d i e n t . Thus, t h e zone nearest t h e cable/pipe i s d r i e d o u t and the t h e r m a l c o n d u c t i v i t y d r a s t i c a l l y lowered. T h i s can cause a thermal breakdown i n a buried transmission cable. For a d d i t i o n a l det a i l s , s e e r e p o r t n o . 3. It i s possible t o Investigate t h e thermal as b a c k f i l l , b y t h e p r o b e m e t h o d .

4.2

stability of a soil,

used

Influence o f various characteristics

Mineral

content

D i f f e r e n t mineral d i s t r i b u t i o n s can result i n t o t a l l y d i f f e r e n t thermal c o n d u c t i v i t i e s o f both rock and s o i l . However, m i n e r a l s have a much h i g h e r e f f e c t on t h e t h e r m a l c o n d u c t i v i t y o f a rock t h a n on t h e c o n d u c t i v i t y o f s o i l . T h e t h e r m a l c o n d u c t i v i t y o f some common rock f o r m i n g m i n e r a l s i s shown i n t a b l e 1 . A more complete t a b l e can be f o u n d i n r e p o r t n o . 2. As c a n b e seen, q u a r t z h a s 3-4 t i m e s h i g h e r c o n d u c t i v i t y t h a n o t h e r common m i n e r a l s . A s s u m i n g i s o t r o p i c a n d homogeneous c o n d i t i o n s , t h e thermal c o n d u c t i v i t y o f c r y s t a l l i n e rock can be c a l c u l a t e d f r o m t h e m i n e r a l c o n t e n t w i t h r a t h e r h i g h accuracy. T h i s I s -shown i n p a p e r n o . 1 a n d c h a p t e r 3. T h e g e o m e t r i c mean e q u a t i o n underestimates t h e thermal c o n d u c t i v i t y . However, t h e equation can be used as a s i m p l e g u i d e l i n e i f a m u l t i - p h a s e m a t e r i a l can be approximated w i t h a 2-phase m a t e r i a l o f quartz and remaining miner a l s . A c c o r d i n g t o " e p o r t n o . 2, t h e t h e r m a l c o n d u c t i v i t y o f r e m a i n i n g m i n e r a l s i s t h e n i n c r e a s e d compared t o t h e t r u e v a l u e . As a mean v a l u e , 2.4 W/(m,K) i s s u g g e s t e d .

Table

1.

T h e r m a l c o n d u c t i v i t y o f some common r o c k (Moral, 1971)

Mineral Quartz Microcline Plagioclase

(dependent on t h e f r a c t i o n of a n o r t h i t e )

Biotite Muscovite

forming

Conductivity 7.7 2.5 1.9

minerals.

(W/(m,K))

(mean

value)

2.0 2.3

Very l i t t l e has been p u b l i s h e d on q u a n t i t a t i v e m i n e r a l i n v e s t i g a t i o n s in s o i l . I n order t o compile i n f o r m a t i o n on t h i s s u b j e c t , an examinat i o n study has been I n i t i a t e d w i t h i n t h e p r o j e c t (Abrahamson, 1984).

32

33

The t h e o r y i s t h a t t h e m i n e r a l c o n t e n t ( p r i m a r i l y t h e q u a r t z c o n t e n t ) w o u l d d i f f e r d e p e n d i n g o n t h e g r a i n s i z e . I n r e p o r t no. 3, d i a g r a m s have been e s t a b l i s h e d showing the v a r i a t i o n s I n quartz content w i t h g r a i n s i z e f o r d i f f e r e n t s a m p l e s and s o i l t y p e s . No i n f o r m a t i o n a b o u t s a n d was f o u n d and a n i n v e s t i g a t i o n e n s u e d . C o n v e n t i o n a l m i c r o s c o p e t e c h n i q u e was u s e d why n o r e s u l t was p o s s i b l e t o o b t a i n f o r p a r t i c l e s i z e s l e s s t h e n f i n e s a n d . R e s u l t s f r o m c l a y , s a n d and t i l l h a v e been s u m m a r i z e d i n f i g u r e 13. F o r sand, t h e g r a i n s a r e n o t monomineralic a t g r a i n s i z e s l a r g e r t h a n 1 - 2 mm. T h i s p a r t o f t h e d i a g r a m m e s h o w s an a s s u m e d q u a r t z c o n t e n t o f t h e b e d r o c k . CLAY

Figure

13.

SILT

SAND

GRAVEL

V a r i a t i o n r a n g e s o f q u a r t z due t o t h e g r a i n s i z e f r a c t i o n . R e f e r e n c e : See r e p o r t no. 3.

The q u a r t z c o n t e n t can b e a p p r o x i m a t e l y c a l c u l a t e d f r o m t h e s i z e d i s t r i b u t i o n c u r v e and f i g u r e 1 3 o r r e p o r t no. 3 .

grain

Temperature The t h e r m a l c o n d u c t i v i t y o f c r y s t a l l i n e r o c k d e c r e a s e s w i t h I n c r e a s i n g t e m p e r a t u r e , a p p r o x i m a t e l y lOZ/IOO^C. The t h e r m a l c a p a c i t y I n c r e a s e s a p p r o x i m a t e l y b y 103! a t a t e m p e a t u r e I n c r e a s e o f 100°C. More e x a c t v a l u e s can b e o b t a i n e d f r o m r e p o r t no. 2 , d i f f e r e n t handbooks or a r e v i e w b y Heuze (1983). I n w a t e r - s a t u r a t e d s o i l o r p o r o u s r o c k , a t e m p e r a t u r e d r o p b e l o w 0°C r e s u l t s i n t o t a l l y d i f f e r e n t t h e r m a l p r o p e r t i e s . T h i s I s due t o t h e d i f f e r e n t p r o p e r t i e s o f w a t e r and i c e a s can b e s e e n I n t a b l e 2 .

33

34

Table

2.

\e W/(m,K) 0.57

Physical properties o f water ^

^ i c e

W/(m,K)

MJ/dn^.K)

2.1

4.16

andI c e .

^

^w

MJ/(m^.K)

^\ce

hJ/in^

2.2

333.5

kg/m^ 1000

kq/m^ 917

However, e s p e c i a l l y i n f i n e grained s o i l s , a l lwater does n o t f r e e z e a t O^C. T h e a m o u n t o f u n f r o z e n w a t e r a t a c e r t a i n t e m p e r a t u r e b e l o w 0°C i s r e l a t e d t o t h e w a t e r r e t e n t i o n c a p a c i t y ( p F - c u r v e ) o f t h e s o i l . An a t t e m p t t o r e l a t e t h e u n f r o z e n w a t e r a t d i f f e r e n t t e m p e r a t u r e s i n d i f f e r e n t s o i l t y p e s i s made i n r e p o r t n o . 3. The t h e r m a l c a p a c i t y calculated from

(C) and t h e l a t e n t

'^ = e d - [ V ^ ' V ^ 1 c e ' " - « u ' J

heat

o f f u s i o n (1) can be

'23)

1 = Q^-3.335-10^-(5Wjj/5T)dT

(24)

C c w w^

= t h e r m a l c a p a c i t y , J/(m^,K) = thermal capacity, J/(Kg,K) (g = g r a i n , w = water) = water r a t i o = unfrozen water ratio = d r y d e n s i t y , kg/m^ 1 = l a t e n t h e a t o f f u s i o n , J/m^ (6w^/6T)

= change

Porosity

and

i n unfrozen water

ratio

due t o temperature

pressure

The p o r o s i t y o f a c r y s t a l l i n e rock I s l o w , i n general, l e s s than 1 % . A l a r g e p a r t o f t h e pore space i s i n t h e form o f micro f i s s u r e s . Walsh and Decker (1966) found e x p e r i m e n t a l l y a very small pressure dependence on t h e t h e r m a l c o n d u c t i v i t y p r o v i d e d t h e rock sample was water-saturated. I n d r y rock, however, a r a t h e r strong pressure dep e n d e n c e was o b s e r v e d . T h e w o r k shows how i m p o r t a n t i t i s t o s a t u r a t e samples w i t h water before thermal c o n d u c t i v i t y measurements a r e carried out. Walsh and Decker (1966) suggested t h a t t h e i n f l u e n c e o f micro f i s s u r e s on t h e r m a l c o n d u c t i v i t y o f c r y s t a l l i n e rock could be c a l c u l a t e d using t h e lower l i m i t o f Hashin and Shtrikman's (1962) b o u n d s , s e e c h a p t e r 3. S c h a r l i and Rybach (1984) v e r i f i e d t h i s by measurements and c a l c u l a t i o n on f i v e samples under d r y and w a t e r - s a t u r a t e d c o n d i t i o n s . S c h a r l i and Rybach f o u n d v e r y good r e l a t i v e agreement, w h i l e t h e ab-

34

35

s o l u t e v a l u e s had a l o w e r a c c u r a c y . A t as l o w p o r o s i t i e s as 0 . 8 % , a d e c r e a s e i n t h e r m a l c o n d u c t i v i t y o f 253! was f o u n d i n t h e d r y s t a t e compared w i t h t h e w a t e r - s a t u r a t e d s t a t e . They a l s o suggested t h e f o l lowing expression t o c a l c u l a t e the p o r o s i t y (n) from measurements i n t h e d r y (^-^ip^) a n d w a t e r - s a t u r a t e d s t a t e (J^-gg^.):

n = 8 • l^^^y^ Nat

%

*-dry

(25)

The c a l c u l a t e d p o r o s i t y had an a c c u r a c y o f a b o u t

10%.

The t h e r m a l c o n d u c t i v i t y o f s o i l s d e c r e a s e s w i t h i n c r e a s e d p o r o s i t y . T h e i n f l u e n c e o n a w a t e r - s a t u r a t e d s o i l c a n be a p p r o x i m a t e l y c a l c u l a t e d f r o m t h e g e o m e t r i c mean e q u a t i o n a s :

= '^g'^""'"C

-l

(3.4)

VLED-MIN

VLED-MAX

Figur 3.5

Asklidl iggorande av harmoniskt och aritmetiskt medelvarde vid ett idealfall da mineralen ligger skiktade helt parallellt.

101

18 Ekv.

(3.2) ar det

lens

varmeledningsfbrmciga

lar.

(n=produktsumma).

bestamning Ekv.

geometriska

hansyn

(3.3) ar e t t aritmetiskt

3.5.

om

Denna metod ger

''^^^

( \ l e d - max

Ekv.

(3.4) ar

man en

( \ l e d - min

Ekv.'(3.1)

har

fasmaterial

ovre

och

medelvarde

( 1 9 7 1 ) och

och

resultat

och

Hashin

med


3 mm)* frSn borrning.

* Borrkaxet maste grovt annars

vara

erhcills

en a n r i k n i n g av m i n e r a l i olika Bestamning

fraktioner.

av mineralsamman-

sattning e l l e r ev matning

i

laboratorium. Porositetsbestamning Varmekonduktivitet Specifik

Metod

C:

varmekapacitet

Borrning av

bergvarmebrunn

K y i med k o n s t a n t e f f e k t i hSlet v i a kylslangsystem i nSgon

vecka.* -** Om v a r d e n

130

f o r fryst

brunnsvatten

onskas

kravs langre

provtid.

Berakning

av v a r m e k o n d u k t i v i t e t

och overgSngsmotstSnd

utifrlin

tid-temp-data.

Metoderna SGU

gSr

naturligtvis

a n v i s n i n g a r v i d de noggrannhetsnivci. man

a t t kombinera

och G e o l o g i s k a i n s t i t u t i o n e n ,

dS

erhSller

olika Metod

metoderna. C f S r nog

pli v a l f r i t t

samt overgSngsmotstlind

skan.

Detta

galler

Metoderna anses

mellan

vara

uppmatta.

131

rSd

ar graderade den

efter

brunnsvagg

under f d r u t s a t t n i n g

satt.

a r b e h j a l p l i g a med

en m e d e l v a r m e k o n d u k t i v i t e t

langd rekt

CTH,

basta hela

och

BSde och efter

eftersom borrhalets

koldbararvat-

a t t energifIddena

ar kor-

68 REFERENSER B a l l i n g , N., K r i s t i a n s e n , J . I . , B e i n e r , V . , P a u l s e n , K.D., R a s m u s s e n , R. & S a x o v , S . , 1 9 8 1 : G e o t h e r m a l m e a s u r e m e n t s a n d s u b s u r f a c e t e m p e r a t u r e m o d e l l i n g i n Denmark. G e o s k r i f t e r No. 16, D e p a r t m e n t o f G e o l o g y , A a r h u s U n i v e r s i t y , Denmark. F r i v i k , P - E . & J o h a n s e n , H., 1 9 7 7 : K a l o r i m e t r i s k e m S l n i n g e r a v s p e s i f i k k varme og u f r o s s e t vann f o r m i n e r a l s k e j o r d a r t e r og organiske m a t e r i a l e r . Slutrapport n r 8 - M a t e r i a l e r s varmet e k n i s k e egenskaper. R a p p o r t n r 75 - F r o s t i j o r d . I n s t i t u t t f o r k j ^ l e t e k n i k k . 7 0 3 4 - T r o n d h e i m - NTH. N o r g e . G o r a n s o n , R.W., 1 9 4 2 : H e a t c a p a c i t y ; h e a t o f f u s i o n . ( S e c t i o n 1 6 o f s p e c i a l p a p e r s No. 3 6 , G e o l o g i c a l S o c i e t y o f A m e r i c a . ) "Handbook o f P h y s i c a l c o n s t a n t s " , e d i t e d by F r a n c i s B i r c h , pp. 2 2 3 - 2 4 2 . Guttman, I . , 1970: S t a t i s t i c a l t o l e r a n c e regims: C l a s s i c a l and b a y e s i a n . No 2 6 o f G r i f f i n ' s s t a t i s t i c a l m o n o g r a p h s a n d courses. London. H a s h i n , Z. & S h t r i k m a n , S . , 1 9 6 2 : A v a r i a t i o n a l a p p r o a c h t o t h e theory o f t h e effective magnetic permeability o f multiphase m a t e r i a l s . J . Appl. Rhys. 33, 3125. H o r a i , K., 1 9 7 1 : T h e r m a l c o n d u c t i v i t y o f r o c k - f o r m i n g J. Geophys. Res. 76, 1278.

minerals.

H o r a i , K. & B a l d r i d g e , S . , 1 9 7 2 a : T h e r m a l c o n d u c t i v i t y o f n i n e teen igneous rocks, I A p p l i c a t i o n o f t h e needle probe method to t h e measurement o f t h e thermal c o n d u c t i v i t y o f rock. P h y s . E a r t h P l a n e t , I n t e r i o r s 5, 1 5 1 . H o r a i , K. & B a l d r i d g e , S . , 1 9 7 2 b : T h e r m a l c o n d u c t i v i t y o f n i n e teen igneous rocks, I I Estimation o f t h e thermal conductivi t y o f rock from t h e mineral and chemical compositions. P h y s . E a r t h P l a n e t . I n t e r i o r s 5, 1 5 7 . H o r a i , K. & S i m m o n s , G., ing minerals. Earth

1969: Thermal c o n d u c t i v i t y o f P l a n e t . S c i . l e t t . , 6, 359.

rock-form-

lUGS S u b c o m m i s i o n on t h e S y s t e m a t i c s o f I g n e o u s R o c k s . 1 9 7 3 : C l a s s i f i c a t i o n and n o m e n c l a t u r e o f p l u t o n i c r o c k s . Recommend a t i o n s . N. J . b . M i n e r . M h . , H 4 , 1 4 9 - 1 6 4 . lUGS S u b c o m m i s i o n on t h e S y s t e m a t i c s o f I g n e o u s R o c k s . 1 9 8 0 : C l a s s i f i c a t i o n and nomenclature o f Volcanic rocks, lamprophyres, Carbonatites and M e l i l i t i c rocks. - Geologische Rundschau 69, 194-207. K a p p e l m e y e r , 0 . & H a e n e l , R., 1 9 7 4 : G e o t h e r m i c s w i t h s p e c i a l r e f e r e n c e t o a p p l i c a t i o n . G e o e x p l . Monogr. S e r . l , 4 , 238 pp. K e r s t e n , M.S., 1 9 4 9 : T h e r m a l p r o p e r t i e s o f s o i l s . B u l l e t i n 28. U n i v e r s i t y o f M i n n e s o t a , I n s t i t u t e o f T e c h n o l o g y , e e r i n g e x p e r i m e n t s t a t i o n . V o l . L l l , N o . 2 1 , 2 2 6 p.

132

No. Engin-

69 L a n d o l t - B f i i r n s t e i n , 1 9 6 1 : Z a h l e n w e r t e und F u n k t i o n e n . E i g e n s c h a f ten der M a t e r i e i n i h r e n Aggregatzustanden. 4 . T e i l : Kalor i s c h e Z u s t a n d s g r b s s e n . S p r i n g e r - V e r l a g , B e r l i n 1 9 6 1 . 863 p. L a n d s t r o m , 0 . , L a r s o n , S-A., L i n d , G. & M a l m q v i s t , D., 1979: V a r meflode i b e r g . Chalmers t e k n i s k a hbgskola/Goteborgs u n i v e r s i t e t , G e o l o g i s k a i n s t . Publ B137. L a n d s t r o m , 0 . , L a r s o n , S-A., L i n d , G. & M a l m q v i s t , D., 1980: Geot h e r m a l i n v e s t i g a t i o n s i n t h e Bohus g r a n i t e a r e a i n southw e s t e r n Sweden. T e c t o n o p h y s i c s 6 4 , pp 1 3 1 - 1 6 2 . L o b e r g , B., 1980: G e o l o g i . M a t e r i a l , p r o c e s s e r och S v e r i g e s b e r g g r u n d . 2:a u p p l a g a n , N o r s t e d t s . L u n d e g S r d h , P.H., L u n d q v i s t , J . & L i n d s t r o m , M., 1970: B e r g och j o r d i S v e r i g e . Tredje upplagan. Almqvist & Wiksell Fbrlag AB. S t o c k h o l m P a u l s e n , K.D., S a x o v , . S., B a l l i n g , N. & K r i s t i a n s e n , J . I . , 1 9 8 1 : T h e r m a l c o n d u c t i v i t y measurements on S i l u r i a n l i m e s t o n e s f r o m t h e i s l a n d o f G o t l a n d , Sweden. G e o l . F o r e n . i S t o c k h o l m F b r h . , 103, 349-356. P e t t i j o h n , F . J . , 1975: S e d i m e n t a r y R o c k s . 3:e u p p l a g a n . H a r p e r . SAS, S t a t i s t i c a l A n a l y s i s S y s t e m , 1982: SAS I n s t i t u t e I n c . , SAS U s e r s g u i d e : B a s i c . E d i t i o n . G a r y , N.C.: SAS I n s t i t u t e I n c . 923 pp. S a s s , J.H., L a c h e n b r u c h , A.H. & M u n r o e , R . J . , 1 9 7 1 : T h e r m a l cond u c t i v i t y o f r o c k s f r o m measurements on f r a g m e n t s and i t s a p p l i c a t i o n t o h e a t - f l o w d e t e r m i n a t i o n s . J . Geophys. r e s . v o l . 7 6 , No. 1 4 , pp 3 3 9 1 - 3 4 0 1 . S i b b i t , W.L., D o d s o n , J.G. & T e s t e r , J.W., 1979: T h e r m a l conduct i v i t y o f c r y s t a l l i n e rocks a s s o c i a t e d w i t h energy extract i o n f r o m h o t d r y rock geothermal s y s t e m . J . Geophys. Res., V o l . 8 4 , No B 3 , 1 1 1 7 - 1 1 2 4 . S u n d b e r g , J . , 1980: M e t o d e r f o r b e s t a m n i n g av v a r m e b v e r f b r a n d e e g e n s k a p e r i j o r d och b e r g . R a p p o r t n r 5:1982 f r S n J o r d v a r megruppen, Chalmers t e k n i s k a h b g s k o l a . Gbteborg. W a l s h , J.B., 1966: E f f e c t o f p r e s s u r e and s a t u r a t i n g f l u i d on t h e t h e r m a l c o n d u c t i v i t y o f compact r o c k . J . Geophys. R e s . , V o l . 7 1 , No. 1 2 .

133

1(2) BILAGA 2

ANV«NT U N D E R L A G S M A T E R I A L Referenser t i l l mineralanalyser och varmekonduktivitetsmatningar

1.

B e s k r i v n i n g a r t i l l SGU:s b e r g g r u n d s k a r t o r i s e r i e A f n r : 13-16, 102, 104-105, 107-112, 114-126, 130-132, 135-136, 138, 141 och 144.

2.

B e s k r i v n i n g t i l l SGU:s j o r d a r t s s e r i e A e n r 1 .

3.

Beskrivning till berggrundskarta Ba 2 4 .

4.

B e s k r i v n i n g a r t i l l SGU:s b e r g g r u n d s k a r t o r o v e r K o p p a r b e r g s Ian (Ca 4 0 ) , N o r r b o t t e n s I a n (Ca 4 1 ) samt o p u b l i c e r a t material frSn Vasternorrlands Ian.

5.

Wiking Andersson: s o u t h e r n Sweden. t e t , Lund. 1975.

6.

Pontus Ljunggren: The region o f HSlia i n D a l e c a r l i a , Gbteborg. 1954.

7.

Sven Gavel in: ( t i t e l

8.

0 L a n d s t r b m , S-A L a r s o n , G L i n d & D M a l m q v i s t : V a r m e f l b d e i berg. Chalmers t e k n i s k a hbgskola/Gbteborgs u n i v e r s i t e t , Geol o g i s k a i n s t . Publ B137.1979.

9.

0 L a n d s t r b m , S-A L a r s o n , G L i n d & D M a l m q v i s t : Geothermal investigations i n t h e Bohus g r a n i t e area i s o u t h w e s t e r n S w e d e n . T e c t o n o p h y s i c s 6 4 , pp 1 3 1 - 1 6 2 . 1 9 8 0 .

10.

K Poulsen, S Saxov, N B a l l i n g & J K r i s t i a n s e n : Thermal cond u c t i v i t y measurements on S i l u r i a n l i m e s t o n e s form t h e I s l a n d o f G o t l a n d , Sweden. GFF 1 0 3 , pp 3 4 9 - 3 5 6 . 1 9 8 1 .

11.

A Hasselstrbm: Temperaturmatningar inom svenska g r u v f a l t och i samband darmed bestamning av v a r m e l e d n i n g s f b r m l g a hos m a i mer o c h s i d o b e r g a r t e r f r S n samma g r u v f a l t . STU 7 1 - 5 0 7 / u 4 0 7 . 1972.

12.

N B a l l i n g , J K r i s t i a n s e n , N B r e i n e r , K Poulsen, R Rasmussen & S Saxov: Geothermal measurements and subsurface temperat u r e m o d e l l i n g i n Denmark. Dep. o f Geology, Aarhus Univers i t y . G e o s k r i f t e r 16. 1981.

over

Stockholmstrakten

SGU

Precambrian geology o f t h e Vastana area, Geologiska i n s t i t u t i o n e n , Lunds u n i v e r s i Sweden.

a n n u e j b e s t a m d ) SGU B a 3 2 .

134

1(3) BILAGA 3

V R R M E K O N D U K T I V I T E T OCH

label 1 1

S P E C I F I K VARMEKAPACITET

FOR O L I K A M I N E R A L

V a r m e k o n d u k t i v i t e t ( W / m °C) f o r o l i k a m i n e r a l . ( E n l i g t Horai & Simmons, 1969, och H o r a i , 1971)

Andalusit Albit Amfibol Anortit Biotit

7.5 2.1 3.5 1.7 2.0

Cordierit Diopsid Dolomit Epidot Granat

2.7 4.0 5.5 2.8 3.1

Hematit Hornblainde Kalcit Kalifaltspat Klorit

11.3 2.8 3.6 2.5 5.1

Kvarts Magnetit Mikroklin Muskovit 01ivin*

7.7 5.1 2.5 2.3 4.5

Ortoklas Plagioklas* Pyroxen* Serpentin Sillimanit

2.3 1.9 4.3 3.5 9.1

V a r m e k o n d u k t i v i t e t e n a r beroende av den kemiska ningen hos m i n e r a l e t , se t a b e l l 2.

135

sammansatt-

2(3)

TABELL

2

V a r m e k o n d u k t i v i t e t e n f o r p l a g i o k l a s , o l i v i n och pyroxen beroende sammansattning.

(Horai

and B a l d r i d g e ,

Material

Sammansattning

Plagioklas

An

0 - An

5

2.34

An

(Ab = N a A l S i j O g An =

CaAl2Si20g)

01 i v i n (Fo = Mg2Si04 Fa =

FegSiO^)

Pyroxen Fs =

5 - A n 15

1.92 1.63

An 30 - An 50

1.46

An 50 - An 70

1.46

A n 70 - A n 8 5

1.59

An 85 - An 100

1.72

0 - F a 10

5.10

F a 10. - F a 3 0

4.27

Fa 30 - Fa 50

3.60

Fa 50 - F a 70

3.18

Fa 70 - Fa 90

3.05

Fa 90 - Fa 100

3.14

Fs

(En = MgSiOg FeSiOj)

Varmekonduktivitet

A n 15 - A n 3 0

Fa

0 - F s 10

4.73

F s 10 - F s 3 0

3.93

F s 30 - F s 50

(3.43)

F s 50 - F s 70

(3.18)

Fs 70 - F s 90

(3.14)

Fs 90 - F s 100

(3.22)

136

av

dess

1972.)

(W/m

°C)

3(3)

Tabell 3

Specifik varmekapacitet f o rmineral v i d skilda temp e r a t u r e r , e n l i g t Goranson (1942).

Minenl

C o m p o u n d

-200'

SAb-2An.,

0*

200'

400*

l O *

800*

1.07

1.18

.991

.20

.255

±1:0-900

18

1.09

1.21

1.016

.206

.278

1:0-900

18

.217

.058

1:0-961

71

3; Bfll-1300

71

A f

liquid

A g O

oerargyrite

(.85 a t 60*) .146

.233

.244

78" .256 .279

.318 .251

.354

.408

.462

.271

Uquid AgiAiSi..

proustite

AgiS

acanthi te

.410

AgjSbSi..

pyrargyrite

AliO.

corundum

72

.32 .37

.317

5:0-175

73

.368

5: 175-325

73

(.32 at 60') 0.069

0.72

1.00

L.B. 1.10

1.19

1.26

1.067

0.140

0.289

1.53

1

4:0-1700 2230

.152

.77

1.03

1.11

1.165 1.20

1.136

0.050

0.281

3:0-1300

2

cj'anite

.077

.70

1.00

1.10

1.20

1.27

l.OSi

0.136,

0.313

2: 0-1400

3

aillimanite

.133

.743

1.00

1.08

1.16

1.22

1.054

0.123

0.257

3; 0-1200

4

.97

1.03

1.09

andalusite

mullite

.77

kaolinite

1.02

kaolin

1.17

AI^WT

metakaolin

2(A1F)0-Si0j....

topaz

.71i

11.00 1.10 (.83 a t 50*)

native gold

.127

.133

a-wither! te

1.13

1.35

.140

1.20

1.27

.152

liquid BaCOi.

72

5: 453-533

L.B.

liquid

Au.,

2:0-453

(.34 a t 50*)

argentite

.

10-*e

.70

native silver

•AUSii07-2H!0

Refer ence

.70

oUgoclase

AlsSuOu

E r r o r %; t e m p . raDge *C.

andesine



AUSiiOii

j . / g m . ( T ' K . )

«!.« 4 A b l A n ' .

AhSiO...

'

( . 8 2 a t M ' )

Ubradorita

2Ab-3An.

Constanta i n

Cp (joules p e rg r a m ) f o r t e m > peratures i n * C .

1.03

0.075

0.210

3: O-llOO

5

0.806

0.463

0.0

4:0-300

6

0.641

0.904

0.0

3:0-500

7

1.062

0.151

0.289

2: 0-1300

.119

.0306

.15 .197

.44

.50

.55

.278

^-witherite

2:0-1063

35

5:1063-1300

35 10

5:0-810

10

10: 810-9S0

.64

I

7 8

10,11

BaSO.

barite

BeAlrf).

chrysoberyl

(.84 a t 50')

12

BejAUSUOi.

beryl

(.84 a t 50*)

13

.197

.45

.55

.383

.65

.253

5: 0-1050

diamond

.435

1.06

1.37

1.86

.754

1.067

.4544

4:0-1040

25

^graphite

.635

1.18

1.45. 1.88

.932

.913

.4077

3: 0-1040

26

.06

.2284

2:0-1300

Joly 19

Ca.AM.(SiO.)i..

prehnite

Cat^USiOT

geblenite

.75

CaAl.SuOi..

anorthite glass

C a C O .

.50

aragonite

(.84 a t 50*)

.26

calcite C a F .

fluorite

C a M g ( C O ) .

dolomite

.22

.97

1.03

1.09

1.12

1.042

.70

1.05

1.17

1.27

.950

.226

.2313

1:0-1400

18

.68

1.06

1.014

.158

.282

1; 0-700

18

3:0-750

16

.78

1.00

1.13

.823

.497

.1286

.79,

1.00

1.13

.823

.497

.1286

.798

.204

.85

.93 1 . 0 1

(.93 a t 60')

137

1.10

17

5:0-1200

i

IS

4(3)

Compound

(joules p e rg r a m ) f o r t e m peratures i n*C.

Mineral -200'

CaMgSiiOi.

diopeide glaaa

0*

200' 400*

800' 1200'

C,-a

C^nstanU i n + bTer-1 j./gm. (T*K.)

.71

.98 1.06 1.15 1.20 1.053 .999 .98 1.07

•c.

10»6

a

.111 .188

.290 .253

1; 0-1300 1:0-700

.150.

.177,

2:0-1400

(a) p e e u d o w o l lastoaite O ) wollastonite glass

.174

.73

.92

.172

.67

.92 1.00 1.06 1.10 1.007

.074

.269

2; 0-1300

.09

.92 1.03

.834.

.348

.175i

2:0-700

CaSOi CaSO.-2Hrf) CaWO. CdS

anhydrite gypeum Bcheelite greenockite

.52 .58 .322 1.03 ( . 4 0 a t 50°) .445 .50

.60

.64

.569

.675

.048s

5:0-1100

.55

.653

.374

.2605 0

Cu

native copper liquid

.191

.384

.42

.46

.358 .096 .493 0

0 0

.54 .68

.614

.419 .572

0

CaSiOi

cuprite tenonte 2CUO-CO.-HJO . malachite chalcopyrite CuFeSi boumonite CuPbSbSi.. CuiSe

a berzelianite ^ berzelianite

CujS

a chalcocite 0 chalcocite

.255

CuS

covellite dioptase

.228

arsenopyrite siderite hematite

FeiO.

a magnetite 0 magnetite

.42 .41

.41

a troilite 0troilite

.238

pyrite

.075

5:0-950 2:0-537

0 0

5:0-100 5:100-200

.82 .247 .55 0

0 0

3:0-103 10:103-900

.49 .52 (.77 at 34')

.54

.59

.464

.115

0

?; 0-1000

.40 .25

0 0 0 0 0

3:0-755 3:755-903 5: 903-1401 5:1401-1530 5; 1530-1600

.52

( . 4 3 a t S5») .68, .61 .79

.60

0 0 0

.640

.420

.93 1.03

.744 .640

.340 .362

.91

1.095

.69

.392

.635

.66

.71

.594

.69

.83

.606

.500

.33 .46 .63 0.63 .75 .61

.90 1.08

(.94 at 60') .55 .79 ( . 8 0 a l 60°)

FeS

.079

.55

.60

limonite fayaUte hypersthene

0 0

2; 0-I0S4 3:1084-1300

.55

(.73)

.234

.181 .188

138

1.00 1.85 .574 .130 .373

.466

Reference

eat.: 0-1000

.55

.470

.44

2FeK).-3HiO FeiSiOi FfeSiiO.

FeS,

1.07 1.14

.42

a iron 0 iron y iron 4 iron liquid

FeAaS FeCO. FeiOi

.40

.47 .505 .52 .63 ( . 7 4 a t 57°) (.54 a t 50') ( . 3 1 a t 50°)

CuiO CuO

CuSiOiHjO. Fe

.99

.926

E r r o r %; temp, range

.111

3:0-800

.177

3: 0-576 5:576-800

.181

3:0-900

0

0 0

7; 0-138 3; 138-1195

0

7; 0-500

44

5(3)

C^nsUnts in 'j./gm. CTK.) Mineral -200" 0* 200' 400- 800* 1200* a 10* 10-V .406 2.81 .43U .SM .77 pyrrbotite ice .963 2.06 native mercury .138 .138 .138 0 0 a-cinnabar .214 .227 .240 .196 .066 0 (.74,a t60*) leucite (last (.73,a t60') .732 .842 1.00 adularia mierocUne .680 .950 1.04 1.143 .988 .166 .263 orthoclaae .61 .94, 1.05 1.145 1.043 .124 .351 giaaa .70 .97 1.07 1.19 .976 .216t .247 .682 .168 0 .715 .749 .682 .418 sylvite .266 .219 0 .326 o-oiter /5-niter l.lt 1.19 0 0 liquid 1.22 1.22 0 0 (.8Sat 58*) petalite , (joulea per (ram) for temperaturea in "C.

spodumene glass garnet

Error % temp, range 3:0-350 1:0^47 2:0-580

1:0-1100 1:0-1100 2:0-1100 2:0-770 10:0-128 5: 128-338 10:338-410

(.90 at 60') (.91 at 60') (.74 at 58")

.796 1.18 o'boracite ^-boracite 1.41 .805 .84 .87 cbloromagnesite magnesite .161 .864 sellaite .906 1.08 1.206 1.43 brucite (1.30 at 35") periclaae .066 .870 1.09 1.16 1.24 1.30 .752 1.03 1.15 pyroxene amphibole .740 1.03 1.13 1.24 glass .766 1.02 1.14 (1.00 at 9*) kieserite epsomite (1. SI at 32*) olivine (0.79 at 36') talc (0.87 at 59*) rhodochrosit* .203 .70 1.08 1.46 pyrolusite .975 1.00 1.01 (0.74 a 36-) manganite alabandite .322' .569' molybdenite .537 .554 .570 .709 .986 1.085 1.196 albite class .724 1.00 1.U4 1.26

139

.275 1.909 0 .502 1.346 0 .760 .166 0 .857 .542 1.127 .973 1.067 .971

.124 .336 .183 .322

5:0-265 5; 265-100 T; 0-718 .0736

3:0-1000

.217 .233 .281 .226

2:0-1800 1:0-500 1:0-1100 1:0-700

.283i 1.532 .33 X IO-"T« .14.x .924 .227 10-"T« .515 .082 0 1.018 .187 .268 .978 .282 .247

4:0-500 ?;O-500 5:0-456 1:0-1100 1:0-400

6(3)

C o m p o u n d

, (joules per g r a m l f o r t e m permturea i n

Mineral

-200* N»C1..

0'

\200'

.4es .sss

haliU) liquid

400'

800'

11.10 1.29

N»F

viUiaumite

1.034

borax

(.161

N a i A l F ,

cryolite

.DO*

jl.18

NiS

millerite

.lot

I

.S6i

P b C O .

oerussite

.177

PbS

caleoa

.142

I

.221

PbSO.

angleaite

(.364 at

60*)

Pd

palladium

.232

.246

.260

.289

Pt

platinum

.134

.139

.144

.154

S I . .

rhombic

.318

at

I

.207

.300

.773 1.14

1.14

N«B.OilOHK>.

IOH>

1200"

.975 1.095

.S15

Constants i n C , - o + 6r eT-' i./«m. ( T * K . )

0

Error %; temp, range "C.

lff-«c 0

2;0-S00

0

3:800-950

-.184

2; 0-700

.473

1.151

.770

.949

.426

.295

0

3,0-324

.188

.07

0

S:(H!00

.318

.212

.072

0

2; 0-1549

.164

.127

.0249

0

i:(^ieoo

.482

.835

0

3; 0-95.6

.572

.576

0

3:95.6-119

.656

.656

0

T; 119-160

0

?; 160-270

0.0

est.:

35*) 1.39

1.78

.235

sulfur

monocliiiic

.0895

2; 0-1000

sulfur liquid viscous Sb.Si...

stibnite

SiO.....

a-quartz

1.22

.173

.407

.342

I

.375

.698

. 9 6 9 1.129

0.298

1.174 1.327 o-cristobalite

.186

glass

.184

1.074 1.171

1.21 1.34

.70

.95

1.06

.34

.43

.48

SnOt...

cassiterite

SiCOi..

strontianite

T i O i . . .

rutile, brookite

.70

.80

.88

WO.....

tungstite

.33

.355

.382

Z n C O .

smithsonite

Z n O . . . ZnS.... ZrSiOi.

.211

.238

sincite a-w\irtzite ^sphalerite zircon

.607

.763

.383

1.21 .55

1.191

1.6

.168

0-548

1;»-S75 4: 575-1600

0

4:0-250

0

2; 250-1700

.032

.0625

.892

.311,

.021

5: 0-1700

.387

.157

.07

4:0-1100

.619

.395

.022

3:0-450

.289

.14

.536 .44

5: 0-1300

0

.632 .48

.430

.7574 .254

1.01

^ristobalite

0.163

.45 (.61 a t

.58 .53 60')

140

.615 .56

.66 .587

.586 .550

.075

.094

2;0-130O

.041

.084

6:0-900

1(4) BILAGA 4

D V E R E N S S T O M M E L S E M E L L A N U P P M R T T OCH B E R R K N A D (Tillaggsmaterial)

VRRMEKONDUKTIVITET

De a n v a n d a v a r d e n a p a v a i r m e k o n d u k t i v i t e t e n f o r m i n e r a l b y g g e r pS b e s t a m n i n g a r a v H o r a i & S i m m o n s ( 1 9 6 9 ) s a m t H o r a i ( 1 9 7 1 ) . De a n vande s i g d a r av en ny m e t o d i k som i n n e b a r a t tm i n e r a l e t p u l v r i s e r a d e s , v a t t e n m a t t a d e s med d e s t i H e r a t v a t t e n o c h u p p m a t t e s med e n s o n d s m e t o d ( x wff)Darefter korrigerades f o r vatteninnehSllet ( e ) m e d e k v (fj, V a r v i d v a r m e k o n d u k t i v i t e t e n f o r m i n e r a l e t e r h b l l s ( ^ _ ) .Denna e r h b l l s genom m e d e l v a r d e s b i l d n i n g av e t t b v r e o c h e t t ffedre g r a n s v a r d e e n l i g t H a s k i n & S h t r i k m a n ( 1 9 6 2 ) .

dar

W

= i(^b

A.. = X °

"

^)

(i:

1 1 - ^ + e ( T - ^ - + -T; 3A^

m

w

1 )'

w

dar Ekvation

( 1 )m o t s v a r a r

e k v . ( 3 . 1 )f o r2-fas

material.

Sass e t a l ( 1 9 7 1 ) v i s a d e a t t d e t v a r m b j l i g t a t t bestamma vairmek o n d u k t i v i t e t e n a v e n f o r b e r g pa n e d k r o s s a t m a t e r i a l , varefter aven Horai & Baldridge (1972) gjorde motsvarande fbrsbk. D e r a s m e t o d i k v a r d e n s a m m a s o m f o r m i n e r a l b e s t a m n i n g a r o v a n . PS provbiten f r a n motsvarande b e r g a r t e r utfbrdes divided-bar bestamn i n g a r som j a m f b r e l s e . A v v i k e l s e n v a r k o r r e l e r a d t i l l p o r o s i t e t e n . Om h a n s y n t o g s t i l l d e n n a f a n n m a n a t t i n a g o n a v m e t o d e r n a f a n n s e t t s y s t e m a t i s k t f e l pS 5%. Pa d e l v i s m o t s v a r a n d e prover gjordes teoretiska t e t s b e s t a m n i n g a r med t r e s k i l d a m e t o d i k e r : 1) 2) 3)

varmekonduktivi-

utgSende f r S n mineralsammansattning utgaende frcin kemisk sammansattning utgciende f r a n a t o m v i k t och d e n s i t e t .

Man f a n n a t t 1 ) v a r d e n b a s t a . 2 ) k a n med n a g o r l u n d a sakerhet e n d a s t u t f b r a s pS m a g m a t i s k a b e r g a r t e r d a r e n n o r m k a n a n v a n d a s f b r bvergang f r S n kemisk sammansattning till mineralogisk. 3) var den m e s t o s a k r a . Resultaten av jamforelsen mellan matning och berakning Horai & Baldridge, 1972) v i s a s i t a b e l l 3.3.

141

(enligt

2(4) Man fann vid hbgre vardet

jamforelsen beraknat.

en

medelavvikel

se

pS

ca

+10%,

med

det

V i d a n t a g a n d e a v e n s y s t e m a t i s k o v e r s k a t t n i n g med 5% v i d a n v a n d a n d e t av H a s h i n - S h t r i k m a n s samband (ekv. (1) e l l e r ( 3 . 1 ) ) s k u l l e a v v i k e l s e n pS + 1 0 % e n l i g t ovan fbrandras till -5% eftersom ekv. (3.1) anvands 3 gSnger, vid mineralbestamningarna, vid bvergSng av varmekonduktivitet frSn vatten-bergartspulverblandning t i l l bergart samt vid berakning e n l i g t metod (ekv. 3.1). Horai & Baldridge (1972) slutsats b l i r darfor a t t vid praktisk anvandnipg av e k v ( 3 . 1 ) b b r v a r m e k o n d u k t i v i t e t e n r e d u c e r a s med 5%. De u n d e r s o k n i n g a r som ar gjorda vid Geologiska institutionen, T a b e l l 3 . 4 o c h 3 . 5 , v i s a r d o c k pS e n god b v e r e n s s t a m m e l s e mellan u p p m a t t och b e r a k n a d v a r m e k o n d u k t i v i t e t , v a r f b r nagon sadan reducering e j har g j o r t s f o r berakningarna i d e n n a r a p p o r t . Se vidare kapitel 3.3.

142

1(5) BILAGA 5

RESULTAT, BERGARTERS VARMEKONDUKTIVITET, TABELLER

Tabell 1

Medelvarden m m av v a r m e k o n d u k t i v i t e t , W/m C , f o r u r s p r u n g l i g b e r g a r t s k o d . S k i l l n a d e n mellan Nl och N2-N't beror pa a t t under metod 1 a r i n l a g t uppmatt v a r m e k o n d u k t i v i t e t . Metoderna hanfdr s i g i o v r i g t t i l l e k v . (3.1-3.4) i namnd o r d n i n g .

Bergartskod Granit Cranodiorit Tonal i t A p l i t , pegmatit m m Kvartsdiorit Syenit, diorit m m Porfyr Porfyrit Ryolit, dacit Trakyt, basalt m m Kvartsit Ovr. k v a r t i s i t Ovr, omvandlade sed. Omvandlade s e d . , o s p e c . Omvandl, b a s i s k a b e r g a r t e r C n e j s , ospec. Leptit, leptitgnejs m m

Tabell 2

Nl

MV1

stdl

N2

MV2

std2

g4S 255 171 44 122 188 95 59 119 70 36 267 148 197 168 226 742

3.47 3.34 3.16 3.31 2.87 2.67 3.55 2.54 3.37 2.83 6.44 4.65 3.53 3.52 2.58 3.47 3.56

0.380 0.292 0.269 0.477 0.227 0.305 0.463 0.468 0.397 0.347 0.811 0.679 0.478 0.706 0.305 0.466 0.621

714 255 171 8 122 188 34 21 117 70 31 266 141 197 135 202 425

3.JS 3.11 2.94 3.44 2.70 2.56 3.20 2.79 3.18 2.70 6.45 4.41 3.28 3.30 2.56 3.25 3.33

0.35J 0.265 0.239 0.509 0.198 0.273 0.319 0.248 0.357 0.305 0.821 0.686 0.441 0.669 0.251 0.439 0.548

m

5.35 3.82 3.61 4.13 3.13 2.77 3.92 3.31 3.84 3.04 6.88 5.24 4.01 3.99 2.75 3.95 3.98

std3

MV4

std4

0.446 0.358 0.352 0.593 0.263 0.346 0.456 0.410 0.428 0.449 0.592 0.650 0.544 0.841 0.331 0.548 0.674

2.85 2.66 2.54 2.96 2.45 2.42 2.73 2.49 2.74 2.48 5.83 3.63 2.79 2.81 2.44 2.78 2.88

0.248 0.169 0.146 0.380 0.146 0.225 0.216 0.148 0.278 0.213 1.016 0.608 0.311 0.466 0.229 0.309 0.413

Medelvarden av v a r m e k o n d u k t i v i t e t , W/m C, f o r m o d i f i e r a d b e r g a r t s k o d . S k i l l n a d e n mellan N1 och N2-N4 beror pa a t t under metod 1 ar i n l a g t uppmatt v a r m e k o n d u k t i v i t e t . Metoderna hanfor s i g i o v r i g t t i l l e k v . (3.1-3.4) i namnd o r d n i n g .

Bergartskod Granit-ryolit Cranodiorit-ryodacit Tonal i t - d a c i t Kv.syenit-Kv.trakyt Syenit-trakyt Kv,monzonit-Kv.1atit Monzonit-latit Kv.monzondiorit-andesit Kv.diorit-andesit Diorit-andesit Gabbro-basalt P e r i d o t i t , pyroxenit Kvartsit Ovr. k v a r t i s i t Ovr. omvandl. sediment Omvandl, s e d i m e n t , o s p e c . Omvandl. b a s i s k a b e r g a r t e r Gnejs, ospec. Leptit, leptitgnejs m m

Nl

MVl

stdl

N2-4

969 315 332 18 41 63 7 33 50 58 86 8 32 272 122 192 184 227 726

3.49 3.28 3,19 2.94 2.51 2,76 2.68 2.69 2.64 2.34 2.78 4.02 6.61 4.65 3.58 3.54 2.56 3.47 3.58

0.355 0.301 0.395 0.230 0.216 0.196 0.344 0.188 0.183 0.346 0.310 0.162 0.628 0.681 0.488 0.699 0.309 0.465 0.603

738 315 332 18 41 63 7 33 50 18 86 8 27 271 115 192 151 203 409

143

MV2

std2

3.31

0.304 0.273 0.364 0.204 0.199 0.173 0.303 0.160 0.167 0.219 0.289 0.159 0.456 0.689 0.456 0.665 0.267 0.438 0.520

3.07 2.98 2.80 2.44 2.63 2.56 2.56 2.51 2.33 2.66 3.91 6.70 4.41 3.32 3.32 2.53 3.25 3,37

m 3.58 3.75 3.62 3.18 2.58 2.99 2.82 2.91 2.81 2.41 2.85 3.96 7.06 5.24 4.07 4.02 2.72 3.95 4.04

stcl5

MV4

std4

o.m

2.85 2.63 2.57 2.57 2.35 2.42 2.40 2.36 2.34 2.27 2.51 3.83 6.12 3.63 2.81 2.83 2.42 2.78 2.90

0.220 0.173 0.239 0.165 0.167 0.124 0.212 0.116 0.155 0.187 0.256 0.189 0.662 0.609 0.325 0.465 0.243 0.309 0.401

0.376 0.490 0.253 0.272 0.249 0.435 0.227 0.194 0.267 0.323 0.136 0.300 0.654 0.548 0.830 0.342 0.547 0.616

2(5) label 1 3

Toleransinterval1

f o r varmekonduktivitet vid ursprunglig

bergartskod.

A n t a g a n d e om l o g n o r m a l f o r d e l n i n g x.% a v f o r d e l n i n g e n x% av f o r d e l n i n g e n a r med l i g g e r med 9 5 % k o n 95% konfidensfidensgrad inom neg r a d s t o r r e an danstaende internedanst. varde val 1 Bergartskod Granit Granodiorit Tonal i t Aplit, pegmatit m m Kvartsdiorit Syenit, diorit m m Porfyr Porfyrit Ryolit, dacit Trakyt, basalt m m Kvartsit "Svrig kvartsit" Ovriga omvandlade sediment Omvandlade sediment ospec. Omvandlade basiska bergarter Gnejs, ospec. Leptit, leptitgnejs m m

Tabell

4

Toleransinterval1

MV

x=75%

x=S0%

x=75%

5.47 3.34 3.16 3.31 2.87 2.67 3.55 2.54 3.37 2.83 6.61 4.65 3.58 3.54 2.56 3.47 3.58

3.1S 3.10 2.93 2.86 2.67 2.42 3.12 2.10 3.02 2.52 5.94 4.11 3.16 2.98 2.31 3.10 3.13

2.97 2.94 2.78 2.59 2.54 2.25 2.85 1.85 2.80 2.33 5.53 3.75 2.90 2.64 2.14 2.84 2.82

3 . 0 2 -- 3 . 9 3 2 . 9 9 -- 3 . 7 0 2 . 8 3 -- 3 . 5 1 2 . 6 9 -- 4 . 0 0 2.58-3.16 2.30-3.07 2.93-4.21 1 . 9 3 -- 3 . 2 4 2 . 8 6 -- 3 . 9 0 2.40-3.29 5.69-7.62 3 . 8 4 -- 5 . 5 2 2 . 9 8 -- 4 . 2 2 2 . 7 4 -- 4 . 4 2 2 . 1 9 -- 2 . 9 6 2 . 9 2 -- 4 . 0 7 2 . 8 9 -- 4 . 3 1

2 . 8 6 -- 4 . 1 5 2 . 8 5 -- 3 . 8 7 2 . 7 0 -- 3 . 6 7 2.47-4.35 2.48-3.30 2.16-3.26 2 . 7 2 -- 4 . 5 5 1 . 7 3 -- 3 . 6 1 2.68-4.17 2.24-3.53 5.34-8.12 3 . 5 5 -- 5 . 9 7 2 . 7 7 -- 4 . 5 4 2 . 4 7 -- 4 . 9 0 2 . 0 5 -• 3 . 1 5 2 . 7 2 -- 4 . 3 7 2 . 6 6 -- 4 . 7 0

f o r varmekonduktivitet vid modifierad

Granit-Ryolit Cranodiorit-Ryodacit Tonalit-Dacit Kvartssyenit-kv.trakyt Syenit-Trakyt Kv.monzonit-kv.latit Monzonit-latit Kv.monzonit-Andesit Kv.diorit-Andesit Diorit-Andesit Cabbro-Basal t Peridotit, Pyroxenit m

m

metod x% av f o r d , ligger med 95% konfidensgrad inom nedanst. interval 1

x=7S%

x=90%

x=5b%

3.22 3.09 2.94

2.94 2.95 2.73

2.84-4.16 2.85-3.90 2.64-3.65

2.68 2.41 3.18

2.53 2.23 2.67

2 . 4 9 --3.36 2 . 1 3 -- 3 . 3 3 2 . 5 9 -- 4 . 5 1

3.04

2.85

2.79-4.32

4.09 3.17 2.93 2.32 3.13 3.10

3.68 2.82 2.61 2.13 2.88 2.79

3 . 4 9 -- 6 . 0 3 2 . 7 7 -• 4 . 6 6 2.53-5.26 2.02-3.25 2.73-4.66 2.67-4.68

bergartskod.

A n t a g a n d e om l o g n o r m a l f o r d e l n i n g x% av f o r d e l x% av f o r d e l n i n g e n n i n g e n a r med l i g g e r med 9 5 % k o n 95% konfidensfidensgrad inom neg r a d s t o r r e an danstaende internedanst. varde vall

Bergartskod

Parameterfri x% av f o r d , a r med 9 5 % k o n fidensgrad s t o r r e an n e danst. varde

Parameterfri x% av f o r d , a r med 9 5 % k o n fidensgrad s t o r r e an nedanst. varde

metod x% av f o r d , ligger med 95% konfidensgrad inom nedanst. interval 1

MV

x=75%

x=90%

x=75%

x=90%

x=75%

x=90%

x=90%

3.49 3.28 3.19 2.94 2.51 2.76 2.68 2.69 2.64 2.34 2.78 4.02

3.22 3.04 2.90 2.68 2.30 2.58 2.15 2.SO 2.47 2.02 2.49 3.77

3.02 2.88 2.69 2.52 2.17 2.45 1.89 2.38 2.35 1.83 2.31 3.63

3.07-3.92 2.92-3.65 2.75-3.65 2.58-3.34 2.22-2.82 2.50-3.04 1.99-3.56 2.43-3.98 2.39-2.89 1.89-2.82 2.37-3.21 3.68-4.38

2.91-4.14 2.79-3.83 2.59-3.88 2.44-3.53 2.11-2.97 2.39-3.17 1.76-4.02 2.32-3.11 2.30-3.02 1.74-3.08 2.22-3.42 3.55-4.54

3.24 3.03 2.89

3.03 2.86 2.75

2.90-4.17 2.78-3.82 2.69-4.02

144

3(5) Tabell 5

L a n s v i s r e d o v i s a d v a r m e k o n d u k t i v i t e t f o r u r s p r u n g l i g b e r g a r t s k o d . Endast uppmatta varden samt berakningsmetod e n l i g t e k v . ( 3 . 1 ) medtagen ( s e k a p i t e l 3 . 2 . 2 ) . Lan

Bergartskod

A A A A A A A A A A A A A BD BD BD BD C C C C C C C C C C D D D D D D D D D D D D D E E E E E E E E E E E E E H

GRANIT 2 GRANODIORIT 3 TONALIT 4 KVARTSDIORIT 7 DIORIT MM 8 PORFYR 9 PORFYRIT 10 5VR KVARTSIT 14 OVR OMV SED .15 OMV SED OSPEC 16 OMV BASISKA 17 GNEJS OSPEC 1 8 LEPTITGNEJS 1 9 GRANIT 2 DIORIT MM 8 PORFYR 9 OVR OMV SED 15 GRANIT 2 GRANODIORIT 3 TONALIT k KVARTSDIORIT 7 DIORIT MM 8 DACIT MM 1 1 BASALT MM 12 OVR KVARTSIT 1H OVR OMV SED 15 LEPTITGNEJS 19 GRANIT 2 GRANODIORIT 3 TONALIT 4 KVARTSDIORIT 7 DIORIT MM 8 DACIT MM 1 1 BASALT MM 12 OVR KVARTSIT 14 OVR OMV SED 15 OMV SED OSPEC 16 OMV BASISKA 17 GNEJS OSPEC 1 8 LEPTITGNEJS 19 GRANIT 2 GRANODIORIT 3 TONALIT 4 KVARTSDIORIT 7 DIORIT MM 8 DACIT MM 1 1 BASALT MM 12 OVR KVARTSIT 14 OVR OMV SED 15 OMV SED OSPEC 16 OMV BASISKA 17 GNEJS OSPEC 1 8 LEPTITGNEJS 19 KVARTSIT 13

N

145

80 47 67 18 15 9 19 101 68 73 34 59 166 86 54 61 5 30 13 7 9 9 9 18 23 25 61 125 64 47 9 39 33 20 36 15 80 14 41 57 108 29 6 25 36 14 30 8 9 12 26 10 45 9

MV

3.57 3.29 3.18 2.77 2.85 3.30 2.96 4.49 3.46 3.10 2.58 3.44 3.34 3.20 2.49 3.62 4.15 3.57 3.36 3.21 3.02 2.52 3.43 2.93 4.35 3.44 4.12 3.60 3.44 3.17 2.89 2.69 3.54 2.83 4.64 3.32 3.96 2.66 3.38 3.85 3.49 3.24 3.06 2.95 2.82 3.39 2.80 4.88 3.37 3.66 2.60 3.71 3.59 6.72

Std

0.320 0.281 0.273 0,170 0.402 0.288 0.302 0.617 0.417 0.425 0.408 0.281 0.471 0.425 0.192 0.500 0.468 0.272 0.346 0.238 0.362 0.206 0.193 0.378 0.438 0.458 0.609 0.376 0.311 0.267 0.217 0.317 0.425 0.422 0.567 0.430 0.761 0.299 0.608 0.546 0.280 0.261 0.186 0.152 0.282 0.288 0.255 0.270 0.418 0.611 0.246 0.758 0.511 0.347

4(5) Tabell 5

Fortsattning Lan

N1

Bergart

H K K L L L L L L L L L N N 0 0 0 0 P P P P P P R T T T T T T T T T T T U U W W W W w w w w w w Y Y Y Y Y Y

OVR KVARTSIT 14 GRANODIORIT 3 GNEJS OSPEC 18 GRANIT 2 GRANODIORIT 3 DIORIT MM 8 DACIT MM 11 KVARTSIT 13 OVR KVARTSIT 14 OMV BASISKA 17 GNEJS OSPEC 18 LEPTITGNEJS 19 GRANIT 2 GRANODIORIT 3 GRANIT 2 KVARTSDIORIT 7 OMV BASISKA 17 GNEJS OSPEC 18 GRANIT 2 GRANODIORIT 3 TONALIT 4 KVARTSDIORIT 7 OMV BASISKA 17 GNEJS OSPEC 18 GRANIT 2 GRANIT 2 GRANODIORIT 3 TONALIT 4 APLIT MM 5 PORFYR 9 DACIT MM 11 OVR KVARTSIT 14 OVR OMV SED 15 OMV BASISKA 17 GNEJS OSPEC 18 LEPTITGNEJS 19 GRANIT 2 LEPTITGNEJS 19 GRANIT 2 GRANODIORIT 3 APLIT MM 5 KVARTSDIORIT 7 PORFYR 9 KVARTSIT 13 OVR KVARTSIT 14 OMV BASISKA 17 GNEJS OSPEC 18 LEPTITGNEJS 19 GRANIT 2 GRANODIORIT 3 TONALIT 4 KVARTSDIORIT 7 DIORIT MM 8 OVR KVARTSIT 14

Y Y Y Y

OVR OMV SED 15 OMV SED OSPEC 16 OMV BASISKA 17 LEPTITGNEJS 19 146

MV

11 10 12 40 10 16 33 5 14 15 25 10 6 13 62 11 5 24 54 32 8 11 25 11 8 100 11 11 7 14 23 9 9 15 25 193 17 7 67 5 35 16 7 11 20 26 15 134 59 17 18 11 12 50

5.6.3 3.22 3.13 3.31 3.20 2.89 3.12 7.03 5.47 2.50 3.32 3.28 4.00 3.27 3.44 2.94 2.69 3.84 3.52 3.44 3.18 2.87 2.74 3.52 3.26 3.39 3.46 3.22 3.17 3.42 3.56 4.80 3.97 2.54 3.60 3.66 3.55 3.39 3.46 2.94 3.29 2.75 3.41 6.42 4.57 2.23 3.40 3.34 3.52 3.28 3.07 2.83 2.54 4.66

15 27 12

3.74 3.37 2.68 3.85

Std

0.429 0.218 0.183 0.218 0.340 0.184 0.197 0.346 0.665 0.220 0.289 0.450 0.758 0.144 0.378 0.270 0.077 0.445 0.296 0.292 0.362 0.105 0.238 0.501 0.359 0.465 0.204 0.255 0.338 0.449 0.371 0.530 0.388 0.320 0.511 0.606 0.346 0.355 0.368 0.137 0.454 0.176 0.270 0.910 1.088 0.179 0.340 0.582 0.268 0.222 0.253 0.281 0.265 0.535 0,522 0.371 0.335 0.495

5(5)

Tabell 6

L a n s v i s r e d o v i s a d v a r m e k o n d u k t i v i t e t f o r m o d i f i e r a d b e r g a r t s k o d . Endast uppmatta varden samt berakningsmetod e n l i g t e k v . ( 3 . 1 ) medtagen ( s e k a p i t e l 3 . 2 . 2 ) . Lan

Bergartskod

N

MV

A A A A A A A A A A A BD BD BD BD BD BD BD BD C C C C C C C D D D D D D D D D D D D D E E E E E E E E E E E E E E E

GRANIT 103 GRANODIORIT 104 TONALIT 105 KV MONZONIT 1 1 0 KVARTSDIORIT 114 OVR KVARTSIT 214 DVR OMV SED 215 OMV SED OSP 216 OMV BASISKA 217 GNEJS OSPEC 2 1 8 LEPTITGNEJS 219 GRANIT 103 GRANODIORIT 104 KVARTSSTENIT 108 SYENIT 1 0 9 KV MONZONIT 1 1 0 KVARTSDIORIT 114 GABBRO 116 OVR OMV SED 215 GRANIT 103 GRANODIORIT 104 TONALIT 105 GABBRO 116 QVR KVARTSIT 214 OVR OMV SED 215 LEPTITGNEJS 219 GRANIT 103 GRANODIORIT 104 TONALIT 105 SYENIT 109 KVARTSDIORIT 114 DIORIT 115 GABBRO 116 OVR KVARTSIT 214 OVR OMV SED 215 OMV SED OSP 216 OMV BASISKA 21T GNEJS OSPEC 218 LEPTITGNEJS 219 GRANIT 103 GRANODIORIT 104 TONALIT 105 KV MONZONIT 1 1 0 MONZONIT 1 1 1 KV MONZODIORI 112 KVARTSDIORIT 114 GABBRO 1 1 6 PERIDOTIT MM 117 OVR KVARTSIT 214 OVR OMV SED 215 OMV SED OSP 216 OMV BASISKA 217 GNEJS OSPEC 218 LEPTITGNEJS 219

89 57 93 5 9 101 56 70 32 59 168 108 15 9 25 23 5 11 5 34 14 34 9 23 16 61 125 64 95 9 7 11 23 36 12 79 16 41 57 104 36 36 13 5 15 14 20 7 8 8 12 26 10 45

3.54 3.29 3.09 2.76 2.58 4.49 3.47 3.11 2.50 3.44 3.34 3.55 3.05 2.90 2.41 2.61 2.59 2.51 4.15 3.55 3.45 3.07 2.50 4.35 3.56 4.12 3.59 3.34 3.37 2.68 2.75 2.34 2.82 4.64 3.41 3.99 2.62

147

3.38

3.88 3.50 3.23 3.16 2.90 2.75 2.77 2.66 2.90 3.97 4.88 3.37 3.66 2.60 3.71 3.59

Std

0.323 0.289 0.285 0.081 0.212 0.617 0.445 0.433 0.249 0.281 0.472 0.443 0.245 0.277 0.147

0.201

0.045 0.163 0.468 0.269 0.349

0.313

0.214 0.438 0.485 0.609 0.323 0.322 0.464 0.249 0.218 0.243 0. 185 0.567

0.328

0.732 0.309 0.608 0.536 0.262 0.255 0.331 0.147 0.391 0.205 0.198 0.309 0.091 0.270 0.446 0.611 0.246 0.758 0.511

6(5)

label 1 6

Fortsattning L'an

Bergart

N1

H H K K L L L L L L L L N N 0 0 0 0 0 P P P P P P R T T T T T T T T U U U W W W W W W W W W Y Y Y Y Y Y Y y

KVARTSIT 213 OVR KVARTSIT 214 GRANODIORIT 104 GNEJS OSPEC 2 1 8 GRANIT 103 GRANODIORIT 104 GABBRO 116 KVARTSIT 213 OVR KVARTSIT 214 OMV BASISKA 217 GNEJS OSPEC 218 LEPTITGNEJS 219 GRANIT 103 GRANODIORIT 104 GRANIT 103 GRANODIORIT 104 TONALIT 105 OMV BASISKA 217 GNEJS OSPEC 2 1 8 GRANIT 103 GRANODIORIT 104 TONALIT 105 KV MONZONIT 110 OMV BASISKA 217 GNEJS OSPEC 2 1 8 GRANIT 103 GRANIT 103 GRANODIORIT 104 TONALIT 105 OVR KVARTSIT 214 OVR OMV SED 215 OMV BASISKA 217 GNEJS OSPEC 218 LEPTITGNEJS 219 GRANIT 103 GRANODIORIT 104 LEPTITGNEJS 219 GRANIT 103 GRANODIORIT 1 0 4 KV MONZONIT 110 KV MONZODIORI 112 KVARTSIT 2 1 3 QVR KVARTSIT 214 OMV BASISKA 217 GNEJS OSPEC 218 LEPTITGNEJS 219 GRANIT 103 GRANODIORIT 104 TONALIT 105 KVARTSDIORIT 114 GABBRO 1 1 6 OVR KVARTSIT 214 OVR OMV SED 215 OMV SED OSP 216

Y Y

OMV BASISKA 217 LEPTITGNEJS 219 148

MV

Std

9 11 10 12 71 13 8 5 14 15 26 10 13 6 52 11 9 5 24 64 26 9 5 25 11 7 120 27 20 9 9 14 25 192 16 5 7 102 12 7 6 11 20 26 15 134 56 17 25 5 9 50 15 26

6.72 5.63 3.20 3.13 3.24 3.07 2.97 7.03 5.47 2.50 3.33 3.28 3.44 3.26 3.46 3.31 3.03 2.69 3.84 3.54 3.28 3.14 2.85 2.74 3.52 3.33 3.41 3.44 3.32 4.80 3.97 2.55 3.60 3.66 3.62 3.41 3.39 3.44 2.96 2.83 2.64 6.42 4.57 2.23 3.40 3.34 3.55 3.30 3.04 2.58 2.57 4.66 3.74 3.39

0.347 0.429 0.232 0.183 0.220 0.329 0.121 0.346 0.665 0.220 0.289 0.450 0.314 0.175 0.387 0.297 0.220 0.077 0.445 0.290 0.312 0.355 0.156 0.238 0.501 0.323 0.449 0.225 0.375 0.530 0.388 0.330 0.511 0.608 0.328 0.274 0,355 0.389 0.175 0.063 0.147 0.910 1.088 0.179 0.340 0.582 0.248 0.224 0.247 0.072 0.300 0.535 0.522 0.365

12 50

2.68 3.85

0.335 0.495

R104:1986

VRRMEDVERFDRANDE EGENSKAPER I SVENSKA JORDARTER Varmekonduktivitet, och l a t e n t varme Jan

specifik

varmekapacitet

Sundberg

Denna r a p p o r t h a n f d r s i g t i l l f o r s k n i n g s a n s l a g 810671-8 fran Statens r a d f o r byggnadsforskning t i l l Chalmers tekniska hogskola, Geologiska i n s t i t u t i o n e n , Gdteborg.

149

i FDRORD Denna

rapport

h a n f o r s i g t i l l BFR-projekt 810671-8

varmebverfbrande

egenskaper

del

av p r o j e k t e t

dar

bergdelen

egenskaper

stort

Lena

jordarter.

"Varmebverfbrande

egenskaper

avrapporterad

rapporten

ar

i svensk berggrund"

(BFR-rapport

Ett

i svenska

i

av Sundberg,

och

och Johnson.

antal

1a b o r a t o r i e a n a l y s e r

av j o r d a r t e r

en del

Sven

Jonasson

i L u l e S samt

har bistatt

v i d bestamning

har utfbrts

ral innehall

i olika

Tommy C l a e s s o n ver. Lab.chef

jordarter

har utfbrt

med e t t a n t a l

i vissa

faltmat-

sandprover

av vattenhSl1ande

i e t ts k

egenskaper.

sjalvstandigt

mine-

arbete. sandpro-

G u n n a r T i b b l i n , V I A K A B , h a r b i d r a g i t med

kolvborr-

fran olika

Hellgren har svarat f o r utskriften

Gbteborg, September 1985

Sundberg

Chalmers

fran

m i n e r a l a n a l y s e r pa e t ta n t a l

c y l i n d r a r med l e r a o c h s i l t

Geologiska

av

varmekonduktivitetsmat-

P e t e r A b r a h a m s s o n h a r l a g t n e r m y c k e t mbda da h a n b e h a n d l a t

Jan

berg"

"Varmebverfbrande

Thunholm

n i n g a r . I n g v a r Rhen och P e t e r W i l e n h a r d e l t a g i t

Kallax

i jord

a r en

97:1985).

K a r l s s o n , som ocksci u t f b r t

ningar.

och behandlar Arbetet

institutionen

tekniska

hbgskola

151

delar av landet.

av rapporten.

Ann-Marie

iii INNEHALL Sid. FDRORD

i

INNEHALLSFDRTECKNING

i

SAMMANFATTNING

i

i v

B E T E C K N I N G A R OCH D E F I N I T I O N E R

i x

1.

INLEDNING

1

2.

D V E R S I K T OVER S V E R I G E S JORDARTER

2

2.1 2.2

Jordarters indelning Sveriges jordartsregioner

2 4

3.

JORDARTERS UPPBYGGNAD

9

4.

VRRMETRANSPORTERANDE

4.1

Varmekonduktivitet,

MEKANISMER specifik

12

varmekapacitet och

isbildningsvarme 4.1.1

13

Inledning

13

4.1.2

Jordars

vatteninnehSl1

15

4.1.3

Jordars

mineralinneh^11

21

4.1.4

Frysning

avjord

26

4.2

Straining

30

4.3

Konvektion

4.4

Kopplad varme- o c h f u k t t r a n s p o r t

33 i jord

34

4.4.1

Transport

i vatskefas

34

4.4.2

Transport

i Sngfas

35

4.4.3

Samverkan mellan

4.4.4

Angdiffusionens

4.4.5

Effekter av fuktvandring under temperaturgradient

Sng- o c hv a t s k e f a s inverkan

p3 v a r m e b v e r f b r i n g e n mekanismer

35 36 39

4.5

Sammanfattning - varmetransporterande

5.

METODER

5.1

Matmetoder

44

5.2

Teoretiska metoder

46

F O R VRRMEKONDUKTIVITETSBEST«MNING

43 44

5.2.1

Varmekonduktivitet

46

5.2.2

Specifik varmekapacitet

51

153

IV

6.

M A T N I N G A V V A R M E K O N D U K T I V I T E T , M E T O D I K OCH

ERFARENHETER

53

6.1

Beskrivning av m a t u t r u s t n i n g

53

6.2

Beskrivning av matmetodik

54

6.3

Erfarenheter av matningar

6.3.1

56

Laboratoriematningar

6.3.2

56

Faltmatningar

58

6.4

Insamling

7.

MATRESULTAT

61

7.1

Hela m a t e r i a l e t

61

7.2

Lera

7.2.1

och k l a s s i f i c e r i n g

av d a t a m a t e r i a l e t

59

63 V a r i a t i o n med v a t t e n h a l t o c h d e n s i t e t

63

7.2.2

V a r i a t i o n med p r o v t a g n i n g s d j u p

64

7.2.2.1

Uppmatta

64

7.2.2.2

Beraknade

varden v a r d e n f r S n 10 v a s t k u s t k o m m u n e r

67

7.3

Sand

68

7.4

Silt

71

7.5

Moran

72

7.6

Moranlera

73

7.7

Humusjord

73

8.

ANPASSNING AV T E O R E T I S K BERAKNINGSMODELL MATRESULTATEN

TILL 77

8.1

Mineraljord

78

8.2

Humusjord

89

9.

JORDARS

9.1

Fbrutsattningar

9.2

Hantering

VARMEKONDUKTIVITET - DIAGRAM

91 91

av och indata till diagram

92

9.2.1

Bestamning av j o r d a r t

92

9.2.2

Bestamning av v a t t e n h a l t och d e n s i t e t

93

9.2.3

Arbetsgang

95

REFERENSER

105

BILAGOR

109

154

V

SAMMANFATTNING

Projektet

har

syftat

t i l l a t t bestamma svenska j o r d a r t e r s

overforande

egenskaper.

har

utf'drts

pS

har

v a t t e n h a l t , d e n s i t e t , humushalt,

lande

fbmiciga

sats

Drygt

vanliga

900

svenska

bestamts.

En

varmekonduktivitetsmatningar

jordarter.

for olika

Dessa

diagram

tillsammans

jordarternas vattenhSllande

fbrmaga

och

gbr

a t t granser

varmekapacitet

med

kannedom

f o r variationsomrSdet

och

anpasvar-

vattenmattnads-

over

tivitet,

har

skapas over

t o r r d e n s i t e t och

grad

vattennivS

dessa

vattenhSl-

berakningsmodell

diagram kunnat

v a r i a t i o n med

jordarter.

P a r a l l e l U mad

k o r n s t o r l e k och

teoretisk

t i l l m a t e r i a l e t . Oarmed har

mekonduktivitetens

varme-

av

kurvor

om

grund-

varmekonduk-

l a t e n t varme i en j o r d p r o f i l

kan

ska-

pas.

I

det

fbijande redogbrs

bversiktligt

mekanismer samt f b r r e s u l t a t e t genom

varmeledning,

strllning,

s i o n . Vid lliga temperaturer stciende g r u n d v a t t e n tet.

Vid

inverkan

b l i pataglig

t i o n med komma

konvektion

fbr

ej

kan en

Vid

en

mycket

av

jordartens

jordar.

sankt

varmekonduktivitet.

parameter.

ligt

samre.

sistnamnda

kan

ha

och

Finkorniga

Fbr

radikalt

jordar

innebar sankt

en

viss

plats

egenskaper (lera-silt)

sand

narmast

isbildningsvarmet

vattenhSllande

e g e n s k a p e r medan

sand

kombina-

kraftigt

grundvattenyta.

en

till tar

i

vattenhalt

viktig

en

Inverkan

sankt

vattenhSllande de

Sngdiffusionens

kraftigt

goda

Fbr

stilla-

k o p p l a d e varme- och f u k t t r a n s p o r t e r

bver

ovan grundvattenytan

Sngdiffu-

hbga t e m p e r a t u r e r

varmekonduktivitet, varmekapacitet

stams

att

bbrjar

mattade

ger upphov t i l l en

vattenhalten

genom

det dominerande t r a n s p o r t s a t -

rumstemperatur

jamvikt, varvid

denna

samt

bverfbras

( n a t u r l i g j o r d t e m p e r a t u r ) och

bkande temperatur.

s t o r t varmeflbde

ur

varmekallan

Fbr

ovan

varmeoverforande

p r o j e k t e t . Varme kan

ar varmeledning

temperatur

k r a f t i g t med

av

fbr olika

och

en

samt

mycket

har

betyd-

fbrflyttning

i

behbjd

har

grbvre

vattenhalt. Detta

betydande sasongsvariation

ar

nagon

dm

innebar

varmebverfbrande

egenskaper.

Mineralinnehallet

har

betydelse

framst

fbr

varmekonduktivteten.

K v a r t s h a r b e t y d l i g t h b g r e v a r m e k o n d u k t i v i t e t an b v r i g a

155

vanliga

vi bergartsbildande

m i n e r a l , v a r f o r det

a r av

i n t r e s s e . En

kvartsrik

vitet

an

I p r o j e k t e t har

en

lera.

olika jordarter

Pa

g r u n d av

kornig de

fbrsbk

ha

hbgre

40%

darfdr

till

som

varmekondu.kti-

aven mineralinnehal 1

i

undersbkts.

v i d 0°C.

Detta

energimangder

sattning

ar detta mineral

hbga b i n d n i n g s k r a f t e r f r y s e r e j a l l t

jordart

stora

sand kan

framst

som

kan

a t t approximativt

utfbrts

for

ha

frigbrs

olika

v a t t e n i en f i n -

stor betydelse

da

p3

vatten fryser.

kvantifiera

denna

jordarter direkt

i

grund

Darfbr

av har

fryspunktsnedett

vattenbind-

ningsdiagram.

En

t e o r e t i s k berakningsmodel1

har

genom r e g r e s s i o n s a n a l y s

anpas-

s a t s t i l l r e s u l t a t e n f r S n u t f b r d a m a t n i n g a r och

jordartsanalyser.

Dverensstammelsen Ug

+15%

fidensgrad

Pa

basis

skapats fruset

u n d e r a n t a g a n d e om

av

tillstand ar

ungefarliga erhalls

vad

hbgre som

denna

inom i n t e r v a l l e t

teoretiska berakningsmodel1

torrdensitet,

nedanstSende

kvalitet ar

och

samt f o r l a t e n t

granser

pa

for

sedan

kon-

diagram

i ofruset

varme. IngSngsparametrar i samt

j o r d a r t e r anvandes

jordart. i

och diaOm

diagrammen

tabell.

de

varmebverfbrande

m b j l i g t a t t astadkomma

diagrammen, bbr

har

varmekapacitet

vattenmattnadsgrad nagra

v i d 90%

normalfbrdelning.

over varmekonduktivitet

grammen

Om

vanligen

matningar utfbras.

156

med

de

egenskaperna

bnskas

i rapporten

redovisade

an

Jordart

Varmekonduktivitet

Specifik varmekapacitet

x106 L e r a med lerhalt

0.85-1.1

hog

Latent

C

X"

XI

varrtie

I

o6

x10«

2.0-2.2

3.0-3.5

2.0

2.1-2.5

Torrskorpelera dito

1.1-1

A

1.7-2.3

2.6-3.0

1.7-2.0

1.1-1.6

Siltig lera/ siltskikt

1.1-1.5

2.3-2.8

2.9-3.3

2.0

1.5-2.0

Torrskorpelera dito

1.2-1.6

1.9-2.9

2.5-3.0

1.7-2.0

Silt

2A-i.3

1.1-1

.6

1.2-2.it

2.3-3.2

2.0

0.8-2.0

Sand, grus under grundvattenytan

1.5-2.6 (1.6-2.0)

2.7-3.3 (2.8-3.0)

2.5-3.2 (2.9)

2.0 (2.0)

0.8-1.7 (1.3-1.6)

Sand, grus ovan grundvattenytan

0.6-1.1 (0.7-0.9)

0.7-1.0 (0.8-0.9)

1.2-1.7 {tA)

1.1-1.6 (1.2)

0.1-0.3 (0.2)

Humusjord under grundvattenytan

0.6

1 .7

t.O

2.0

3.1-3.2

Kommentar: fruset vad

+ och

tillstand.

som

ar vanligt

ofruset

tillstSnd.

-

i

t a b e l l h u v u d e t h a r r o r s i g t i l l 'o f r u s e n

Vardena inom parentes fbrekommande.

157

i t a b e l l e n f o r sand

Vardena avser

helt

fruset

och avser eller

ix B E T E C K N I N G A R OCH

DEFINITIONER

°C

G r a d e r C e l s i u s {°C

= K - 2 7 3 ) (1°C

= 1 K)

c

Specifik

varmekapacitet

J/kg

C

c^^^

Specifik

varmekapacitet

J/m"^

°C

c^

Vattens specifika varmekapcitet

J / k g °C

( 4 . 1 8 . 1 0 - ^ J / k g °C) c^^

Isens specifika varmekapacitet

J / k g °C

( 2 . 2 . 1 0 ' ^ J / k g °C) c^

Mineralpartiklarnas (ca

specifika

varmekapacitet

J / k g °C

7 3 0 J / k g °C)

d

Avstand

m

dp

Partikeldiameter

m 2

D

Diffusionskoefficient

i

Gradient

K

Hydraulisk konduktivitet

1

Vattens isbildningsvarme ( l a t e n t varme)

2

m /s e l m /sK

m/s J/kg

(3.33.10^ J/kg) L

Angbildningsvarme

J/kg

m^^

I s d e l e n s massa

kg

m^

T o r r s u b s t a n s e n s massa

kg

m^

V a t t e n d e l e n s massa

kg

m

T o t a l massa

kg

159

n

Porositet,

n = Vp/V,

n = 1 -

N|^^

Nusselts t a l f o r straining

q

Varmeflbde

P^/p^

W/m

Vatskeflbde

kg/m

2

2

s

2 q^

Angflbde

kg/m

Vattenmattnadsgrad, t T

t i d Temperatur

V

Volymsandel

V|^y

Volymsandel

s

= V,/V„

% s K

°C,

% kvarts

%

Vatskehastighet

m/s

V

Volym

m'^

V, a

Gasvolym

m^ 3

Vp

w

Porvolym

m

P a r t i k e lvolym

m"^

Vattenvolym Vattenkvot, w = Vattenhalt,

w.^

I s k v o t , w.^ Andelen t i l l den

m^ mym^ =

m^/m

= '"is^'^s

ofrusen vattenmassa total a jordmassan

160

i

fbrhallande

w^=m^/m, s

Vattenkvot

av v a t t e n h a l t :

w = Wp^/(l-w^)

V a t t e n h a l t av v a t t e n k v o t : X

Varmekonduktivitet

Vattens (0.57 XJ^

= w/(l+w)

Isens (2.1

varmekonduktivitet

W/m

°C)

varmekonduktivitet W/m

Lufts

°C)

varmekonduktivitet

( 0 . 0 2 3 W/m

°C)

Partikelkonduktivitet

Teoretiskt

beraknad

(kornkonduktivitet)

varmekonduktivitet

efter Haskin & Shtrikman Ag,A^

Dvre resp. beraknad

Ap

( e k v . 5.1)

n e d r e grains f o r t e o r e t i s k t

varmekonduktivitet,

Teoretiskt

beraknad

A^^

varmekonduktivitet.

P a r a l l e l l k o p p l a d , ekv. (5.3) A^g

T e o r e t i s k t beraknad

varmekonduktivitet.

Seriekopplad, ekv. (5.4)

Ag

Teoretiskt beraknad

varmekonduktivitet.

Geometriskt medelvarde, ekv. (5.2) A|^^

Kvarts (7.7

W/m

varmekonduktivitet °C)

A„ m

Varmekonduktivitet

f o r vattenmattat

A^

Varmekonduktivitet

f o r torrt

A^

"Resf'konduktivitet

161

material

material

xii ^ber

Teoretiskt

"^matt

Uppmatt v a r m e k o n d u k t i v i t e t

W/m °C

"^e

Effektiv

W/m

°C

'*'rad

Varmekonduktivitetstillskott

av straining

W/m

°C

•^disp

Varmekonduktivitetstillskott

av dispersion

W/m °C

beraknad varmekonduktivitet

W/m

varmekonduktivitet

°C

2
200

Mjala Grovmjala Finmjala

>600

20- 6

60-20 20- 6 6- 2

2

2-0,6 0,6-0,2

1984.

SGFs laboratoriekommitte

600 - 60

6-

laboratoriekommittes

Bygg,

2 0 0 - 20

2-0,6 0,6-0,2 0,2-0,06

0,2-0,06 0,06-0,02

Silt Grovsilt Mellansilt Finsilt

Ler

SGF:s

0,06-0,02 0,02 - 0,006 0,006 - 0,002 0,02 - 0,006 0,006 - 0,002 < 0,002

< 0,002

Anm J o r d a r t s b e n a m n i n g a r n a o c h a n g i v n a v i k t p r o c e n t i t e x t e n f o l j e r S G F s s y s t e m (13). A l d r e b e n a m n i n g a r st4r dar i n o m parentes.

273

sys-

BILAGA 2 Berakning

av varmekonduktivitet

t e r och d e n s i t e t e r visade

med u t g S n g s p u n k t

i 10 vastkustkommuner.

bvre ochnedre

frSn

vattenkvo-

D a t a f r a n S G I . De r e d o -

granserna f o rvarmekonduktiviteten

baseras

pa 9 5 % k o n f i d e n s g r a d .

label 1 1

Kommun

Medelvarden a v anvanda ingangsvarden samt a v beraknade v a r m e k o n d u k t i v i t e t e r . Antal

W %

Std. Antal %

P , ,Std, k g V 9'

X X m.v. n e d r e W/m°C W/m°C

A bvre W/m C

A L E

6 5 2

7 3 . 8

2 2

6 3 6

1 6 1 9

146

1.03

0 . 8 3

1.26

F K R G E L A N D A

134

4 8 . 8

11.2

151

1 7 4 8

1 1 8

0 . 9 8

1.42

4 5 7

63.7

2 2

4 1 9

1 6 7 8

193

1 . 1 9 1 . 1 0

0 . 8 1

1.43

2 3 5 2

5 2 . 6

21

1929

1 7 0 6

151

1 . 1 4

0 . 8 9

1.43

155

65.5

19.9

123

156

1.08

0 . 8 5

1.33

3 2

5 0 . 2

2 2 . 7

31

1657 1784

2 0 0

1.22

0 . 8 8

1.63

MARK

4 1 7

4 2 . 8

20.8

6 4 2

1 8 5 1

173

1.30

0 . 9 8

1.70

MUNKEDAL

128

5 5 . 8

13.6

1681

2 0 3

1 . 1 1

0 . 8 0

1.49

P A R T I C L E

1674

7 1 . 8

2 6 . 4

1 1 3 1 3 9 2

1579

157

1 . 0 1

0 . 7 9

1.25

5 7 2

6 2 . 8

2 1 . 6

5 9 3

1 6 9 2

162

1 . 1 1

0 . 8 7

1.39

6 5 7 3

6 0 . 9

6 0 2 9

1680

167

1 . 1 0

0 . 8 5

1.39

KUNGiLV L E R U M L I L L A

E D E T

L Y S E K I L

U D D E V A L L A T O T A L T

Tabell 2

Kommun

ALE ALE ALE ALE ALE ALE ALE ALE ALE ALE FARGELANDA

FfiRGELANDA FSRGELANDA FfiRGELANDA FfiRGELANDA FfiRGELANDA FfiRGELANDA FfiRGELANDA KUNGfiLV KUNGfiLV KUNGfiLV KUNGfiLV KUNGfiLV KUNGfiLV KUNGfiLV KUNGfiLV KUNGfiLV KUNGfiLV LERUM LERUM LERUM LERUM LERUM

LERUM LERUM LERUM LERUM LERUM

LILLA EDET LILLA EDET LILLA EDET LILLA EDET LILLA EDET LILLA EDET LILLA EDET LILLA EDET LILLA EDET LYSEKIL LYSEKIL LYSEKIL LYSEKIL LYSEKIL LYSEKIL LYSEKIL

Medelvarden a vvarmekonduktiviteter mun o c h n i v a .

NivS m. V. m

0.75 2.00 3.00 4.00 5.00 8.00

13.00

18.00 23.00 28.00 0.75 2.00 3.00 n.oo 5.00 8.00 13.00 18.00

0.75 2.00 3.00 4.00 5.00 8.00

13.00

18.00 23.00 28.00 0.75 2.00 3.00 4.00 5.00 8.00 13.00 18.00 23.00 28.00 0.75 2.00 3.00 4.00 5.00 8.00 13.00

18.00 23.00 0.75 2.00 3.00 4.00 5.00 8.00 13.00

m.v. W/m°C

nedre W/m°C

1.11 1.02 0.99 1.02 1.00 1.03 1.08 1.06 1.01 1.17 1.50 1.25

bvre W/m°C

0 . 7 8 1.51 0 . 8 1 1.26 0 . 8 1 1.18 0.84 1.22 0.84 1.18 0 . 8 4 1.24 0 . 8 6 1.32 0.87 1.26 0 . 8 9 1.13 1.13 1.20 1.07 2 . 0 4 1.04 1.49 1.04 1.33 0.99 1.32 0 . 9 4 1.34 0 . 9 8 1.44 1.05 1.25

1.18

1.15 1.13 1.20 1.15 1.29

1.18

0 . 9 1 1.50 0 . 8 2 1.41 0 . 8 1 1.34 0 . 8 1 1.40 0 . 8 0 1.46 0 . 8 1 1.38 0 . 8 0 1.45 0 . 8 3 1.84 1.07 1.09 1.04 1.24 0.80 1.61 0 . 8 7 1.53 0 . 8 5 1.50 0 . 8 9 1.45 0 . 9 1 1.36 0 . 9 3 1.35 0.96 1.30 0 . 9 9 1.31 1.00 1.34 1.16 1.38 0.96 1.53 0.92 1.30 0.91 1.16 0 . 8 9 1.30 0 . 8 9 1.22 0 . 8 2 1.35 0 . 8 4 1.28 0.95 1.30

1.09 1.06 1.09 1.11 1.07 1.10 1.27 1.08 1.14 1.16 1.17 1.15 1.15 1.12 1.13 1.12 1.15 1.17 1.27 1.22 1.10 1.03 1.08 1.05 1.07 1.05 1.12 1.00 1.31 1.21 1.22 1.33 1.11 1.20 1.28

0 0 0 0 0 0 276

. . . . . .

90 91 87 79 83 82

1.84 1.56 1.66 2.05 1.44 1.67

f o r v a r j e kom-

Kommun

MARK MARK MARK MARK MARK MARK MARK MARK MARK MUNKEDAL MUNKEDAL MUNKEDAL MUNKEDAL MUNKEDAL MUNKEDAL MUNKEDAL MUNKEDAL PARTILLE PARTILLE PARTILLE PARTILLE PARTILLE PARTILLE PARTILLE PARTILLE PARTILLE PARTILLE UDDEVALLA UDDEVALLA UDDEVALLA UDDEVALLA UDDEVALLA UDDEVALLA UDDEVALLA UDDEVALLA

NivS m . V. m 0.75 2.00 3.00 4.00 5.00 8.00 13.00 18.00 23.00 0.75 2.00 3.00 4.00 5.00 8.00 13.00 18.00 0.75 2.00 3.00 4.00 5.00 8.00 13.00 18.00 23.00 28.00 0.75 2.00 3.00 4.00 5.00 8.00 13.00 18.00

X

m.v. W/m°C

X

nedre W/m°C

1.31 1.30 1.28 1.35 1.32 1.30 1.23 1.37 1.50 1.13 1.12 1.15 1.10 1.05 1.12 1.10 1.23 1.13 1.03 0.99 0.99 1.00 0.99 1.01 1.00 0.97 1.01 1.30 1.21 1.09 1.06 1.08 1.10 1.07 1.09

X

bvre W/m°C

0 . 9 4 1,78 0 . 9 5 1.72 0 . 8 9 1.76 1.03 1.74 0 . 9 8 1.73 0 . 9 9 1.67 0 . 9 5 1.55 1.07 1.72 1.46 1 . 5 4 0 . 7 9 1.56 0 . 7 4 1 . 6 0 0 . 8 3 1.53 0 . 8 2 1.43 0 . 7 5 1.41 0.84 1 . 4 5 0 . 6 3 1.72 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

277

. . . . . . . . . . . . . . . . . .

8 8 1.42 7 9 1.30 7 7 1.24 7 8 1.23 7 7 1.25 7 9 1.20 8 1 1.22 7 9 1.23 8 6 1.08 8 6 1.17 9 6 1.70 9 1 1.56 8 7 1.33 8 8 1.26 8 8 1.30 8 8 1.36 8 3 1.34 8 0 1.42

THE S E L F - C O N S I S T E N T A P P R O X I M A T I O N A P P L I E D TO T H E THERMAL OF C R Y S T A L L I N E ROCK, S E D I M E N T A R Y ROCK AND S O I L .

Jan Sundberg Chalmers U n i v e r s i t y o f T e c h n o l o g y , GOteborg, Sweden Swedish G e o t e c h n i c a l I n s t i t u t e , L i n k S p i n g , Sweden

279

CONDUCTIVITY

1

ABSTRACT D i f f e r e n t types o f t h e o r e t i c a l methods f o r e s t i m a t i n g thermal conduct i v i t y a r e d e s c r i b e d and a n a l y s e d . The s e l f - c o n s i s t e n t a p p r o x i m a t i o n or e f f e c t i v e medium t h e o r y i s a d o p t e d and a p p l i e d t o t h e r m a l c o n d u c t i v i t y on d i f f e r e n t t y p e s o f r o c k and s o i l . The m e t h o d i s d i r e c t l y a p p l i e d t o c r y s t a l l i n e r o c k and t o e x t r e m e l y p o r o u s s o i l . F o r m i n e r a l s o i l , s a n d s t o n e and l i m e s t o n e i t i s n e c e s s a r y t o m o d i f y t h e m e t h o d and introduce a contact r e s i s t a n c e between the g r a i n s . Vapor d i f f u s i o n , u n f r o z e n and f r o z e n c o n d i t i o n s i n c l u d i n g u n f r o z e n w a t e r a r e a l s o t r e a ted. The m e t h o d i s v e r i f i e d by t h e r m a l c o n d u c t i v i t y m e a s u r e m e n t s on a number o f c r y s t a l l i n e and s e d i m e n t a r y r o c k s and 600 s o i l s . A v a l u a t i o n of a method introduced e a r l i e r o f computing the thermal c o n d u c t i v i t y of r o c k / m i n e r a l f r o m m e a s u r e m e n t s on a m i x t u r e o f p u l v e r i z e d r o c k / m i n e r a l and w a t e r , i s t r e a t e d . The r e s u l t s i n d i c a t e t h a t l a r g e e r r o r s may be i n t r o d u c e d .

INTRODUCTION The t h e r m a l c o n d u c t i v i t y o f r o c k and s o i l i s o f i n t e r e s t i n many d i f f e r e n t a r e a s . Some e x a m p l e s a r e g e o t h e r m a l h e a t f l o w d e t e r m i n a t i o n s , t h e r m a l m o d e l l i n g i n t h e o i l i n d u s t r y , u t i l i z a t i o n and s t o r a g e o f ground heat, c a l c u l a t i o n of heat loss from b u i l d i n g s through the g r o u n d and h e a t l o s s f r o m b u r i e d c a b l e s and p i p e l i n e s . I n pace w i t h t h e i n c r e a s e d use o f c o m p u t e r i z e d models i t has become more i n t e r e s t i n g t o determine the e f f e c t i v e thermal p r o p e r t i e s i n a t h e o r e t i c a l way. I n a d d i t i o n , t h e r m a l c o n d u c t i v i t y m e a s u r e m e n t s a r e s o m e t i m e s d i f f i c u l t and e x p e n s i v e t o p e r f o r m . W i t h a good t h e o r y i t I s p o s s i b l e t o draw conclusions concerning the s e n s i t i v i t y o f t h e e f f e c t i v e thermal c o n d u c t i v i t y t o mineralogy, p o r o s i t y , pore f l u i d , degree o f s a t u r a t i o n and t e m p e r a t u r e . I n t h e c o u r s e o f t h e w o r k on t h e t h e r m a l c o n d u c t i v i t y o f b o t h r o c k s o i l , much o f t h e v a l u a b l e e x p e r i e n c e gained f r o m s t u d i e s on t e s t s one m a t e r i a l has l a t e r been a p p l i e d t o o t h e r m a t e r i a l s .

R E P R E S E N T A T I V E ELEMENTARY VOLUME

and on

(REV)

In a t h e o r e t i c a l d e t e r m i n a t i o n o f the e f f e c t i v e thermal c o n d u c t i v i t y and i n c o m p u t e r m o d e l l i n g i t i s o f i n t e r e s t t o know i f t h e v o l u m e used for determination/modelling i s r e p r e s e n t a t i v e of the whole rock/soil mass. T h i s i s u s u a l l y known as e s t i m a t i n g t h e r e p r e s e n t a t i v e e l e m e n t a r y v o l u m e . REV i s d e f i n e d a s t h e e l e m e n t a r y v o l u m e w h o s e p r o p e r t i e s a r e u n c h a n g e d w h e n t h e v o l u m e i s s l i g h t l y i n c r e a s e d . A REV o f r o c k o r s o i l must c o n t a i n enough g r a i n s / p o r e s t o y i e l d a mean v a l u e w i t h some

281

2

s t a t i s t i c a l c e r t a i n t y . F o r I s o t r o p i c normal g r a i n e d r o c k and f i n e o r m e d i u m g r a i n e d s o i l o r s e d l m a n t a r y r o c k , a v o l u m e o f a f e w cm3 w o u l d be e n o u g h t o g u a r a n t e e a m a c r o s c o p i c a l l y h o m o g e n e o u s s a m p l e . H o w e v e r , I n a t i l l w i t h b o u l d e r s o r i f c r a c k s a r e i n c l u d e d f o r a r o c k , t h e REV w o u l d h a v e t o I n c l u d e a m u c h l a r g e r v o l u m e . T h u s , t h e REV c a n be q u i t e d i f f e r e n t d e p e n d i n g o n t h e s c a l e . T h e REV t r e a t e d i n t h i s p a p e r i s j u s t b1g e n o u g h t o l e v e l t h e c h a n g e s I n p o r e s and g r a i n s . The w o r d macro i s a l s o used i n t h i s sense.

T H E O R I E S FOR

DETERMINING E F F E C T I V E THERMAL

CONDUCTIVITY

I n a m u l t i - p h a s e m a t e r i a l , e.g. a r o c k o r s o i l t y p e , i t i s p o s s i b l e t o d e f i n e bounds f o r e f f e c t i v e thermal c o n d u c t i v i t y . These bounds are a f u n c t i o n o f t h e g e o m e t r y o f t h e p h a s e s c o n s i d e r e d , c o n d u c t i v i t y (A..) as w e l l as v o l u m e f r a c t i o n s ( v ^ ) .W i e n e r (1912) e s t a b l i s h e d t h e f o l l o w i n g bounds: n '^h a r The bounds pectively, terms of a rent condu

Vi

n

_ i

^

4'

^ii/i-H= V i

(1)

r e p r e s e n t t h e h a r m o n i c and t h e a r i t h m e t i c a l mean v a l u e , r e o f an n - p h a s e m a t e r i a l . The b o u n d s can be i l l u s t r a t e d i n heat f l o w perpendicular or p a r a l l e l t o laminae w i t h d i f f e ctivities.

I t i s p o s s i b l e t o r e d u c e t h e d i s t a n c e b e t w e e n t h e b o u n d s by i n t r o d u c i n g r e q u i r e m e n t s on t h e i s o t r o p y o f t h e medium. H a s h i n and Shtrikman (1962) derived bounds f o r magnetic p e r m e a b i l i t y I n a m a c r o s c o p i c a l l y h o m o g e n e o u s and I s o t r o p i c m a t e r i a l by m e a n s o f v a r i a t i o n a l theorems. The m e t h o d can be d i r e c t l y a p p l i e d t o t h e r m a l c o n d u c t i v i t y . F o r an n - p h a s e m a t e r i a l we o b t a i n :

u

max

^max

(l"5max'^max'

= Max(\A^

?max "

'3'Niiax'

Amax

Vi-[(Ki-^a^)-1

KH'^'^max)

* ^^^r'^

To d e t e r m i n e t h e l o w e r b o u n d ( \ ^ ) , a l l o f t h e maximum i n d i c e s a r e s u b s t i t u t e d w i t h minima. I n H a s h i n - S h t r i k m a n ' s bounds, t h e number 3 r e p r e s e n t s t h e d i m e n s i o n and s h o u l d be c h a n g e d t o 2 i n a two-dimension a l p r o b l e m . H o r a i and Simmons ( 1 9 6 9 ) s u g g e s t e d t h a t t h e e f f e c t i v e c o n d u c t i v i t y can be c a l c u l a t e d as t h e mean o f t h e u p p e r and l o w e r bounds: \

= ( V

^1^/2

(3)

282

3

Equation ( 3 ) has since been used t o determine t h e thermal c o n d u c t i v i t y o f a l a r g e number o f m i n e r a l s by p e r f o r m i n g needle-probe measurements on w a t e r - m i n e r a l m i x t u r e s ( H o r a i and Simmons, 1 9 6 9 , H o r a i , 1 9 7 1 ) . T h e measured v a l u e h a s t h e r e b y been s e t equal t o e q u a t i o n ( 3 ) and t h em i n e r a l ' s thermal c o n d u c t i v i t y c a l c u l a t e d . The e q u a t i o n has a l s o been applied i n a s i m i l a r way t o measurements o f rocks as w e l l as t o c a l c u l a t i o n s o f t h e r m a l c o n d u c t i v i t i e s o f v a r i o u s rock types based on t h e i r m i n e r a l composition (Horai and Baldridge, 1972a,b). T h i s i s f u r t h e r d i s c u s s e d below. Sundberg e t a l (1985) have a l s o made u s e o f the method t o c a l c u l a t e t h e thermal c o n d u c t i v i t i e s o f about 4000 samples/ o f r o c k based o n m i n e r a l c o m p o s i t i o n and v o l u m e f r a c t i o n s . Some o f t h e s e c a l c u l a t i o n s w e r e c o m p a r e d w i t h m e a s u r e d v a l u e s w i t h good agreement. A t h e o r y developed by Maxwell (1891) f o rd i l u t e suspensions requires t h a t t h e d i s p e r s e d i n c l u s i o n s a r e s o f a r a p a r t t h a t t h e y do n o t i n f l u e n c e e a c h o t h e r (v.«1). M a x w e l l ' s e q u a t i o n w a s o r i g i n a l l y developed f o rs p h e r i c a l i n c l u s i o n s and i s as f o l l o w s :

(4)

Beck (1976) used Maxwell's e q u a t i o n t o c a l c u l a t e t h e t h e r m a l conduct i v i t y o f sedimentary rocks. Maxwell's equation f o rspherical i n c l u sions coincides w i t h Hashln-Shtrikman's lower bound provided \ < \ a n d u p p e r b o u n d p r o v i d e d x.^ < x.^ . Maxwell's e q u a t i o n has l a t e r been e l a b o r a t e d t o be v a l i d f o r e l l i p s o i d a l i n c l u s i o n s a s w e l l , de V r i e s (1952, 1 9 6 3 ) h a s a p p l i e d t h i s equat i o n t o s o i l and f o u n d good agreement w i t h m e a s u r e d v a l u e s , de V r i e s s u g g e s t e d a r a t i o b e t w e e n t h e a x e s o f t h e e l l i p s o i d o f a b o u t 5. S i n c e g r a i n s i n s o i l o r i g i n a t i n g f r o m c r y s t a l l i n e b e d r o c k can u s u a l l y be s a i d t o be s p h e r i c a l ( e x c e p t f o r c l a y p a r t i c l e s ) , i t w o u l d seem t h a t the shape o f t h e e l l i p s o i d also contains a c o r r e c t i o n f o r measured values. R a y l e i g h (1892) have developed a model f o rd i l u t e suspensions. The t h e o r y r e q u i r e s t h a t p h a s e 1 b e s u s p e n d e d i n p h a s e 2 (v^«1) a n d t h a t t h e r e be no c o n t i n u o u s c o n t a c t s u r f a c e t h r o u g h t h e m a t e r i a l . According t o R a y l e i g h , an e x p r e s s i o n f o rs p h e r i c a l i n c l u s i o n s can be w r i t t e n as follows:

Xe

(5)

=

where v

1

«1.

283

4

The

g e o m e t r i c

good o f

way

e q u a t i o n

h a s

compared

r e l i a b l e

t h e

m e n t s

o f

o n

w i t h

p h y s i c a l

g e o m e t r i c

made

mean

e q u a t i o n

used

b y

many

t h e r m a l

r o c k s

based good

o n

t h e g e o m e t r i c q u a r t z

f r a c t i o n s .

s t a t e ,

r e s e a r c h e r s

c o n d u c t i v i t y

w i t h mean

d e r i v e d

as

a

p r i m a r i l y

t h e d r y a n d

s o i l s .

Good

The

p h a s e

t h e r m a l

The

t o w a t e r - s a t u r a t e d used

a b o u t

a g r e e m e n t

c o r r e l a t e d

i s s u r r o u n d e d b y

f o r a

2-phase

e x p r e s s i o n

c o n t e x t s . 0 ,

t h e n

s t i t u t e d

F i g u r e

T h e

w i t h

a n

^ g - ' ^ - j -

1 . G r a i n t h e

when

2

f i g u r e

i

« 1 ,

^-A.)A„)

288

4.25

bounds,

(1985).

9

A P P L I C A T I O N TO

POROUS MEDIUM

SCA a s s u m e s a s t a t i s t i c a l p r o x i m i t y b e t w e e n t h e v a r i o u s p h a s e s o f t h e material which are i n proportion t o the volume f r a c t i o n s . In a porous, w a t e r - s a t u r a t e d medium, the water phase instead more or l e s s surrounds the h i g h l y t h e r m a l l y conductive mineral phase w i t h a layer of varying t h i c k n e s s . The m o s t t h e r m a l l y c o n d u c t i v e passage v i a t h e m i n e r a l g r a i n s w i l l t h e r e b y r e d u c e i t s t h e r m a l c o n d u c t i v i t y by a f a c t o r t h a t is a f u n c t i o n of the size of the contact resistance between the m i n e r a l g r a i n s . The t h e o r y f o r t h e s e l f - c o n s i s t e n t m e t h o d i n i t s o r i g i n a l form i s t h e r e f o r e not r e a l l y r e l e v a n t f o r s o i l s . Hence, a c o r r e c t i o n f a c t o r m u s t b e i n t r o d u c e d f o r t h e SCA m e t h o d . Contact

resistance

at the grain contact

surface

A t h e o r e t i c a l treatment of the size of the contact resistance involves c e r t a i n p r o b l e m s . A b e r g ( 1 9 7 8 ) and G u s t a f s o n ( 1 9 8 3 ) h a v e s h o w n t h a t i t is possible to calculate the void ratio in a soil i f the grain d i s t r i b u t i o n f u n c t i o n and a c o n s t a n t t h a t i s m a i n l y a f u n c t i o n o f c o m p a c t i o n a r e k n o w n . I n t h i s c a s e , we w o u l d l i k e t o d e t e r m i n e s o m e k i n d o f a v o i d r a t i o , e^, s o l e l y f o r t h e c o n t a c t s u r f a c e , i . e . d e t e r m i n e t h e r a t i o b e t w e e n t h e p o r e a t t h e c o n t a c t s u r f a c e and t h e g r a i n d i a m e t e r . I f a l a r g e number o f l i n e s (cords) i s drawn through a porous m e d i u m , t h e n t h e l i n e s w o u l d e i t h e r go t h r o u g h a p o r e o r t h r o u g h a g r a i n . The p o r e c o r d s w o u l d t h e r e b y f o r m some k i n d o f d i s t r i b u t i o n function, where the pore cords at the contact surface of the grains s h o u l d l i e w i t h i n a n i n t e r v a l o f 0 a n d x . One o f t h e d i f f i c u l t i e s i s t o d e t e r m i n e t h e x . S e e f i g u r e 3.

p P O R E CORD GRAIN CORDUg)

0

Figure

PORE CORD

3.

dp) (Ig)

LENGTH

Frequency function f o r pore cord

A c c o r d i n g t o f i g u r e 3, lows:

GRAIN CORD

this

can

be

length.

expressed mathematically

as

(11)

289

fol-

10

T h e c o n s t a n t y 1s t h e m i n i m u m g r a i n d i a m e t e r . T h e f u n c t i o n f d ^ ) i s not I n t e g r a t e d t o i n f i n i t y , s i n c e i t i s t h e s m a l l e r o f two adjacent g r a i n s t h a t g o v e r n s t h e s i z e o f t h e c o n t a c t s u r f a c e . I n f i g u r e 4, a s e c t i o n i s t a k e n t h r o u g h t h e c o n t a c t s u r f a c e and t h e m i n e r a l p h a s e . S i n c e l n > > l [ , 1n t h i s s e c t i o n , t h e f r a c t i o n o f t h e p o r e s p a c e can be a p p r o x i m a t e d w i t h e^. The b r e a d t h ( a ) o f t h e s e c t i o n r e p r e s e n t s t h e contact s u r f a c e between t h e m i n e r a l g r a i n s . Hence, t h e m i n e r a l f r a c t i o n can be w r i t t e n as l - e ^ . . I f t h e t o t a l t h e r m a l c o n t a c t r e s i s t a n c e 1s o n l y a f u n c t i o n o f t h e g r a i n s i z e d i s t r i b u t i o n , t h e c o n t a c t r e s i s t a n c e f o r an e v e n l y g r a i n e d m a t e r i a l , w o u l d be c o n s t a n t w i t h a c h a n g e i n p o r o s i t y . H o w e v e r , t h e contact surfaces between the grains are e s s e n t i a l f o r the thermal t r a n s p o r t t h r o u g h t h e m a t e r i a l . The change i n t h e number o f c o n t a c t p o i n t s due t o a c h a n g e i n p o r o s i t y i n an e v e n l y g r a i n e d m a t e r i a l i s probably proportional to the contact resistance. I f this i s true, a f a c t o r p can be d e f i n e d as a f u n c t i o n o f p o r o s i t y and g r a i n s i z e d i s t r i b u t i o n . A lower p o r o s i t y should y i e l d a lower contact resistance t o f i n a l l y a p p r o a c h 0 (p-»1) w h e n p o r o s i t y a p p r o a c h e s 0 . p= x=

x - ( 1 - e j

(12)

f(porosity)

F i g u r e 4. M i n e r a l and

void fractions

o f two

grains in

contact.

To g e t an i d e a , by t h e o r e t i c a l m e a n s , o f t h e p o s s i b l e c h a n g e i n contact r e s i s t a n c e w i t h a change i n p o r o s i t y , important parameters w i l l be t h e n u m b e r o f g r a i n c o n t a c t s u r f a c e s , t h e i r o r i e n t a t i o n and t h e d i r e c t i o n o f t h e h e a t f l o w . F i g u r e 5 shows t h e maximum and m i n i m u m compaction possible between spherical evenly sized grains. There are three d i f f e r e n t l i n e s of symmetry i n the case of l e a s t compaction poss i b l e . I f t h e heat f l o w i s p a r a l l e l t o each o f t h e axes o f symmetry.

290

11

the r e s u l t i n g heat f l o w w i l l depend o n t h e l o c a l i z a t i o n o ft h e g r a i n c o n t a c t s u r f a c e s . Table 6 shows t h e data f o r d i f f e r e n t o r i e n t a t i o n s based o n a geometrical treatment o fa half-sphere. A form o f r e s u l t a n t contact p o i n t s can be c a l c u l a t e d f o r each o r i e n t a t i o n . T h e weighed average value o ft h e d i f f e r e n t o r i e n t a t i o n sw i l l then be (3+3p+4J"3)/10=1.42. Table

6. Geometrical

treatment o f least compaction

Orientation Number o f c o n t a c t p o i n t s Number o f d i r e c t i o n s Resultant i n the direct i o n o ft h e heat f l o w for one contact point

a_ 1 3

1

possible.

b 2 3

c 3 4

1/|2

1 / p

One l i n e o f s y m m e t r y s u f f i c e s f o r t h e c a s e o f maximum c o m p a c t i o n p o s s i b l e . T h e r e s u l t i n g number o f contact p o i n t s i n t h e d i r e c t i o n o f t h e heat f l o w w i l l t h e n be 3'J"2/p=2.45. T h er e s u l t i n g c o n t a c t p o i n t s have b e e n I n c r e a s e d b y a f a c t o r o f 2.45/1.42»1.7, d e p e n d i n g o n t h e c o m p a c t i o n . Factor (1-p) should t h e r e f o r e decrease correspondingly. Based o n s i m p l e g e o m e t r i c a l r e l a t i o n s h i p s i n f i g u r e 5, t h e p o r o s i t y can b e d e t e r m i n e d a t 0 . 2 6 ( = 1-J'2'n/6) f o r maximum c o m p a c t i o n a n d a t 0.476 (=1-n/6) f o r minimum compaction.

F i g u r e 5. Minimum and maximum c o m p a c t i o n p o s s i b l e o f e v e n l y s i z e d spheres, a, b andc represent d i f f e r e n t l i n e s o f symmetry. However, a q u a n t i t a t i v e d e t e r m i n a t i o n seems t ob e p r o b l e m a t i c t o implement t h e o r e t i c a l l y , andshould thus accordingly be performed e m p i r i c a l l y . However, l e tu s f i r s t t r e a t t h e t h e r m a l c o n t a c t r e s i s t a n c e . The t h e r m a l c o n t a c t r e s i s t a n c e b e t w e e n t h e g r a i n s I s d e t e r m i n e d b y the w i d t h o f t h e c o n t a c t s u r f a c e between t h e m i n e r a l g r a i n s , t h e medium a tt h e contact surface ( i c e / w a t e r / a i r ) a s well a s t h e degree o f

291

12

c o m p a c t i o n . I f t h e heat f l o w can be assumed t o be 1 - d i m e n s i o n a 1 a t t h e c o n t a c t s u r f a c e , t h e n t h e h a r m o n i c mean ( e q u a t i o n ( 1 ) ) o f t h e m i n e r a l phase ( i . e . p ) and t h e v o i d f r a c t i o n s ( i . e . 1-p) c a n be used as an a p p r o x i m a t i o n o f t h e e x i s t i n g r e l a t i o n s h i p s . T h i s e q u a t i o n , d i v i d e d by t h e g r a i n c o n d u c t i v i t y r e p r e s e n t s a dimensionless correct i o n f a c t o r , s u b s e q u e n t l y named t h e t h e r m a l c o n t a c t r e s i s t a n c e . Hence, the f o l l o w i n g equations a r e obtained t o describe t h e thermal r e s i s t a n ce i n t h e d r y and i n t h e w a t e r - s a t u r a t e d s t a t e r e s p e c t i v e l y : "dry

= (1/(pAg+(1-p)Aa'>/^g

'13)

ogat = ( l / ( p A g + ( 1 - p ) A w ) ) A g where

Xg = thermal

(14)

conductivity o f themineral

grains,

=

-"-

water,

x^ =

-"-

a i r , W/(m,K)

W/(m,K)

W/(m,K)

An e m p i r i c a l d e t e r m i n a t i o n o f p h a s b e e n made b y m e a n s o f t h e r m a l c o n d u c t i v i t y measurements on d r y ( 7 6 samples) and w a t e r - s a t u r a t e d s o i l s (185 samples). Measurements on d r y s o i l s a r e t a k e n p a r t l y f r o m own i n v e s t i g a t i o n s , and p a r t l y from l i t e r a t u r e Smith (1939,1942) and Johansen (1975). Only i n t h e case o f Johansen's measurements i s t h e m i n e r a l composition known. However, i t has no great e f f e c t a t high p o r o s i t i e s . Measurements a t t h e highest p o r o s i t i e s where g r a i n c o n d u c t i v i t y exh i b i t s t h e g r e a t e s t i n f l u e n c e w e r e based o n own i n v e s t i g a t i o n s o f t i l l . The mineral composition o f a t i l l , o r i g i n a t i n g from c r y s t a l l i n e rocks, should vary w i t h i n r e l a t i v e l y narrow l i m i t s (Sundberg 1986). The c o r r e l a t i o n t o s a t u r a t e d s o i l s has been p e r f o r m e d f o r own m e a s u r e ments on c l a y , c l a y t i l l , t i l l and peat. The c a l c u l a t i o n s f o r t h e g r a i n s ' thermal c o n d u c t i v i t y i s based on t h e v a r i a t i o n o f quartz c o n t e n t w i t h g r a i n s i z e ( S u n d b e r g , 1 9 8 6 ) . Some o f t h e s a m p l e s l a c k e d a grain d i s t r i b u t i o n curve. Values f o rt h e grain thermal c o n d u c t i v i t y o f these samples were thus assumed. Since t h e g r a i n s i n d i f f e r e n t types of sand can have q u i t e d i f f e r e n t thermal c o n d u c t i v i t y , sand samples are e x c l u d e d from t h e c o r r e l a t i o n s , p has been e x p r e s s e d as a t h i r d d e g r e e p o l y n o m i a l i n o r d e r t o be e a s i l y used i n t h e c a l c u l a t i o n s , p has been determined from c o r r e l a t i o n s w i t h measurements on s o i l s i n t h e p o r o s i t y i n t e r v a l 20-95;^. T h e e x p r e s s i o n o f t h e f u n c t i o n f o r p h a s not been v e r i f i e d f o r p o r o s i t i e s o u t s i d e t h i s i n t e r v a l . F i g u r e 6 i l l u s t r a t e s p as a f u n c t i o n o f p o r o s i t y .

p = 1-0.12833n where n = p o r o s i t y

+ 0.06461n^ fraction.

292

+ 0.05491n'

(15)

1,00

0,99

098

0,97

0,95-

0.95

I 0

.

.

.

I

20

.

I

.

I

40

)

)

.

I

50

.

I

.

I

80

.

I

.

100

POROSITY

F i g u r e 6. p as f u n c t i o n o f p o r o s i t y . A t p o r o s i t i e s h i g h e r t h a n a b o u t 50%, t h e n u m b e r o f c o n t a c t s u r f a c e s g r a d u a l l y decreases, which i s why t h e importance o f c o n t a c t r e s i s t a n c e d i m i n i s h e s and t h e t h e o r y f o r t h e o r i g i n a l s e l f - c o n s i s t e n t method becomes i n c r e a s i n g l y more r e l e v a n t . Given p o r o s i t i e s o f 0.26 and 0.48, the r a t i o between t h e s i z e o f t h e g r a i n contacts can be s a i d t o be a p p r o x i m a t e l y 1 . 4 5 . H e n c e , t h i s r a t i o i s l e s s t h a n t h e p r e v i o u s l y d i s c u s s e d v a l u e . The r e a s o n f o r t h i s may be t h a t t h e a s s u m p t i o n o f e v e n l y s i z e d g r a i n s has n o t been s a t i s f i e d . I t i s v e r y d i f f i c u l t t o o b t a i n a p o r o s i t y as l o w as 0.26 i n an even g r a i n e d m a t e r i a l . Compact i o n experiments on f i n e sand have r e s u l t e d i n a d i f f i c u l t y t o reach a p o r o s i t y lower than approx. 0.35. Water a t t h e grain contact

surface

In a pore system t h a t i s drained, t h e most l o o s e l y bound water, i . e . the water i n t h e l a r g e s t pores, w i l l leave f i r s t . At a higher drainage p r e s s u r e , t h e s m a l l e r pores w i l l g r a d u a l l y be d r a i n e d . The c o n t a c t s u r f a c e w i l l be i n i t i a l l y u n a f f e c t e d by t h e d r a i n a g e o f w a t e r , because it i n v o l v e s t h e smallest pores o r p a r t s o f pores. The g r a i n contact s u r f a c e s w i l l t h e r e f o r e be emptied l a s t d u r i n g d r a i n a g e . T h i s can be e x p l a i n e d m a t h e m a t i c a l l y b y a l o g - f u n c t i o n . I n f i g u r e 7, (A-log(S|.) + 1) i s drawn as a f u n c t i o n o f d e g r e e o f s o i l s a t u r a t i o n . T h e same e x p r e s s i o n has a l s o been used by J o h a n s e n ( 1 9 7 5 ) . The f a c t o r A c o r r e c t s a more r a p i d drainage t i o n . The l o g - f u n c t i o between t h e saturated

t h e l o g - f u n c t i o n . A lower value f o rA represents o f t h e contact surface a t low degrees o f saturan above can t h e r e f o r e be used t o i n t e r p o l a t e and t h e u n s a t u r a t e d s t a t e .

293

14 1.0-

0.8-

A= 0.8^ A= 0,6^

0,6-

OAA - log ( S r ) + 1 0,2-

0,0

Figure

7. T h ef u n c t i o n tion.

20

60

40

«tot = ( A - l o g ( S r ) + 1 ) - ( a s a t -

resistance,

«dry' * " d r y

including eq.

(16)

( 9 ) c a nb e w r i t t e n a s f o l l o w s : -1

^e = 3where

100

(A-1og(S^)+1) as function o f water-satura-

In accordance with t h i s , t h e t o t a l thermal (13) a n d ( 1 4 ) , c a nb e w r i t t e n a s f o l l o w s :

and e q u a t i o n

80

(17)

\ «tot' '^g \ '^w

h

= ^a = 1-n =

(l-Sr)-n

Vapor d i f f u s i o n The e f f e c t o f vapor d i f f u s i o n i s highest a t a high p o r o s i t y , intermed i a t e degrees o f s a t u r a t i o n andhigh temperatures. Vapor d i f f u s i o nc a n be v i e w e d a s a n a d d i t i o n t ot h e r m a l c o n d u c t i v i t y i n a i r . A s u m m a t i o n o f these forms an e f f e c t i v e thermal c o n d u c t i v i t y f o r t h e a i r phase, w h i c h c a nb e w r i t t e n a s f o l l o w s ( P h i l i p a n d de V r i e s , 1 9 5 7 ) : ^ v Kg A. h

(18)

= ^a * ^

= t h e r m a l c o n d u c t i v i t y i n d r y a i r , W/(m,K) = t r a n s p o r t o f l a t e n t h e a t t h r o u g h v a p o r d i f f u s i o n , W/(m,K) = r e l a t i v e humidity

294

15

A c t u a l l y , a n a d d i t i o n t o e q u a t i o n (18) s h o u l d b e made f o r t h e c o n t r i b u t i o n o f water d i f f u s i o n d u et o t e m p e r a t u r e g r a d i e n t . However,' t h i s is g e n e r a l l y o f minor importance. Several authors, such as de V r l e s ( 1 9 5 2 ) and S e p a s k h a h and Boersma ( 1 9 7 9 ) , h a v e o b t a i n e d good a g r e e m e n t between measured a n dc a l c u l a t e d v a l u e s o ft h e e f f e c t i v e t h e r m a l conductivity using equation (18). The pore i s s a t u r a t e d w i t h w a t e r vapor t o t h e w i l t i n g p o i n t o f t h e s o i l i n q u e s t i o n (150 mvp n e g a t i v e p r e s s u r e ) . For a c o a r s e l y graded s o i l , t h i s m e a n s a w a t e r c o n t e n t p e r v o l u m e o f a f e w %, w h i l e f o r c l a y t h i s means 1 0 - 4 0 % . A t water c o n t e n t s below t h e s o i l ' s w i l t i n g p o i n t , an a p p r o x i m a t e s t r a i g h t l i n e i n t e r p o l a t i o n can b e p e r f o r m e d . A n e q u a t i o n f o r \ can b e f o u n d i n e.g. d e V r i e s ( 1 9 6 3 ) . T h e e f f e c t i v e a i r c o n d u c t i v i t y , X^^, r e p l a c e s in equation (17). T h er e l a t i o n s h i p sa t the contact s u r f a c e are n a t u r a l l y a l s o a f f e c t e d . The e a r l i e r d e s c r i b e d o - v a l u e I s d e t e r m i n e d b y I n t e r p o l a t i n g between the contact r e s i s t a n c e In the dry andIn the saturated state. The e f f e c t o fvapor d i f f u s i o n means t h a t a n i n t e r p o l a t i o n s h o u l d a l s o be p e r f o r m e d b e t w e e n t h e a l p h a v a l u e s w i t h and w i t h o u t t h e e f f e c t o f vapor d i f f u s i o n . The f o l l o w i n g e x p r e s s i o n i s suggested:

«tot =

'«tot,v-°tot,a' * " t o t , a

«tot.v = ( A - l o g ( S r ) + 1 ) - ( a s a t - «dry,v' * «dry.v

( 2 0 )

«dry,v = n / ( ^ / X g * n - ^ ) / X ^ y ) ) / X g

(21)

X^^Q

= 0.24

= 10-X.g,

W/(m,K)

^ ^ = 0 . 2 4 i s obtained a ta temperature o fapproximately 40''c. A t t h i s t e m p e r a t u r e , x ^ has v e r y s m a l l i n f l u e n c e o n x^^. A t temperature above 40°C, o. . i n eq. ( 1 9 ) can b e r e p a c e d w i t h "tot V e f f e c t o f eq. ( 1 7 ) i n c l u d i n g eq. ( 1 9 ) has o n l y been c o m p a r e d t o m e a s u r e d v a l u e s f o r t e m p e r a t u r e s a r o u n d 20°C. The e f f e c t o f vapor d i f f u s i o n I n t h e p o r o s i t y i n t e r v a l ( 3 5 - 4 5 % ) I sl i m i t e d but c l e a r . The u n c e r t a i n t y i s h i g h e s t a t low degrees o fs a t u r a t i o n . S i n c e the e f f e c t o fvapor d i f f u s i o n r a p i d l y r i s e s w i t h temperature, the t h e r m a l g r a i n c o n t a c t r e s i s t a n c e becomes l e s s i m p o r t a n t a t h i g h temper a t u r e s . A t h i g h p o r o s i t i e s , e.g. i n p e a t , v a p o r d i f f u s i o n i s o f r e l a t i v e l y h i g h i m p o r t a n c e a l r e a d y a t t e m p e r a t u r e s a r o u n d 20°C. Frozen The diff zing zing

state

c o n d i t i o n a tthe contact surface during water content changes I s e r e n t i n the f r o z e n s t a t e as opposed t o the unfrozen s t a t e . Freeo f t h e ground i s a v e r y complex process. The speed o f t h e f r e e process i s v e r y i m p o r t a n t f o r any p o s s i b l e w a t e r r e d i s t r i b u t i o n .

295

16

A

rapid freezing o fthe

situ,

while a slow

front

w i t h consequent

volume

expands

at

degrees

ly

shown

ship

causes

water

b y about

(Kersten

9X.This

1949)

between

a l l o fthe water

the water

that,

causes than

i nt h e

soil

frozen state,

a linear

i si n c o n t r a s t t o t h e

logarithmic correlation

i n the

s u c t i o n b u i l d s u p i nt h e redistribution

starts

t od r a i n out

unfrozen provide

state.

a t higher

a satisfactory

= ^ r

thermal

degrees

medium

when which

that

the

c a nb e w r i t t e n a s :

the

contact

Accordingly,

the

saturated

' 2 2 )

(frozen) andthe

a l l o fthe water

to

from

finer

be placed

capacity sponds When rated be

the

pores i nt h e

alongside

diagram.

Unfrozen

t oa c e r t a i n

soil,

( 2 3 )

^e

' 2 4 )

freezes

i n a soil, finest water

'^froz

" Thermal

same w a y t h a t

t od r a i n out

temperature

required

scale

can the-

i na w a t e r

retention

a ts a t u r a t i o n thus

corre-

zero.

conductivity o fa p a r t i a l l y

frozen state

frozen andunfrozen water

finest

content,

pores

the

ice

should

c o n d u c t i v i t y c a nbe c a l c u l a t e d

water