Trig Cheat Sheet

143 downloads 122878 Views 112KB Size Report
2005 Paul Dawkins. Trig Cheat Sheet. Definition of the Trig Functions. Right triangle definition. For this definition we assume that. 0. 2 π θ. < < or 0. 90 θ. ° < < °.
Trig Cheat Sheet Definition of the Trig Functions Right triangle definition For this definition we assume that p 0 < q < or 0° < q < 90° . 2

Unit circle definition For this definition q is any angle. y

( x, y ) hypotenuse

y

opposite

1

q x

x

q adjacent opposite hypotenuse adjacent cos q = hypotenuse opposite tan q = adjacent

sin q =

hypotenuse opposite hypotenuse sec q = adjacent adjacent cot q = opposite csc q =

y =y 1 x cos q = = x 1 y tan q = x

sin q =

1 y 1 sec q = x x cot q = y csc q =

Facts and Properties Domain The domain is all the values of q that can be plugged into the function. sin q , q can be any angle cos q , q can be any angle 1ö æ tan q , q ¹ ç n + ÷ p , n = 0, ± 1, ± 2,K 2ø è csc q , q ¹ n p , n = 0, ± 1, ± 2,K 1ö æ sec q , q ¹ ç n + ÷ p , n = 0, ± 1, ± 2,K 2ø è cot q , q ¹ n p , n = 0, ± 1, ± 2,K

Range The range is all possible values to get out of the function. csc q ³ 1 and csc q £ -1 -1 £ sin q £ 1 -1 £ cos q £ 1 sec q ³ 1 and sec q £ -1 -¥ < tan q < ¥ -¥ < cot q < ¥

Period The period of a function is the number, T, such that f (q + T ) = f (q ) . So, if w is a fixed number and q is any angle we have the following periods. 2p w 2p = w p = w 2p = w 2p = w p = w

sin ( wq ) ®

T=

cos (wq ) ®

T

tan (wq ) ®

T

csc (wq ) ®

T

sec (wq ) ®

T

cot (wq ) ®

T

© 2005 Paul Dawkins

Formulas and Identities Tangent and Cotangent Identities sin q cos q tan q = cot q = cos q sin q Reciprocal Identities 1 1 csc q = sin q = sin q csc q 1 1 sec q = cos q = cos q sec q 1 1 cot q = tan q = tan q cot q Pythagorean Identities sin 2 q + cos 2 q = 1 tan 2 q + 1 = sec 2 q 1 + cot 2 q = csc 2 q Even/Odd Formulas sin ( -q ) = - sin q csc ( -q ) = - csc q cos ( -q ) = cos q

sec ( -q ) = sec q

tan ( -q ) = - tan q

cot ( -q ) = - cot q

Periodic Formulas If n is an integer. sin (q + 2p n ) = sin q

csc (q + 2p n ) = csc q

cos (q + 2p n ) = cos q sec (q + 2p n ) = sec q tan (q + p n ) = tan q

cot (q + p n ) = cot q

Double Angle Formulas sin ( 2q ) = 2sin q cos q cos ( 2q ) = cos 2 q - sin 2 q = 2 cos 2 q - 1 = 1 - 2sin 2 q 2 tan q tan ( 2q ) = 1 - tan 2 q Degrees to Radians Formulas If x is an angle in degrees and t is an angle in radians then p t px 180t = Þ t= and x = 180 x 180 p

Half Angle Formulas (alternate form) 1 - cos q 1 q sin = ± sin 2 q = (1 - cos ( 2q ) ) 2 2 2 1 + cos q q =± 2 2

1 (1 + cos ( 2q ) ) 2 1 - cos ( 2q ) 1 - cos q q tan = ± tan 2 q = 2 1 + cos q 1 + cos ( 2q ) Sum and Difference Formulas sin (a ± b ) = sin a cos b ± cos a sin b cos

cos 2 q =

cos (a ± b ) = cos a cos b m sin a sin b tan a ± tan b 1 m tan a tan b Product to Sum Formulas 1 sin a sin b = éëcos (a - b ) - cos (a + b ) ùû 2 1 cos a cos b = éë cos (a - b ) + cos (a + b ) ùû 2 1 sin a cos b = éësin (a + b ) + sin (a - b ) ùû 2 1 cos a sin b = éësin (a + b ) - sin (a - b ) ùû 2 Sum to Product Formulas æa + b ö æa - b ö sin a + sin b = 2sin ç ÷ cos ç ÷ è 2 ø è 2 ø æa + b ö æa - b ö sin a - sin b = 2 cos ç ÷ sin ç ÷ è 2 ø è 2 ø æa + b ö æa - b ö cos a + cos b = 2 cos ç ÷ cos ç ÷ è 2 ø è 2 ø æa + b ö æa - b ö cos a - cos b = -2sin ç ÷ sin ç ÷ è 2 ø è 2 ø Cofunction Formulas tan (a ± b ) =

æp ö sin ç - q ÷ = cos q è2 ø æp ö csc ç - q ÷ = sec q è2 ø

æp ö cos ç - q ÷ = sin q è2 ø æp ö sec ç - q ÷ = csc q è2 ø

æp ö tan ç - q ÷ = cot q è2 ø

æp ö cot ç - q ÷ = tan q è2 ø

© 2005 Paul Dawkins

Unit Circle y

p 2

æ 1 3ö ç- , ÷ è 2 2 ø æ 2 2ö , ç÷ è 2 2 ø æ 3 1ö ç- , ÷ 2 2ø è

( -1,0 )

3p 4

5p 6

( 0,1)

2p 3

p 3

90° 120°

æ1 3ö çç 2 , 2 ÷÷ è ø

p 4

60° 45°

135°

30°

p 6

æ 3 1ö çç 2 , 2 ÷÷ è ø

150°

p 180°

æ 3 1ö ç - ,- ÷ 2 2ø è

æ 2 2ö , çç ÷÷ è 2 2 ø

7p 6

æ 2 2ö ,ç÷ 2 ø è 2

210°



0

360°

2p

330° 225°

5p 4

4p 3

240°

æ 1 3ö ç - ,÷ 2 2 è ø

315° 7p 300° 270° 4 5p 3p 3 2 æ

11p 6

(1,0 )

x

æ 3 1ö ç ,- ÷ è 2 2ø

æ 2 2ö ,ç ÷ 2 2 è ø

1 3ö ç ,÷ è2 2 ø

( 0,-1)

For any ordered pair on the unit circle ( x, y ) : cos q = x and sin q = y Example æ 5p cos ç è 3

ö 1 ÷= ø 2

æ 5p sin ç è 3

3 ö ÷=2 ø

© 2005 Paul Dawkins

Inverse Trig Functions Definition y = sin -1 x is equivalent to x = sin y

Inverse Properties cos ( cos -1 ( x ) ) = x cos -1 ( cos (q ) ) = q

y = cos -1 x is equivalent to x = cos y y = tan -1 x is equivalent to x = tan y Domain and Range Function Domain y = sin -1 x

-1 £ x £ 1

y = cos -1 x

-1 £ x £ 1

y = tan -1 x

-¥ < x < ¥

sin ( sin -1 ( x ) ) = x

sin -1 ( sin (q ) ) = q

tan ( tan -1 ( x ) ) = x

tan -1 ( tan (q ) ) = q

Alternate Notation sin -1 x = arcsin x

Range p p - £ y£ 2 2 0£ y £p p p - < y< 2 2

cos -1 x = arccos x tan -1 x = arctan x

Law of Sines, Cosines and Tangents c

b

a

a

g

b Law of Sines sin a sin b sin g = = a b c

Law of Tangents a - b tan 12 (a - b ) = a + b tan 12 (a + b )

Law of Cosines a 2 = b2 + c 2 - 2bc cos a

b - c tan 12 ( b - g ) = b + c tan 12 ( b + g )

b 2 = a 2 + c 2 - 2ac cos b c = a + b - 2ab cos g 2

2

2

a - c tan 12 (a - g ) = a + c tan 12 (a + g )

Mollweide’s Formula a + b cos 12 (a - b ) = c sin 12 g

© 2005 Paul Dawkins