Differential force due to total momentum flux which acts across the interface .....
Convective momentum flux, ρvv is obtained from a product of the mass flux vector
...
Summary of the coefficients used for Figures 6-6(a)-(g) with corresponding ..... stability and form the skeletal framework onto which tissue is composed. ..... measured along with that of the epidermis, bone, muscle bundles, and any blood ... chromat
May 11, 2016 - Therefore, information on the transport phenomena in .... that the diffusion of the probe molecule within the gel is far from the free diffusion.
Jun 11, 2012 - Keywords: Dirac fermion; transport phenomena; α-(BEDT-TTF)2I3; .... the mean free path l of a carrier subjected to elastic scattering can never be ...... absorption spectroscopy of BEDT-TTF radical salts: Charge transfer and ...
Home of the Transactions of the Wessex Institute, the WIT electronic-library ... with immediate and permanent access to individual papers presented at WIT.
May 11, 2016 - ... η, is expressed by the so-called StokesâEinstein relationship as follows [19,20]: ... It is found that all data fall onto a single master curve. ..... Gibbs, S.J.; Johnson, C.S., Jr. Pulsed field gradient NMR-study of probe moti
extinction of bacteria with outstanding specific functions ..... duced the strongest electron-withdrawing effect result- ing in the fastest rate of ...... Colorist 3:239.
... differential equations, high-speed, efficient and cheap computers, advanced experimental methods using ... Engineering Heat Transfer Phenomena, Fins and Fin Systems, Condensation,. Materials Processing .... 4.1 Domain discretization .
... DI SCIENZA DELLE COSTRUZIONI. CLUP Milano LEZIONI DI SCIENZA
DELLE COSTRUZIONI. Odone Belluzzi SCIENZA DELLE COSTRUZIONI Volumi
I – II.
represents an eigenvalue of the solution to Maxwell's equations. ...... Bird, R., Stewart, W., and Lightfoot, E., Transport Phenomena, New York, John Wiley & ..... Kreyszig, E., Advanced Engineering Mathematics, New York, John Wiley & Sons ... Method
software tools designed to manage large-scale distribution systems with multiple .... design of monitoring networks, the contaminant source identification, the ...
Jul 14, 2005 - Fisica and Istituto Nazionale per la Fisica della Materia, Università di ... B.J.Yang, Advanced Materials Technology,Caterpillar Inc.,Mossville, ...
Jul 1, 2011 - Autobody Engineering,. School of Mechanical Engineering,. Shanghai Jiao Tong ... process in automotive industry. Over 90% of assembly work ...
Oct 19, 2017 - Will G, Hinze E and Abdelrahman AR (2002) Crystal structure analysis and ... Russ Phys J. 48:138- 142. doi:10.1007/s11182-005-0096-z. 37.
sisterer derfor et behov for fundamentale matematiske modeller, der kan simulere deres transport ...... Figure 1.2: Schematics of a liquid fed direct methanol fuel cell driven on air. 1.3.1 Working ..... Cole [57] and Meng et al. 2005. Their models .
avoid a fall of performance, to see a deterioration of the de- vice, due to the appearance of .... The average heat rate per unit length is assumed to be constant at ...
developed to describe this dynamic cellular problem, following which analytical and numerical solutions are obtained des
the PICTS technique also demonstrate an increased number of defects and impurities in the MVB samples leading to the conclusion that the better spectroscopic ...
Analysis of Transport Phenomena (Topics in Chemical Engineering) PdF, Analysis of ... Chemical engineering degrees pave
Apr 4, 2005 - coin game, designed to illustrate the so called Parrondo's Paradox. But it is also a simple minded illustration of the lever arm model for this type ...
[63] M. Ivill, S. J. Pearton, Y. W. Heo, J. Kelly, A. F. Hebard, and D. P. Norton. Magne ...... [9] William D. Parker, James M. Rondinelli, and S. M. Nakhmanson. First- ...
Jul 14, 2005 - aCenter for Materials Research, University of Alabama in Huntsville, Huntsville, .... Department of Chemical Engineering, University of Houston,.
AND TRANSPORT PHENOMENA IN LIVING TISSUES ..... and circulatory system;
fast flow in large vessels and slow flow in the capillary bed; the transport of a.
... of Classes Fall Semester 2017 SUBJECT TO CHANGE UNTIL REGISTRATION ... in Adobe Acrobat PDF ISBN last name of 1st au
Systems. 4. Microfabrication Technologies. 5. Flow Control. 6. Micropumps. 7. ...
Biological Fluids ... Process underlying all other transport phenomena in fluids.
Contents
1. Introduction
9. Liquid Handling
2. Fluids
10.Microarrays
3. Physics of Microfluidic Systems
11.Microreactors 12.Analytical Chips
4. Microfabrication Technologies Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
13.Particle-Laden Fluids
5. Flow Control
a. Measurement Techniques
6. Micropumps 7. Sensors
b. Fundamentals of Biotechnology
8. Ink-Jet Technology
c. High-Throughput Screening
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
1
2. Fluids 2.1. General Characteristics 2.2. Dispersions 2.3. Thermodynamics 2.4. Transport Phenomena 2.5. Solutions 2.6. Surface Tension Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
2.4. Transport Phenomena 2.4.1. Diffusion 2.4.2. Viscosity 2.4.3. Transport of Heat 2.4.4. Characteristic Numbers
Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
3
2.4 Summary of Phenomenological Laws Transport processes Arbitrary thermal motion on molecular level Driven by gradients (inhomogeneities) Mostly linear relationship Flow = coefficient force
Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
4
2.4.1. Diffusion
Diffusion Counteracts nonuniform particle densities Thermal „Brownian“ motion Process underlying all other transport phenomena in fluids
Fick‘s first law
Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Current density jN antiparallel to gradient Systems seeks homogeneity Diffusion coefficient D [m² s-1]
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
5
2.4.1. Diffusion Fick‘s second law Time domain Fixed location
Combining Fick‘s first law and equation of continuity
Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Laplace equation
Stationary conditions
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
6
2.4.1 Molecular Picture Derivation of diffusion constant D Flow through surface z1 Between two planes with diverging particle densities Distance = mean free path lmfp Particles reach plane without collisions (statistically) Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Linear term of Taylor expansion Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
7
2.4.1 Diffusion coefficient Calculation of diffusion coefficient Assumption: uniformly distributed directions of all vectors v
average over Ensemble
Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
8
2.4.1 Examples for Diffusional Processes Example Bilateral diffusion from 2-D layer Within pure solvent Initial conditions
Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Solution by „educated guess“
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
9
2.4.1 Examples for Diffusive Processes
Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
10
2.4.1 Examples for Diffusive Processes
Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
11
2.4.1 Examples for Diffusive Processes
Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
12
2.4.1 Examples for Diffusive Processes
Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
13
2.4.1 Examples for Diffusive Processes
Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
14
2.4.1 Examples for Diffusive Processes Example Diffusion through permeable diaphragm Initial conditions
Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
15
2.4.1. Laminar Mixing
Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
16
2.4.1 Time and Length Scales Distance
2 (“rules of thumb”)
Time
Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
2 ~l2/D
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
17
2.4.1 Brownian Motion Discovered by Scottish Botanist Robert Brown in 1827 Random thermal motion of pollen under microscope
Closely related to thermal velocity
Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Mesoscopic particle
Width of distribution of particle locations
r0 = 1 µm m = 10-15 kg T = 293 K vT 3 mm s-1
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
18
2.4.1 Brownian Motion
Fluorescent particles Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
4 seconds of data 2 µm in diameter Left picture Particles moving in pure water
Right picture shows Particles moving in concentrated solution of DNA I.e., in viscoelastic solution in other words From http://www.deas.harvard.edu/projects/weitzlab/research/brownian.html
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
19
2.4.1 Brownian Motion
Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Erratic motion of single milk droplets in water Droplets size of about 1 micrometer Continuously kicked by fast-moving water molecules Size 5000 times smaller
Magnification factor of about 10,000 http://www.microscopy-uk.org.uk/
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
20
2.4.1 Boltzmann Distribution System at T in thermal equilibrium Each particle with certain kinetic energy Potential gradient Particles accumulate in potential minimum
Counteracting diffusive current
Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Boltzmann distribution Ratio of particle densities Ni at two locations separated by potential difference E Boltzmann function at T = 273 K calibrated to N0 = 1
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
21
2.4.1 Maxwell Distribution Maxwell distribution Fraction of molecules in velocity interval [v, v + dv] f(v)dv is probability of finding a vector v in [v, v + dv] Normalization of integrand function f(v) to unity Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Leads to Maxwell distribution
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
22
2.4.1 Maxwell Distribution Transformation into energy space Replacing v with kinetic energy E = 1/2 mv2
Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Helps determining which fraction of particles is capable of „jumping“ over a certain potential energy barrier E0 Analytical expression for this fraction
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
23
2.4.1 Reaction Kinetics Chemical Reactions Binary collisions Collision rate scales linearly with vT and thus with T1/2 Concentration of reaction partners c also influences speed of reaction For single step reaction
Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
2.4.1 Reaction Kinetics Chemical reactions Activation energy (Gibbs energy) Simple model reaction
For simplicity: G = U = Eact Typically Eact = 60 to 250 kJ mol-1 G = Gact – G‘act Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
G < 0 exothermic G > 0 endothermic
Velocity constant of reaction Strongly dependent on T Reaction-specific Arrhenius equation
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
25
2.4. Transport Phenomena 2.4.1. Diffusion 2.4.2. Viscosity 2.4.3. Transport of Heat 2.4.4. Characteristic Numbers
Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
26
2.4.2. Viscosity Viscosity Transfer of momentum from one plane sliding parallel to another Mediated by fluid sandwiched between them „Internal friction“ of fluid
Newton’s law of viscosity Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Relates flow of axial momentum pz = m vZ along lateral x-direction from one plane sliding parallel to another one by viscosity Unit of : Pa s = kg m-1 s-1 or old Poise with 1 Ps = 0.1 Pa s
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
27
2.4.2 Viscosity of Gases Assumptions for picture: - Flow in z-direction - Uniform particle density
Net flux in x-direction of longitudinal momentum pz
Newton Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Viscosity of gases
T
Kinematic viscosity - „Momentum diffusivity“
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
28
2.4.2 Viscosity of Gases
Order: 10-5 Pa s Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
29
2.4.2 Viscosity of Liquids Liquid Very dense gas lmfp average distance between molecules Macroscopic behavior governed by intermolecular potentials
Picture Moving A to A‘ Activation energy E0 External shear stress xz
Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
- Force f on each particle on wall - f counteracts motion in negative z-direction - Momentum loss transferred to B - „Activation energy“ E = f a / 2
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
30
2.4.2 Viscosity of Liquids Transfer of momentum pZ = m vZ Lateral velocity gradient
net difference between number of jumps +Z and -Z in positive and negative z-direction, respectively Evaluation of gradient (using Boltzmann Ansatz) Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
0 fundamental oscillation frequency of molecule between neighbors Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
31
2.4.2 Viscosity of Liquids First order Taylor expansion for E / kBT
Viscosity of liquids Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
T
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
32
2.4.2 Viscosity of Liquids
Order: 10-3 Pa s (gases: 10-5 Pa s)
Microfluidics - Jens Ducrée
Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Fluids: Transport Phenomena
33
2.4.2 Newtonian Fluids Newtonian fluids Classical idealized fluids Linear stress-strain relationship I.e. linear relationship between tension tensor and tensor of rate of deformation (strain rate) - Viscosity : constant of proportionality
Approximated by gases and „simple“ liquids like water
Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Non-Newtonian fluids Dispersions containing large structured macromolecules E.g. polymers and proteins
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
34
2.4. Transport Phenomena 2.4.1. Diffusion 2.4.2. Viscosity 2.4.3. Transport of Heat 2.4.4. Characteristic Numbers
Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
35
2.4.3. Transport of Heat Equilibrium thermodynamics System seeks uniform temperature distribution
Inhomogeneous T-distribution Transport of heat
Two basic modes Diffusion - Statistical phenomenon (related to entropy) - Summarized in macroscopic thermal conductivity Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Convection - Far more complicated - Macroscopic ramifications - Minor importance in microworld
Another frequently encountered issue Transfer of thermal energy at interface between two media/phases No inter-phase diffusion / exchange of particles Transmission and transition of heat Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
36
2.4.3 Thermal Conductivity Fourier‘s law Basic equation quantifying diffusive transport of heat
Net flow of energy jQ Thermal conductivity
Power
Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Cross-section of flow A
Relaxation time for temperature gradient Distance d Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
37
2.4.3 Thermal Conductivity Molecular picture Net energy flow in positive z-direction Using linear terms of Taylor-expansion
Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
38
2.4.3 Thermal Conductivity Thermal conductivity
Approximating on lmfp
Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Independent of particle density N for ideal gas
Heat diffusion coefficient kinematic viscosity
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
39
2.4.3 Thermal Conductivity Typical values
Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
40
2.4.3 Convection
Macroscopic transport of particles Characteristic for macro-devices Important for heat transport in liquids and gases
Forced convection Transport of heat by macroscopic particle flow E.g., by an external mechanical source Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Free convection For instance driven by buoyancy
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
41
2.4.3 Convection
Convective currents Stationary or non-stationary flow patterns
Simulation of convection Often fail to coincide with experimental observations E.g., atmospheric weather and climate Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Free Convection of minor importance in microdevices Laminar conditions Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
42
2.4. Transport Phenomena 2.4.1. Diffusion 2.4.2. Viscosity 2.4.3. Transport of Heat 2.4.4. Characteristic Numbers
Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
43
2.4.4. Characteristic Numbers Fourier mass number Characterizes diffusion
Time t, e.g. residence in chemical reaction chamber Typical diffusive time scale tD = l2 / D Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Schmidt number Relates viscosity and diffusion
Roughly 0.8 for gases
Microfluidics - Jens Ducrée
Fluids: Transport Phenomena
44
2.4.4. Characteristic Numbers Fourier number Diffusion of heat Stored thermal energy
Prandtl number
Pr isbexa ispel: Ausar beitun gspha Au tsarbei ungde rStand ard-Ze el
Ratio between momentum diffusivity (via dynamic viscosity ) and heat diffusivity (via thermal conductivity )
Specific heat capacity Cm Typically 3 to 300 for liquids and 0.7 to1.0 for gases Microfluidics - Jens Ducrée