Tsunami or Sea Change? Responding to the ... - Ed Lazowska

2 downloads 116 Views 4MB Size Report
Jim Kurose. Dis nguished Professor. School of Computer Science. University of Massachuse s Amherst. NCWIT 10th Anniversa
Tsunami  or  Sea  Change?   Responding  to  the  Explosion  of   Student  Interest  in  Computer  Science   Ed  Lazowska   Bill  &  Melinda  Gates  Chair  in   Computer  Science  &  Engineering   University  of  Washington  

Eric  Roberts   Professor  of  Computer  Science  and   Bass  University  Fellow  in  Undergraduate  EducaJon   Stanford  University  

Jim  Kurose   DisJnguished  Professor   School  of  Computer  Science   University  of  MassachuseNs  Amherst  

NCWIT  10th  Anniversary  Summit,  May  2014   CRA  Conference  at  Snowbird,  July  2014   (Updated  7/23/2014  following  CRA  Conference  at  Snowbird)   hNp://lazowska.cs.washington.edu/NCWIT.pdf  or  Snowbird.pdf    

Today   •  Short  presentaCon  of  trends   •  Open  discussion   –  Best  pracCces:  how  to  respond?   –  What’s  different  this  Cme  around,  and  how  can  we  demonstrate  it?   –  A  proacCve  agenda:  what  can  we  and  our  disciplinary  organizaCons  (CRA,   CCC,  ACM,  NSF,  CSTB,  …)  do?  

GRIPING

Introductory  course  enrollments  are  exploding  

800   700  

Harvard  

600   500   400   300   200   100   0  

CS50  

Not  just  at  Harvard   2500  

1200  

Stanford  

1000  

2000   total  

1500  

CS  106A  

1000   500  

800   total  

600  

CS  105  

400  

CS  101  

200  

6.01   6.00  

0  

0  

1000   900   800   700   600   500   400   300   200   100   0  

MIT  

800  

University  of  Pennsylvania  

700  

Harvard  

600   500   total  

400  

CIS  110  

300  

CIS  120  

200   100   0  

CS50  

Not  just  at  elite  private  insCtuCons   1400   1200  

3000  

University  of  Michigan  

2500  

1000  

2000  

800  

1500  

600  

EECS  280  

400  

1000  

200  

500  

0  

0  

2500  

UC  Berkeley  

2000   1500   1000   500   0  

University  of  Washington  

CS61A/S   CS10   E7  

CSE  142  

These  enrollments  are  blowing  past  previous  highs   3000   2500  

University  of  Washington  

2000   1500   1000   500   0  

CSE  142   CSE  143  

Increasing  proporCons  of  students  are   taking  second  courses   70%  

University  of  Washington  

60%   50%   40%   30%   20%  

CSE  142-­‐>143  %  

In  at  least  some  cases,  female  parCcipaCon  is  increasing   40%  

University  of  Washington  

35%   30%   CSE  142  %  female   25%   20%  

Demand  for  the  major  is  increasing   800   700  

1200  

Stanford  

1000  

600  

800  

500   Majors  

300   200   0  

350  

University  of  Pennsylvania  

300  

0  

Harvard  

250   200  

300  

100  

6.2  

0  

400  

200  

6.3  

400   200  

100  

500  

Total  

600  

400  

600  

MIT  

Majors  

150   100   50   0  

Majors  

Top  25  concentraCons  at  Harvard   2007-­‐08  

  Economics   Government   Social  Studies   Psychology  (PSSR)   English  &  Amer  Lit  &  Lang   History   Anthropology   History  and  Literature   Biochemical  Sciences   Applied  MathemaCcs   Molecular  and  Cellular  Biology   Human  EvoluConary  Biology   Neurobiology   Biology   MathemaCcs   Sociology   Chemistry   Physics   Visual  and  Environmental  Studies   History  and  Science   Computer  Science   Engineering  and  Applied  Science  (AB)   Chemical  &  Physical  Biology   Environ.  Sci  &  Pub  Policy   Fine  Arts  /  History  of  Art  &  Arch  

2013-­‐14  

  Economics   Government   Social  Studies   Psychology  (PSSR)   Computer  Science   Applied  MathemaCcs   Neurobiology   History   English   Human  Developmental  &  Regener.  Biol.   Sociology   History  and  Literature   StaCsCcs   Human  EvoluConary  Biology   Organismic  &  EvoluConary  Biology   History  and  Science   Chemistry   MathemaCcs   Physics   Molecular  and  Cellular  Biology   Engineering  and  Applied  Science  (SB)   Anthropology   Fine  Arts  /  History  of  Art  &  Arch   Biomedical  Engineering   Visual  and  Environmental  Studies  

CMU  freshman  applicants   7000" 6000"

Carnegie(Mellon(University(

5000" 4000"

SCS"Freshman" Applicants"

3000"

SCS"Freshman"Class" Target"Size"

2000"

0"

1995" 1996" 1997" 1998" 1999" 2000" 2001" 2002" 2003" 2004" 2005" 2006" 2007" 2008" 2009" 2010" 2011" 2012" 2013" 2014"

1000"

Dot-­‐com  peak:  3,237   Dot-­‐bust  trough:  1,732   Most  recent  year:  6,174   Target  enrollment:  135            (+  ~40  upper-­‐division  transfers)  

Non-­‐major  demand  for  upper-­‐division  courses   is  increasing,  also   120"

Harvey'Mudd'College'CS'70'

100" 80" 60"

Non(Majors"

40" 20"

2010(11"

2011(12"

2012(13"

2013(14"

500" 450"

UC#Berkeley#Upper#Division#CS#Enrollment#from#L&S# Outside#of#CS##

400" 350" 300" 250" 200" 150" 100" 50"

L&S:"Undeclared" L&S:"Math"&"Phys"Sci" Div" L&S:"Social"Sciences" Div" L&S:"Undergraduate" Div" L&S:"Arts"&" HumaniGes"Div" L&S:"Bio"Sciences"Div"

0"

20 08 "F a 20 ll" 09 "Sp rin g" 20 09 "F a 20 ll" 10 "Sp rin g" 20 10 "F a 20 ll" 11 "Sp rin g" 20 11 "F a 20 ll" 12 "Sp rin g" 20 12 "F a 20 ll" 13 "Sp rin g" 20 13 "F a 20 ll" 14 "Sp rin g"

0"

L&S:"AdminICS"

CS

Vi su n"

cie nc e"

i za 0o

"S

ta

al

ng "

te rfa ce s"

em s"

ys t

ne "L e ar ni

Da

"1 71 "* "

"1 09 "* "

CS

ac hi

M

ng "S

250"

Us er "In

er a0 300"

"1 79 "* "

Op

* "S

pe ra 8

te ct u

ng in

re "

ee rin g"

em s"

ng "S y st

te r"A rc hi

o= w ar e" E

* "O

om pu

"4 41 0"

* "C

"5 15 0"

CS

"3 41 0"

CS

CS

250"

"1 81 "* "

CS

"1 61 "* "

300"

CS

CS

Upper-­‐division  class  sizes  are  going  through  the  roof   Cornell'Upper'Division'Courses'

200"

150"

100"

50"

0" Enrollment"

Harvard&Upper*Division&Courses&

200"

150"

100"

50" Enrollment"

0"

Upper-­‐division  class  sizes  are  going  through  the  roof   300"

Cornell'Upper'Division'Courses'

250" 200" 150" 100" 50"

Enrollment" g" ee rin ng in o= w ar e" E * "S "5 15 0"

760 students!

CS

CS

CS

"3 41 0"

* "C

"4 41 0"

* "O

om pu

pe ra 8

te r"A rc hi

ng "S y st

te ct u

em s"

re "

0"

300" 250"

CS229

Machine Learning

Autumn 2013

Harvard&Upper*Division&Courses&

200"

Why is this man smiling?

150" 100" 50"

Enrollment"

CS

cie nc e" "S ta

"1 09 "* "

Vi

Da

su

al

i za 0o

n"

ng " "1 71 "* " CS

ac hi

ne "L e ar ni

te rfa ce s" M

Us er "In

"1 81 "* "

CS

"1 79 "* "

CS

CS

"1 61 "* "

Op

er a0

ng "S

ys t

em s"

0"

0" 1966" 1967" 1968" 1969" 1970" 1971" 1972" 1973" 1974" 1975" 1976" 1977" 1978" 1979" 1980" 1981" 1982" 1983" 1984" 1985" 1986" 1987" 1988" 1989" 1990" 1991" 1992" 1993" 1994" 1995" 1996" 1997" 1998" 1999" 2000" 2001" 2002" 2003" 2004" 2005" 2006" 2007" 2008" 2009" 2010" 2011" 2012"

We’re  all  familiar  with  cycles  in  demand   70,000"

60,000"

Computer)Science)Bachelors)Degrees)Granted)

50,000"

40,000"

30,000"

20,000"

10,000"

But  this  Cme,  it  truly  feels  different   •  Students  are  figuring  out  that  every  21st    century  ciCzen  needs  to   have  facility  with  “computaConal  thinking”  –  problem  analysis   and  decomposiCon  (stepwise  refinement),  abstracCon,   algorithmic  thinking,  algorithmic  expression,  stepwise  fault   isolaCon  (debugging),  modeling  –  driving  introductory  course   demand   –  Programming  is  the  hands-­‐on,  inquiry-­‐based   way  that  we  teach  computaConal  thinking   and  the  principles  of  computer  science  

•  Students  are  figuring  out  that  fields  from  Anthropology  to   Zoology  are  becoming  informa(on  fields,  and  that  those  who  can   bend  the  power  of  the  computer  to  their  will  –  computaConal   thinking,  but  also  computer  science  in  greater  depth  –  will  be   posiConed  for  greater  success  than  those  who  can’t  

•  Students  are  figuring  out  that  computer  science  is  not  Dilbert  –   it’s  an  intellectually  exciCng,  highly  creaCve  and  interacCve,   “power  to  change  the  world”  field  

•  Students  are  figuring  out  that  all  of  the  STEM  jobs  are  in   computer  science   Job$Growth,$2012.22$.$U.S.$Bureau$of$Labor$Sta8s8cs$ Computer$Occupa8ons$=$71%$of$all$STEM$

4%$

4%$ Computer$Occupa3ons$

3%$ 3%$

Engineers$(Aerospace,$Biomedical,$Chemical,$Civil,$Electrical,$ Electronics,$Environmental,$Industrial,$Materials,$Mechanical,$ Other)$ Life$Scien3sts$(Agricultural$&$Food$Scien3sts,$Biological$Scien3sts,$ Conserva3on$Scien3sts$&$Foresters,$Medical$Scien3sts,$Other)$

15%$

Physical$Scien3sts$(Astronomers,$Physicists,$Atmospheric$&$Space$ Scien3sts,$Chemists$&$Materials$Scien3sts,$Environmental$ Scien3sts$&$Geoscien3sts,$Other)$

71%$

Social$Scien3sts$and$Related$Workers$(Economists,$Survey$ Researchers,$Psychologists,$Sociologists,$Urban$&$Regional$ Planners,$Anthropologists$&$Archeologists,$Geographers,$ Historians,$Poli3cal$Scien3sts,$Other)$ Mathema3cal$Science$Occupa3ons$

Data  from  the  spreadsheet  linked  at  hpp://www.bls.gov/emp/ep_table_102.htm  

•  Students  are  figuring  out  that  all  of  the  STEM  jobs  are  in   computer  science   Job$Openings$(Growth$And$Replacement),$2012>22$>$U.S.$Bureau$of$Labor$StaFsFcs$ Computer$OccupaFons$=$57%$of$all$STEM$

5%$

3%$ Computer$Occupa2ons$

5%$

Engineers$(Aerospace,$Biomedical,$Chemical,$Civil,$Electrical,$ Electronics,$Environmental,$Industrial,$Materials,$Mechanical,$ Other)$

5%$

Life$Scien2sts$(Agricultural$&$Food$Scien2sts,$Biological$Scien2sts,$ Conserva2on$Scien2sts$&$Foresters,$Medical$Scien2sts,$Other)$

57%$ 25%$

Physical$Scien2sts$(Astronomers,$Physicists,$Atmospheric$&$Space$ Scien2sts,$Chemists$&$Materials$Scien2sts,$Environmental$ Scien2sts$&$Geoscien2sts,$Other)$ Social$Scien2sts$and$Related$Workers$(Economists,$Survey$ Researchers,$Psychologists,$Sociologists,$Urban$&$Regional$ Planners,$Anthropologists$&$Archeologists,$Geographers,$ Historians,$Poli2cal$Scien2sts,$Other)$ Mathema2cal$Science$Occupa2ons$

Data  from  the  spreadsheet  linked  at  hpp://www.bls.gov/emp/ep_table_102.htm  

•  Students  are  figuring  out  that  all  of  the  STEM  jobs  are  in   computer  science   Washington*State*High*Demand*Fields*at*Baccalaureate*Level*and*Above* WSAC,*SBCTC,*WTECB,*October*2013*

0"

500"

1000"

1500"

2000"

2500"

3000"

3500"

4000"

4500"

5000"

Computer"Science"

Engineering"

Health"Professions"(gap"exists"at"graduate/professional"level"only)" Current"CompleGons"

Research,"Science,"Technical"(gap"exists"at"graduate"level"only)"

AddiGonal"Annual"CompleGons" Needed"2016K21"

Data  from  Table  2  of  the  report  linked  at  hpp://www.wsac.wa.gov/sites/default/files/2013.11.16.Skills.Report.pdf  

0"

1966" 1967" 1968" 1969" 1970" 1971" 1972" 1973" 1974" 1975" 1976" 1977" 1978" 1979" 1980" 1981" 1982" 1983" 1984" 1985" 1986" 1987" 1988" 1989" 1990" 1991" 1992" 1993" 1994" 1995" 1996" 1997" 1998" 1999" 2000" 2001" 2002" 2003" 2004" 2005" 2006" 2007" 2008" 2009" 2010" 2011" 2012"

It  seems  likely  that  the  recent  dramaCc  growth  will   conCnue  (although  cycles  are  inevitable)   70,000"

60,000"

Computer)Science)Bachelors)Degrees)Granted)

50,000"

40,000"

30,000"

20,000"

10,000"

How  are  we,  and  our  insCtuCons,  going  to  respond?   •  10%  of  Princeton’s  students  are  computer  science  majors   –  It’s  a  far  greater  percentage  at,  e.g.,  MIT  

•  10%  of  Princeton’s  faculty  are  unlikely  to  ever  be  in  computer   science!   –  Dipo,  proporConately,  at  MIT  

•  And  then  there  is   –  Introductory  course  demand  ++   –  Upper-­‐division  non-­‐major  demand  ++   –  Graduate  non-­‐major  demand  ++  

We  have  seen  this  movie  before,  and  it  wasn’t  prepy!   •  In  the  middle  1980s  and  the  middle  2000s,  student  demand   increased  tremendously   •  UniversiCes  did  not  respond  adequately   •  Kent  CurCs  report:   “80%  of  universiCes  are  responding  by  increasing  teaching  loads,  50%  by   decreasing  course  offerings  and  concentraCng  their  available  faculty  on   larger  but  fewer  courses,  and  66%  are  using  more  graduate-­‐student   teaching  assistants  or  part-­‐Cme  faculty.  35%  report  reduced  research   opportuniCes  for  faculty  as  a  result  …  these  measures  make  the  universiCes'   environments  less  apracCve  for  employment  and  are  exactly   counterproducCve  to  their  need  to  maintain  and  expand  their  labor   supply.”   http://cs.stanford.edu/~eroberts/Curtis-ComputerManpower/

Some  possibiliCes  …   •  Restrict  the  size  of  the  major   –  ImplicaCons  for  diversity?  

•  Exclude  non-­‐majors  from  upper-­‐division  courses   •  Retreat  to  “the  core”  –  turn  over  many  of  our  courses  to  other   departments   •  Have  enormous  class  sizes  and/or  enormous  teaching  loads   •  UClize  vast  numbers  of  lecturers   •  Have  a  beer  while  the  students  use  Coursera  

A  concrete  reason  for  the  concern  about  diversity   •  Introductory  courses  are  parCcularly  important  “apracCon   waters”  for  members  of  under-­‐represented  groups   •  When  introductory  courses  become  “weed-­‐out”  courses,  this   disproporConately  impacts  members  of  those  groups   35%#

Propor%on'of'UW'CSE'majors'who'did'not' intend'to'pursue'the'major'when'they' enrolled'in'the'introductory'course'

Computer)Science)%)Female)Degrees)Granted) 30%# UW#CS#%#Female# UW#CS#%#Female#

60%#

US#all#depts.#CS#%#Female# US#all#depts.#CS#%#Female#

50%#

25%#

20%#

15%#

10%#

US#Ph.D.>granBng#depts.#CS#%# Female#

40%# 30%# 20%#

5%#

10%#

0%# 2005#2006# 2010# 2011# 2012# 2013# 2014# 2005# 2005# 2006# 2007# 2007# 2008# 2008# 2009# 2009# 2010#

0%# %#of#female#majors#

%#of#male#majors#

Our  field  is  at  a  criCcal  juncture!  

•  Best  pracCces:  how  to  respond?   •  What’s  different  this  Cme  around,  and  how  can  we  document  it?   •  A  proacCve  agenda:  what  can  we  and  our  disciplinary   organizaCons  (CRA,  CCC,  ACM,  NSF,  CSTB,  …)  do?     (The  ideas  that  follow  come  from  audiences  at  NCWIT,  the  NSF  CISE  Advisory   Commipee,  and  the  CRA  Conference  at  Snowbird)  

ObservaCons   •  Administrators  are  going  to  want  to   address  this  problem  in  the  least   expensive  and  least  permanent   way:  using  TAs,  contract   instructors,  faculty  from  other   departments  …   •  Even  if  CS  faculty  numbers  expand,   CS  research  funding  may  not   •  If  we  don’t  teach  the  necessary   courses,  other  units  will;  they  have   teaching  resources  due  to  the   decrease  in  their  own  majors,  and   their  students  have  the  need  

•  We  believe  that  compuCng  is   fundamental,  but  many  others   remain  to  be  convinced   •  Today,  most  of  the  majors  in  fields   such  as  Psychology,  Economics,   and  History  are  not  intending  to   “pracCce”  in  that  field.  This  may   become  true  of  CS;  it  would   require  changing  our  approach  

ObservaCons  (cont’d.)   •  There  are  now  55  iSchools;  we   need  to  ensure  complementarity   and  collaboraCon.  (InteresCngly,   the  undergraduate  gender   balance  of  iSchools  is  not   significantly  beper  than  that  of  CS   programs!)   •  The  local  environment  is   important  –  there  is  no  “one  size   fits  all.”  Does  tuiCon  revenue  flow   to  the  unit  doing  the  teaching?   Are  the  rewards  for  majors  vs.   minors  comparable?  Etc.  

Best  pracCces:  how  to  respond?   •  UClize  undergraduate  TAs  –  they   scale  with  the  demand!   •  Women  tend  to  drop  out  of   compuCng  industry  careers.  Might   industry  grant  2-­‐year  teaching   sabbaCcals  to  women?   •  Automate  grading  in  a  variety  of   courses  –  this  would  relieve  much   of  the  drudgery  of  being  a  TA   •  Partner  with  departments  that  can   teach  CS-­‐relevant  courses,   spreading  the  load  while   maintaining  a  modicum  of   curricular  control.  (If  we’re  growing,   someone  else  must  be  shrinking;   there  are  spare  cycles  somewhere!)  

•  Create  a  “culture  of  teaching”:   –  Value  lecturers/instructors:   reasonable  salaries,  12-­‐month   appointments,  mulC-­‐year   contracts   –  Encourage  graduate  students  to   pursue  teaching  careers  –  e.g.,   insCtute  “CS  EducaCon”  reading   groups   –  Like  Biology,  introduce  “teaching   postdocs”  where  the  postdoc  co-­‐ teaches  with  his/her  faculty   mentor  –  providing  teaching   cycles,  another  mentoring   opportunity,  and  career  value  

Best  pracCces:  how  to  respond?  (cont’d.)   •  Think  carefully  about  what   students  don’t  need  to  know,  as   well  as  what  they  do  need  to   know  –  CS  is  an  ever-­‐expanding   sphere,  and  students  cannot   possibly  learn  all  there  is  to  know   –  Can  we  reduce  the  Cme  required   for  students  in  our  major  to  less   than  4  years?   –  Is  there  an  efficient  version  of   Stanford’s  “CS+X”?  

•  “Take  the  long  view”:   –  Expand  our  view  of  what   consCtutes  CS  –  suppress  our   egos  regarding  what  consCtutes   “the  core.”   –  Grow  to  Schools  or  Colleges.   (Among  other  things,  this   provides  a  degree  of  budgetary   control  –  our  success  will  be  less   likely  to  be  used  to  subsidize   others)   –  CS  should  grow  to  be  the  size  of   Engineering  –  it  is  of  at  least  equal   impact.  Plan  for  this!  

What’s  different  this  Cme  around,  and  how  can  we   demonstrate  it?   •  At  many  leading  insCtuCons,  a  very   large  proporCon  of  students  are  now   choosing  to  take  one  or  more  CS   courses  (even  though  this  is  not   required  for  many  majors)  –  this   trend  is  new   •  Enrollment  by  non-­‐majors  in  upper-­‐ division  CS  courses  is  rising  rapidly  –   this  trend  is  new   •  Demand  for  the  major  is  increasing   very  substanCally  –  at  some   bellwether  insCtuCons,  this  demand   is  dramaCcally  exceeding  previous   highs  

•  Computers,  computaConal   thinking,  and  computer  science   are  ubiquitous  –  every  field  is   becoming  an  informaCon  field.   Students  aren’t  blind  to  this!   –  CompuCng  today  is  part  of  life   and  part  of  popular  culture;  it’s   not  just  about  “compuCng   industry  jobs”   –  Today’s  students  are  interested  in   using  compuCng,  not  merely  in   advancing  the  core.  (Note:  this   student  interest  is  not  reflected   the  balance  of  our  faculty!)  

What’s  different  this  Cme  around,  and  how  can  we   demonstrate  it?  (cont’d.)   •  Workforce  demand  in  compuCng  is   dramaCcally  greater  than  in  all  other   fields  of  STEM  combined  –  BLS  data   clearly  shows  this   •  Heads  of  other  units  are  now  asking   us  to  “teach  our  students  computer   science”  (vs.  “teach  them   programming”)   •  Looking  at  company  parCcipaCon  in   recruiCng  events,  CS  majors  are   apracCng  the  full  spectrum  of   industry  –  the  full  cross  secCon  of   the  economy  

•  The  pervasiveness  of  compuCng  in   the  economy  suggests  that,  in  the   future,  student  demand  for  the   major,  and  industry  demand  for   graduates,  will  be  cyclical  with  the   health  of  the  overall  economy,   rather  than  with  that  of  the   compuCng  industry   •  Today,  increasing  CS  size/strength   increases  ins(tu(onal  strength  –   it’s  an  investment  that  pays  broad   dividends  

A  proacCve  agenda:  what  can  we  and  our  disciplinary   organizaCons  (CRA,  CCC,  ACM,  NSF,  CSTB,  …)  do?   •  Obtain  broader,  more  authoritaCve   data;  what  we  have  at  present  is  “a   clear  sense”  and  “many  stories”  but   not  a  compelling  naConal  case   •  Understand  the  reasons  for  student   behavior.  In  other  words,  the   trends  are  clear,  but  the  reasons   are  not.  E.g.,  what  are  the  specific   reasons  for  the  dramaCc  increases   we  are  seeing  in  upper-­‐division   enrollment?  Who  are  these   students,  and  why  are  they  there?   •  Document  that  upper-­‐division   growth  is  something  that’s  new  and   different  

•  IniCate  serious  conversaCons  with   leaders  in  fields  such  Math,   Biology,  and  Economics  –  they   have  scaled,  and  they  teach  many   who  will  not  “pracCce  directly”  in   the  field.  Study  how  the  huge   majors  do  it.  (Economics  is   perhaps  the  best  model  –  it’s  a  big   major  and  the  faculty  are  well   compensated)  

A  proacCve  agenda:  what  can  we  and  our  disciplinary   organizaCons  (CRA,  CCC,  ACM,  NSF,  CSTB,  …)  do?   •  Argue,  based  on  structural  changes   in  the  naCon’s  economy,  that  we   are  observing  a  fundamental  shiy  in   the  role  of  CS   •  Advocate  for  graduate  programs   focused  on  CS  educaCon:  students   care  about  this,  and  they  need  a   Ph.D.  track  and  a  career  track  that’s   respected   •  Call  on  funding  agencies  to  support   flexible  postdocs  –  research  +   teaching  with  a  flexible  proporCon   –  Perhaps  create  a  CIFellows-­‐like   postdoc  program  but  with  a   teaching  orientaCon  

•  Celebrate  the  situaCon!  We  are  no   longer  merely  the  toolsmiths!  We   are  now  the  soluCon  providers!  

VOLUNTEERS  to  dig  into  this  more  fully?   •  Send  email  to  Jim  Kurose  and  Ed  Lazowska!  

Thanks  for  providing  data!   •  •  •  •  •  •  •  •  •  •  •  •  •  •  • 

Colorado  School  of  Mines:  Tracy  Camp   Harvard  Univ.:  Greg  Morrisep,  Margo  Seltzer   Harvey  Mudd  College:  Ran  Libeskind-­‐Hadas   Johns  Hopkins  Univ.:  Greg  Hager   MIT:  Saman  Amarasinghe,  Anantha  Chandrakasan,  Eric  Grimson,  Laura  Moses,  Victoria   Palay,  Daniela  Rus,  Jacob  White   Rochester  InsCtute  of  Technology:  Andrew  Sears   Stanford  Univ.:  Eric  Roberts,  Claire  Stager   UC  Berkeley:  David  Culler   Univ.  Michigan:  H.V.  Jagadish   Univ.  Pennsylvania:  Sue  Davidson   Univ.  Rochester:  Henry  Kautz   Univ.  Texas:  Tiffany  Grady,  J  Moore   Univ.  Utah:  Ross  Whitaker   Univ.  Washington:  Raven  Alexander,  Crystal  Eney,  Ed  Lazowska,  Jen  Pesicka   Wellesley  College:  Takis  Metaxas   http://lazowska.cs.washington.edu/NCWIT.pdf or Snowbird.pdf