Nov 27, 2006 - Central Michigan University. Kt. Pleasant, MI 48859 .... lake, and an input-output nutrient budget model for phosphorus is summarized ..... the July sampling by bottom-to-surface tows with a conical 1/4 m plankton net with 80 ...
Nut Sw . QH
aaa
THE WT\TIVERSITYOF MICHIW
flba A3
0
\a,
A Water Quality Study of Higgins Lake, Michigan Technical Report No.12 Richard Schultz and Winfield Fairchild
A WATER QUALITY STUDY OF HIGGINS LAKE, MICHIGAN
Richard Schultz P r o j e c t Coordinator Biology Department C e n t r a l Michigan U n i v e r s i t y K t . P l e a s a n t , M I 48859
D r . G. Winfield F a i r c h i l d P r o j e c t Supervisor Biology Department West Chester U n i v e r s i t y West Chester, PA 19383
August 1 9 8 4
TABLE OF CONTENTS
.. . .
........................................... p . 2 .............................................. p . 4 .................................. p . 5 ........... p . 9 . ................ p.12 .............................................. p.12 .............................................. p.13 ........................................... p.13 ................ ..... p.14 p.15 ............... p.17 ........................................ p.19 ...................................... p.21 ................................... p.23 ..................................... p.25 ....................................... p.26 ........... p.28 .. . .......... p.30 ................ p.32 . .............. p.36 . .............................................. p.38 .............................................. p.39 .............. p.40 .............. p.41 .. p.41 . . ......................... p .4 9 .............................................. p.49 .............................................. p.50 ....................................... p.52 . ........................................ p.52 ................ . ..................................... pp.545 2 . .................................... p.55 . ............................................... p.59 . . ............................................. p.7l .......... p.107 ........ p.108
I INTRODUCTION I1 SUMMARY I11 HISTORICAL OVERVIEW I V PHYSICAL FEATURES OF THE LAKE AND WATERSHED V LIMNOLOGY OF TdE NORTH AND SOUTH BASINS METHODS RESULTS Light Temperature and D i s s o l v e d Oxygen Hardness. C o n d u c t i v i t y . C h l o r i d e and S i l i c a Carbon Dioxide. pH and A l k a l i n i t y Nitrogen Phosphorus Phytoplankton Zooplankton Sediments V I EVIDENCE FOR EUTROPHICATION I N HIGGINS LAKE V I I N VS P LIMITATION - NORTH AND SOUTH BASINS VIII A PHOSPHORUS BUDGET FOR HIGGINS LAKE I V SOURCES OF NUTRIENTS ALONG THE LAKESHORE METHODS RESULTS S e a s o n a l T r e n d s in N u t r i e n t Supply Nearshore 5 Differences Comparison o f N u t r i e n t s and P e r i p h y t o n by Site x N vs P LIMITATION: NEARSHORE METHODS RESULTS X I RECOMMENDATIONS FURTHER STUDY WATER QUALITY IlANAGEPIENT ALTERNATIVES X I 1 ACKNOWLEDGEMENTS XI11 LITERATURE CITED X I V TABLES XV FIGURES APPENDIX A : A PHOSPHORUS BUDGET FOR HIGGINS LAKE APPENDIX B: FEATURES OF THE HIGGINS LAKE SHORELINE
I. INTRODUCTION Higgins
Lake
has
l o n g been n o t e d f o r i t s
extremely
cleanest
and i s p r e s e n t l y r e g a r d e d a s o n e o f t h e
water q u a l i t y ,
l a k e s i n Michigan.
Recently,
high
however, p r o p e r t y owners and l a k e
a s s o c i a t i o n members h a v e r e p o r t e d d e c r e a s e s i n water c l a r i t y , t h e appearance
of
noticeable
i n c r e a s e i n a l g a l growth n e a r t h e
are
l a k e bottom bands o f d e t r i t u s ,
a l l s i g n s of c u l t u r a l e u t r o p h i c a t i o n ,
productivity, increases the
to
undesirable
describe
stages
in
the
O l i g o t r o p h i c l a k e s t e n d t o be c l e a r , low
an increase
levels,
" ~ l i ~ o t r o p h i c " , "mesotrophic"
biological
production
very
shoreline.
These in
lake
stimulated Limnologists
i n nutrients supplied t o the lake.
terms
roughly
often
a
and a l s o
and
concentrations throughout t h e year.
dissolved
to
process.
r e l a t i v e l y deep l a k e s high
use
"eutrophic"
eutrophication
and
by
with
oxygen
Eutrophic lakes i n c o n t r a s t
a r e t u r b i d water b o d i e s w i t h h i g h b i o l o g i c a l p r o d u c t i v i t y a n d low dissolved
oxygen
levels
stratification.
in
water
t h e deeper
Mesotrophic
lakes
during
ther~al
show
intermediate
c h a r a c t e r i s t i c s between o l i g o t r o p h y and e u t r o p h y ,
and o f t e n have
p r o d u c t i v e warmwater f i s h e : . i e s (NEMCOG, 1 9 7 9 ) .
A
growing
eutrophication, recreational Gerrish Biological
c o n c e r n t h a t H i g g i n s Lake thereby
value,
prompted
began
the
be
lake 's
to
contact
Station
to
i n i t i a t e a comprehensive
at
experiencing economic
t h e Township B o a r d s o f
Townships
the
University
Dr.
of water
Lyon
and and
Michigan quality
G.
Winfield
t h a t time P r o f e s s o r o f L i n n o l o g y a t t h e
Station,
s u r v e y of H i g g i n s Lake. Fairchild,
decreasing
may
I n January of
1983,
work on t h e p r o j e c t w i t h t h e h i r i n g o f R i c h a r d S c h u l t z ,
a
graduate
student
in
aquatic
biology
at
Central
Michigan
University, a s project coordinator.
A
large
chemical,
portion
and
of t h i s r e p o r t
biological
conditions
addresses which
the
physical,
characterize
p r e s e n t t r o p h i c s t a t e o f H i g g i n s Lake ( S e c t i o n s IV-VI).
the
The d a t a
a r e i n t e n d e d a s a b a s e l i n e f o r f u t u r e s t u d i e s , and h a v e a l s o been compared
with
previously
examine
changes
in
collected
water
quality
information
in
during
past
the
order
to
decade.
P h o s p h o r u s i s t h e n i d e n t i f i e d a s a major l i m i t i n g n u t r i e n t i n t h e l a k e , and a n i n p u t - o u t p u t
n u t r i e n t b u d g e t model f o r phosphorus is
summarized ( S e c t i o n s V I I - V I I I ) . has
been
supplying
the
i m p a c t o f human
nutrients
A major c o n c e r n of t h e r e s e a r c h
recreation
and
development
t o nearshore a r e a s of t h e lake,
quality
i s d e s c r i b e d f o r 18 sites a l o n g t h e l a k e s h o r e
IX-X).
Finally,
general
and
in
water
(Sections
recommendations a r e made f o r
further
l o n g term s t u d y and water q u a l i t y management ( S e c t i o n X I ) . r e s u l t s o f t h e s t u d y a r e b r i e f l y summarized i n S e c t i o n 11.
Major
11. SUMMARY Higgins
concentrations
penetration, The
remains an o l i g o t r o p h i c l a k e
of
high
water
Both deep b a s i n s s t u d i e s h a v e h i g h year-round d i s s o l v e d
quality. oxygen
Lake
t h r o u g h o u t t h e w a t e r column,
and low n u t r i e n t and c h l o r o p h y l l - a
plankton
community
also
contains
deep
light
concentrations.
biological
indicator
s p e c i e s , s u c h a s t h e c a l a n o i d copepod S e n e c e l l a c a l a n o i d e s , which a r e i n d i c a t i v e of o l i g o t r o p h y . The
North
B a s i n of H i g g i n s Lake h a s s l i g h t l y h i g h e r
q u a l i t y t h a n t h e South Basin, and l o c a t i o n , the future.
b e c a u s e o f i t s morphometry
which,
may be p a r t i c u l a r l y s e n s i t i v e t o e u t r o p h i c a t i o n i n Analysis of nitrogen:
phosphorus r a t i o s
t h a t both b a s i n s a r e phosphorus-limited I n c o n t r a s t t o t h e deep b a s i n s , Lake
have
heavy
indicates
d u r i n g mid-summer.
n e a r s h o r e a r e a s of
c o n s i s t e n t l y h i g h c o n c e n t r a t i o n s of
Higgins
phosphorus,
and
a c c u m u l a t i o n s o f b o t h marl and t h e f i l a m e n t o u s g r e e n
alga
Cladophora
glomerata
at
many
locations.
Inorganic
(especially n i t r a t e ) is depleted t o potentially limiting An i n s i t u b i o s t i m u l a t i o n e x p e r i m e n t , nearshore growth
water
sampling
locations,
nitrogen levels.
c o n d u c t e d a t o n e o f t h e 18
provides confirmation
that
the
o f a l g a l p e r i p h y t o n n e a r s h o r e i s n i t r o g e n - l i m i t e d by mid-
summer, a p p a r e n t l y owing t o h i g h p h o s p h o r u s l o a d i n g ,
It human land, be
is
s u g g e s t e d t h a t water q u a l i t y b e managed by
sources
of
phosphorus,
particularly
from
reducing riparian
and t h a t f u r t h e r development o f t h e H i g g i n s Lake w a t e r s h e d
c o n s i d e r e d c a r e f u l l y w i t h r e g a r d t o i t s i m p a c t upon
loading t o t h e lake.
nutrient
111. HISTORICAL OVERVIEW Prior was
t o t h e i n i t i a t i o n of t h i s study,
conducted
following
o f work done p r e v i o u s l y
on
a l i t e r a t u r e search Higgins
Lake.
The
s t u d i e s provide a b a s i s f o r t h e present research.
Bosserman
(1969) c o m p l e t e d a n i n v e n t o r y of p r e s e n t l a n d u s e uses
i n t h e H i g g i n s Lake B a s i n and examined t h e e f f e c t s o f t h e s e on
the
quality
of t h e l a k e w a t e r .
He walked
the
t a k i n g n o t e of a l l i n f l o w i n g and o u t f l o w i n g s u r f a c e
shoreline, waters,
and
c o m p i l e d b a s i c m o r p h o m e t r i c , b i o l o g i c a l , and c h e m i c a l i n f o r m a t i o n for
t h e lake.
From t h e s e d a t a ,
Bosserman c o n c l u d e d t h a t t h e r e
were f o u r b a s i c s o u r c e s o f p o l l u t i o n t o H i g g i n s Lake:
(2) ice-caused
and o u t f a l l s , action, number
of
management m e a s u r e s ,
revetments,
ice
and
e r o s i o n , (3) e r o s i o n c a u s e d by wave
( 4 ) e r o s i o n c a u s e d by r o a d e n d s .
and
He
suggested
including the use
of
also
t h e use of vegetative
cover
to
a
jetties,
sea walls t o p r o t e c t a g a i n s t e r o s i o n from
and
and
(1) d r a i n s
wind
deal
with
p r o b l e m s o f d r a i n a g e and r o a d end e r o s i o n . D u r i n g 1 9 7 1 , t h e S t u d e n t Water P u b l i c a t i o n s Club of Michigan U n i v e r s i t y c o n d u c t e d a s u r v e y of H i g g i n s Lake d e a l i n g w i t h
State two
issues
of
importance
to
water
quality.
Their
report
d i s c u s s e d t h e d r a i n a g e of B a t t i n Swamp,
from which l a r g e amounts
of
Comfort.
tannins
enter
the lake near Point
a t t e m p t s were made t o f i l l i n t h e d r a i n , fear
that
tannins. had
the
nutrients
were
A
number
i n p a r t b e c a u s e of
b e i n g added t o
the
lake
with
of the the
It was f i n a l l y d e c i d e d t h a t t h e County Road Commission as
a
means
of
s e c o n d c o n c e r n a d d r e s s e d by t h e s t u d y was t h e o v e r u s e
of
legal
right
to
maintain t h e
drain
r e g u l a t i n g w a t e r l e v e l s i n t h e swamp.
A
A s e r i e s of i n t e r v i e w s w i t h
t h e two S t a t e P a r k s on H i g g i n s Lake.
to
p a r k employees r e v e a l e d t h a t t h e p a r k s were f r e q u e n t l y f i l l e d
parks'
lagoon sewage s y s t e m s ,
thereby causing increased
combatting
this
problem,
sewage
A s a means
i n f i l t r a t i o n i n t o groundwater f e e d i n g i n t o t h e l a k e . of
the
and t h a t t h i s o v e r u s e might l e a d t o o v e r l o a d i n g of
capacity
i t was s u g g e s t e d t h a t
the
parks
r e s t r i c t t h e number of s i t e s a v a i l a b l e on a p a r t i c u l a r day. The
Student
Water
Publications
Club
of
Michigan
State
U n i v e r s i t y w a s c o n t a c t e d by t h e H i g g i n s Lake B o a r d - i n e a r l y and
1972
r e q u e s t e d t o c o l l e c t w a t e r samples from a series of r i p a r i a n from w i t h i n t h e l a k e i t s e l f ,
wells,
and from a s s o c i a t e d s t r e a m s
t o d e t e r m i n e b a c t e r i a l d e n s i t i e s and n u t r i e n t c o n c e n t r a t i o n s . the
20
wells t e s t e d ,
Several
areas
two were p o s i t i v e of
coliform
bacteria.
of t h e l a k e and a number of s u r f a c e i n f l o w s
showed p o s i t i v e tests f o r b a c t e r i a ,
Of
also
i n d i c a t i n g t h a t sewage
from
s e p t i c t a n k s may be l e a k i n g i n t o t h e l a k e . The
Michigan
Childs, tanks
1973) and
lawn
Department
has
Natural
Resources
(Ellis
i n v e s t i g a t e d n u t r i e n t movements from
fertilization to
nearby
t h i s s t u d y were two-fold:
objectives
of
nutrients
(phosphorus
groundwater
of
and
nitrates)
Houghton
(1) t o were
&
septic
Lake.
The
determine
if
moving
with
the
t o Houghton Lake from s e p t i c t a n k s y s t e m s and ( 2 ) t o
d e t e r m i n e t h e e f f e c t s of lawn f e r t i l i z a t i o n on t h e
concentration
of phosphorus i n o v e r l a n d r u n o f f . I n d e t e r m i n i n g n u t r i e n t movement from s e p t i c t a n k s ,
wells table.
were
drilled
t o a d e p t h of 22-24 f e e t
below
the
38 t e s t water
N u t r i e n t c o n c e n t r a t i o n s i n a l l wells were t h e n m o n i t o r e d .
The
study
concluded
household
septic
eventually
tanks
reached
nutrients
with
that:
(1) phosphates
migrated through
Houghton
the
Lake,
groundwater
the
(2)
and
was
and
nitrates
from
groundwater the
traceable
and
movement for
of
distances
exceeding one hundred f e e t a t s e v e r a l s i t e s . The
f o r lawn f e r t i l i z a t i o n were d e r i v e d by u s e
data
q u e s t i o n n a i r e and t h r o u g h p e r s o n a l i n t e r v i e w s . it was a p p a r e n t t h a t a b o u t o n e - h a l f
It
over-fertilized.
a
From t h e s e d a t a ,
of t h e s i t e s s t u d i e d had been
recommended
was
of
that
no
phosphorus
f e r t i l i z e r be a p p l i e d t o lawns surrounding t h e l a k e without p r i o r s o i l t e s t i n g t o v e r i f y t h e need. I n r e s p o n s e t o a c c e l e r a t e d s h o r e l i n e development, Markey,
t h e Lyon,
G e r r i s h , and Beaver C r e e k Township B o a r d s c o n t r a c t e d t h e
P r o g r e s s i v e E n g i n e e r i n g Company t o i n i t i a t e a n e n g i n e e r i n g
study
regarding hazards a s s o c i a t e d with wastewater discharge within t h e community.
The
determine
firm
a F a c i l i t i e s Plan i n
developed
1976
t h e most c o s t - e f f e c t i v e method f o r u p g r a d i n g
wastewater
treatment
development
facilities.
In
conjunction
to
existing with
the
a s e r i e s o f s t u d i e s were c o n d u c t e d i n
of t h i s p l a n ,
t h e l a k e a r e a t o determine s o i l types, depths t o t h e water t a b l e , and
the
phosphorus
adsorption
F a c i l i t i e s Plan concluded t h a t :
capacity
Higgins
on-site (e.g.,
installation
degradation
soils.
some areas
of
and ( 2 ) u n l e s s
public
The
adjacent
Lake d i d n o t r e c e i v e a d e q u a t e sewage t r e a t m e n t
treatment systems,
implemented,
the
( 1 ) due p r i m a r i l y t o e i t h e r h i g h
w a t e r t a b l e s o r t h e d e n s i t y of development, to
of
sanitary
corrective sewer
from
measures
systems)
were
p u b l i c h e a l t h h a z a r d s would c o n t i n u e , and a g r a d u a l of
the
q u a l i t y of nearby s u r f a c e
and
groundwater
r e s o u r c e s c o u l d be e x p e c t e d . quality
The N a t i o n a l E u t r o p h i c a t i o n Survey r e l e a s e d a w a t e r analysis
of
Higgins
limnological
measurements
conclusions lake
with
inorganic
Lake
basins.
emphasizing The
( 1 ) H i g g i n s Lake was a n
mean l e v e l s of d i s s o l v e d and
nitrogen,
transparency,
1975),
EPA,
of t h e deep
were r e a c h e d : low
(U.S.
chlorophyll-a,
and
oligotrophic
total high
a
following
phosphorus, Secchi
disk
( 2 ) phosphorus l i m i t a t i o n t o a l g a l growth o c c u r r e d
i n September, whereas s l i g h t n i t r o g e n l i m i t a t i o n o c c u r r e d i n J u n e and November, and ( 3 ) s e p t i c t a n k s c o n t r i b u t e d r o u g h l y 28% of t h e total
phosphorus
load,
w i t h 72% coming
from
sources (e.g.,
runoff, precipitation).
although
p r e s e n t phosphorus l o a d i n g was
effort
the
other
non-point
The s t u d y c o n c l u d e d t h a t , quite
low,
s h o u l d be made t o r e d u c e a l l phosphorus i n p u t s t o
every ensure
continued high water q u a l i t y . Finally, nutrient
Dr.
budget
Kenneth model
Reckhow for
(1980,
predicting
1983) lake
developed
phosphorus
c o n c e n t r a t i o n s from known p h y s i c a l d a t a and used H i g g i n s Lake a n example f o r t h i s method. should
as
Reckhow p r e d i c t e d t h a t H i g g i n s Lake
have a low phosphorus c o n c e n t r a t i o n ,
l a k e a s being oligotrophic.
a
and c a t e g o r i z e d t h e
IX. PHYSICAL FEATURES OF THE LAKE AND ITS WATERSHED Lake i s l o c a t e d i n Crawford and Roscommon
Higgins (T24-25N,
Counties
R3-4W) i n t h e n o r t h c e n t r a l p o r t i o n of n o r t h e r n
lower
Michigan ( F i g . I ) , f i v e miles west o f t h e v i l l a g e Roscommon.
is a deep,
lake origin
c o l d w a t e r l a k e of P l e i s t o c e n e g l a c i a l i c e b l o c k
underlain
Eschmann,
1970). ice
melting
The
by
Mississippian
Period
bedrock
(Dorr
&
Lakes of t h i s n a t u r e a r e formed as a r e s u l t of
blocks l e f t behind i n a n a r e a scoured
out
by
the
g l a c i e r a s i t r e t r e a t e d (Goldman & Horne, 1 9 8 3 ) . P i g g i n s Lake h a s a maximum l e n g t h of 6 . 3 3 m i l e s , of
3.30 miles,
breadth
and a maximum d e p t h of
The l a k e ' s s u r f a c e area of 1 0 , 3 1 7 a c r e s r a n k s t e n t h i n
136.2 f t . size
a mean d e p t h of 4 4 . 3 f t ,
a
among
Michigan's
lakes
and
is
large
relative
to
its
watershed a r e a of 21,653 a c r e s (Table 1 ) . About o n e - t h i r d o f H i g g i n s Lake i s s h o a l (0-20 f t ) and a b o u t one-half
o f t h e l a k e h a s d e p t h s e x c e e d i n g 50 f t ( F i g . 2 ) .
3,
hypsographic
a
representation
of
or
depth-area
curve,
t h e r e l a t i o n s h i p between t h e
is
a
Figure graphic
lake's
surface 10 3 a r e a and i t s d e p t h . The volume o f H i g g i n s Lake i s 1 . 9 9 X 1 0 ft 8 3 (5.64 X 1 0 rn ) and t h e l a k e ' s volume development f a c t o r ( D ) i s v
Lakes w i t h D
0.97. sided
v a l u e s g r e a t e r t h a n 1 . 0 are t y p i c a l l y s t e e p
v and p o s s e s s l a r g e w a t e r volumes r e l a t i v e t o t h e i r
surface
Examples a r e B u r t Lake (D = 1 . 6 ) a n d B l a c k Lake ( D = 1 . 5 ) v v Lakes w i t h D v a l u e s l e s s ( T a b l e 2 ) (Gannon & Paddock, 1 9 7 4 ) . v t h a n 1 . 0 f r e q u e n t l y h a v e e x t e n s i v e s h o a l a r e a s , and l e s s w a t e r
area.
volume r e l a t i v e t o o t h e r l a k e s of similar s u r f a c e a r e a and d e p t h . a r e Crooked Lake (D = 0 . 5 ) and P i c k e r e l Lake (D = 0 . 5 ) . v v G e n e r a l l y , t h e g r e a t e r t h e D o f a l a k e , t h e more r e s i s t a n t i t i s
Examples
V
t o e u t r o p h i c a t i o n from i n c r e a s e d n u t r i e n t l o a d i n g . The
H i g g i n s Lake s h o r e l i n e measures 20.49 m i l e s ,
shoreline
development
factor
(D )
of
1.44.
and h a s a
The
shoreline
relative
potential
L
development for
f a c t o r p r o v i d e s a n i n d e x of t h e
i n p u t s t o t h e l a k e from p o i n t s a l o n g
the
shoreline.
Lakes
with high D
v a l u e s have e x t e n s i v e s h o r e l i n e s f o r t h e i r s i z e , and L o f t e n s u b j e c t t o r a p i d e u t r o p h i c a t i o n b e c a u s e of the
are
consequent
opportunity
development.
for
Examples
of
nutrient
inputs
from
riparian
D
high
va.lues a r e s e e n i n L C h a r l e v o i x (D = 3 . 1 , Crooked Lake (D = 3 . 0 ) and Walloon L L ( D =3.0) (Gannon & Paddock, 1 9 7 4 ) .
Lake Lake
T
L
Higgins
Lake h a s o n l y two major s u r f a c e i n p u t s ,
and
L i t t l e Creek.
the
Cut
River
volume p e r The central divide
The l a k e e m p t i e s i n t o Houghton Lake
and h a s a f l u s h i n g r a t e of 9.8% of
Creek through
the
lake's
year. watershed
highland between
Landscape
area
of H i g g i n s Lake
Lake
features
Michigan and Lake Huron
glacier.
topographically
situated
flat,
Most and
of
in
surface
drainage
basins.
and
probably
The h i l l s n e a r t h e n o r t h d e p o s i t s from t h e edge of
t h e Higgins
the
the
of t h e a r e a a r e intermorainic
shore a r e marginal moraines,
retreating
is
r e g i o n of t h e Lower P e n i n s u l a on
o r i g i n a t e d some 1 1 , 0 0 0 y e a r s ago. south
Big
Lake
watershed
r e p r e s e n t s a g l a c i a l outwash
and a
is
plain.
E l e v a t i o n s w i t h i n t h e w a t e r s h e d v a r y from 1154 t o 1300 f e e t above sea
l e v e l (Fig.
generally Cut
River,
4:
a f t e r U.S.G.S.,
s u r r o u n d e d by u p l a n d s . in
B a t t i n Marsh,
1963).
The s h o r e l i n e
is
Large w e t l a n d s e x i s t n e a r t h e
and i n p o r t i o n s of t h e
watershed
d r a i n e d by B i g and L i t t l e C r e e k s . by
the
marginal
m o r a i n e s and
Groundwater f l o w i s i n f l u e n c e d generally
follows
the
surface
c o n t o u r s ( F i g . 5 : a f t e r Mich. Water R e s o u r c e s Commission, 1 9 7 4 ) . The
soils
i n t h e H i g g i n s Lake a r e a a r e
till, a m i x t u r e of g r a v e l , s a n d , and c l a y s ,
generally
high.
Although
five
primarily
glacial
S o i l permeability is
s o i l series a r e found
in
the
w a t e r s h e d , t h r e e p r e d o m i n a t e and a r e d i s c u s s e d h e r e ( F i g . 6 : a f t e r
USDA, 1 9 2 4 , 1 9 2 7 ) .
The s o i l t y p e i m m e d i a t e l y a d j a c e n t t o much o f
s h o r e l i n e i s of t h e Grayling-Rubicon
the type
exhibit
a s l o p e o f 0-6%,
rapid
series.
soil
S o i l s of t h i s
permeability
(6-20
i n / h r ) and h i g h p h o s p h o r u s a d s o r p t i o n c a p a c i t y . A
The s l o p e a s s o c i a t e d w i t h t h i s s o i l t y p e i s 6-
Montcalm s e r i e s . 25%,
Grayling-
second major s o i l t y p e i n t h e watershed i s t h e
indicating
often
considerable
relief
and
high
erosion
T h i s series a l s o h a s h i g h p e r m e a b i l i t y (6-20 i n / h r ) ,
potential.
b u t lower phosphorus a d s o r p t i o n c a p a c i t y . The Carbondale-Roscommon series e x h i b i t s a s l o p e o f 0-2% and is
often
organic soils
found i n swamps and l o w l a n d s . and
have
have
a
high
moisture
The s o i l s
holding
are
highly
capacity.
The
m o d e r a t e l y h i g h p e r m e a b i l i t y (2-6 i n / h r ) and a
high
phosphorus a d s o r p t i o n c a p a c i t y . Coniferous watershed (Fig.
and
deciduous
f o r e s t s comprise
7 : a f t e r Michigan DNR, 1 9 7 0 ) .
which make up 4.4% of t h e t o t a l w a t e r s h e d , along t h e lakeshore. systems.
Agriculture
95.3%
of
the
Residential areas,
are chiefly clustered
A l l u n i t s a r e p r e s e n t l y s e r v i c e d by s e p t i c
a c c o u n t s f o r o n l y 0.20% of t h e
and c o n s i s t s c h i e f l y o f p a s t u r e l a n d .
watershed
V. LIMNOLOGY OF THE NORTH AND SOUTH BASINS METHODS P h y s i c a l , c h e m i c a l and b i o l o g i c a l measurements were t a k e n a t two d e e p w a t e r s t a t i o n s ,
termed t h e North and S o u t h b a s i n s
8 ) on March 3 and J u l y 1 9 , Temperature
and
(Fig.
1983.
d i s s o l v e d oxygen
were
profiles
obtained
a YSI Model 51B d i s s o l v e d oxygen p r o b e and t h e r m i s t o r a t 5
using
rn i n t e r v a l s d u r i n g t h e March s a m p l i n g and a t 1 m i n t e r v a l s d u r i n g
the
J u l y sampling.
P e r c e n t s a t u r a t i o n of d i s s o l v e d oxygen
d e t e r m i n e d by nomagraph. a standard Secchi disk.
was
L i g h t t r a n s p a r e n c y was d e t e r m i n e d w i t h L i g h t p e n e t r a t i o n was f u r t h e r q u a n t i f i e d
a LiCor s u b m a r i n e photometer f i t t e d w i t h Weston c e l l s
using
and
c o l o r f i l t e r s during t h e J u l y sampling. Water
s a m p l e s were o b t a i n e d w i t h a 3 l i t e r Kemmerer b o t t l e .
H a r d n e s s was d e t e r m i n e d by t i t r a t i o n (APHA, was
measured
on
an
Conductivity Bridge. 0
umhos/cm a t 25 Total
Industrial
1976).
Instruments
Conductivity
Model
RC-16B2
C o n d u c t i v i t y r e c o r d i n g s were c o r r e c t e d
.
alkalinity
was
measured by t i t r a t i o n w i t h
i n d i c a t o r s o l u t i o n of bromcresol-green
methyl-red
a
mixed
(APHA,
1975).
D e t e r m i n a t i o n s o f pH were made u s i n g a Beckman S e l e c t m e t e r . carbon
dioxide
alkalinity nitrogen, were
to
was
d e t e r m i n e d by nomagraph
measurements.
Ammonia,
from
the
nitrate/nitrite,
Free
pH
and total
o r t h o p h o s p h a t e , t o t a l p h o s p h o r u s , s i l i c a , and c h l o r i d e
determined
calorimetrically
on a T e c h n i c o n
Dual
Channel
A u t o a n a l y z e r (APHA, 1 9 7 6 ) . Plankton
s a m p l e s were o b t a i n e d d u r i n g t h e J u l y s a m p l i n g
by
tows w i t h a c o n i c a l 1 / 4 m plankton n e t w i t h
80
bottom-to-surface
urn
nylon
mesh.
Lugol's
iodine
samples
were
Phytoplankton and were
examined
preserved
in
111 f l u o r o m e t e r .
(Holm-Hansen, collect
preserved
qualitatively.
5% b u f f e r e d
1%
in
Zooplankton
formalin
for
later
C h l o r o p h y l l - a v a l u e s were d e t e r m i n e d w i t h a T u r n e r
enumeration. Model
samples were
An Ekman g r a b ( 1 5 cm X 1 5 cm) was used
1965).
bottom
Values were c o r r e c t e d f o r phaeopigments
samples,
which were t h e n d r i e d and
to
ignited
to
d e t e r m i n e % o r g a n i c m a t t e r u s i n g s t a n d a r d methods (APHA, 1 9 7 6 ) . RESULTS Light The
measurement
of
solar
radiation
is
of
i m p o r t a n c e t o t h e s t u d y of f r e s h w a t e r e c o s y s t e m s , energy
diagnostic value
Higgins
readings of
more
in
Lake h a s c l e a r ,
l i g h t penetration.
Readings while
its
of
quality.
depth
b e c a u s e of i t s
c o n t r i b u t i o n t o t h e l a k e w a t e r and t o p h o t o s y n t h e s i s ,
because
good
fundamental
of
12
interpreting
water
unstained water t h a t
allows
The North and South b a s i n s had
Secchi
m and 1 0 m
respectively
10-20 m a r e c h a r a c t e r i s t i c of productive
lake
and
lakes often
exhibit
(Fig.
9a,c).
oligotrophic
lakes,
considerably
less
transparency. The intensity
euphotic
is
respiration,
zone,
sufficiently is
usually
the
portion of t h e l a k e
high
that
where
photosynthesis
considered t o extend t o a depth
l i g h t i n t e n s i t y e q u a l s 1%of i n c i d e n t l i g h t .
light exceeds where
H i g g i n s Lake h a s a n
e x t e n s i v e e u p h o t i c zone e x t e n d i n g t o a p p r o x i m a t e l y 24 m. T o t a l l i g h t is a t t e n u a t e d exponentially i n t h e water (Fig.
9a,c).
column
Red l i g h t waves a r e a b s o r b e d r e a d i l y by t h e w a t e r
i t s e l f and r e v e a l l i t t l e a b o u t water q u a l i t y . deep
penetration
indicates and
of blue l i g h t i n both basins of
thus
consistent with t h e
Green l i g h t ,
Higgins
l i t t l e a l g a l biomass i n t h e water
relatively
is
The c o m p a r a t i v e l y
lake's
Lake
column,
oligotrophic
status.
n o t used i n p h o t o s y n t h e s i s , p e n e t r a t e s s t i l l d e e p e r
t h a n b l u e l i g h t , as e x p e c t e d ( F i g . 9 b , d ) . Temperature
As
and D i s s o l v e d
solar
Oxygen
r a d i a t i o n p a s s e s downward from t h e s u r f a c e
a
Wind d r i v e n m i x i n g
l a k e , much o f i t s e n e r g y i s a b s o r b e d a s h e a t . causes
the
result
i s a s i g m o i d c u r v e o f water t e m p e r a t u r e w i t h d e p t h
10c,d).
of
h e a t e d upper w a t e r s t o r e d i s t r i b u t e
downward.
The (Fig.
These c u r v e s show t h e r m a l s t r a t i f i c a t i o n , w i t h a zone o f
d e n s e , c o l d w a t e r ( t h e h y p o l i m n i o n ) b e n e a t h a zone o f less d e n s e , warmer the
water ( t h e e p i l i m n i o n ) .
is
hypolimnion
Separating the epilimnion
t h e thermocline,
a
zone
in
from
water
which
0
temperature
drops
than 1 C with each
more
meter
increase
in
depth. Both b a s i n s of H i g g i n s Lake p o s s e s s a n e x t e n s i v e h y p o l i m n i o n in
comparison
to
t h e epilimnion.
epilimnion e x t e n d s t o 8 m,
1 4 m.
The
extending
8-12 m.
South
In
the
North
basin,
the
and t h e t h e r m o c l i n e o c c u r s between 9-
b a s i n ' s epilimnion
is
slightly
shallower,
only t o 7 m,
w h i l e t h e t h e r m o c l i n e i s l o c a t e d between
During w i n t e r ,
a s i s t y p i c a l of l a k e s under ice c o v e r ,
both basins d i s p l a y a s l i g h t i n v e r s e t h e r n e l s t r a t i f i c a t i o n (Fig. 10a,b). There (1)
a r e two major s o u r c e s o f oxygen t o t h e w a t e r
a t m o s p h e r i c oxygen d i s s o l v e s s l o w l y i n t o water a t
column: the
lake
and ( 2 ) p h y t o p l a n k t o n c o n t r i b u t e oxygen as a by-product
surface, of
photosynthesis
which
may
i n t h e euphotic zcne.
be p a r t i c u l a r l y pronounced i n
generally
attributable
to
organismal
I n b o t h b a s i n s of H i g g i n s Lake, thermocline
the
"positive
hypolimnion,
respiration
are
and
the
(Fig.
maximum oxygen l e v e l s a r e
10c,d).
These
h e t e r o g r a d e " oxygen p r o f i l e s ,
photosynthesis the
the
oxygen,
of o r g a n i c matter which h a s s e t t l e d t o t h e bottom.
decomposition
in
Decreases i n
i n t h e thermocline,
hypolimnion.
curves
found
represent
and i n d i c a t e h i g h a l g a l
with g r e a t e r r e s p i r a t i o n
in
Summer oxygen v a l u e s were g e n e r a l l y l o w e r
in
t h e h y p o l i m n i o n o f t h e S o u t h b a s i n and d e c l i n e d t o 52% s a t u r a t i o n a t t h e sediment-water i n t e r f a c e .
The s o l u b i l i t y o f oxygen d e c r e a s e s as t e m p e r a t u r e i n c r e a s e s . than
Cold w a t e r c a n t h u s h o l d more g a s i n s o l u t i o n a t s a t u r a t i o n
warm
water,
oxygen
and b o t h b a s i n s a c c o r d i n g l y show g r e a t e r
levels
saturation during
during
approaches
winter
in
the
winter
than
in
dissolved
summer.
100% t h r o u g h o u t t h e e n t i r e
Percent
water
b o t h b a s i n s w i t h t h e e x c e p t i o n of
column
the
lower
r e a c h e s o f t h e S o u t h b a s i n , where i t d r o p s t o 67% ( F i g . 1 0 a , b ) . Hardness, Conductivity, Chloride_aA S i l i c a Hardness i n lakewater is defined a s t h e t o t a l of
concentration
c a l c i u m and magnesium i o n s e x p r e s s e d as mg Calcium
carbonate
(CaCO ) p e r l i t e r . The u s u a l c l a s s i f i c a t i o n of h a r d n e s s i s t h a t 3 o f Brown, S k o u g s t a d , and Fishman (1970): 0-60 = s o f t w a t e r , 61120 very
= moderately hard water,
hard
South llc,d).
water.
basin
121-180 = h a r d w a t e r ,
H i g g i n s Lake i s t h u s a h a r d w a t e r
being s l i g h t l y harder than t h e
Calcium
North
and > I 8 0 lake, basin
=
the (Fig.
c a r b o n a t e l e v e l s i n t h e North b a s i n a r e n e a r l y
uniform t h r o u g h o u t ,
is
profile
more
thermocline activity
irregular.
is
and
r a n g i n g from 120-124 mg/l.
attributed
A decrease to
the
in
increased
The South b a s i n hardness
at
the
photosynthetic
t h e p r e c i p i t a t i o n of c a l c i u m c a r b o n a t e
from
that
p o r t i o n of t h e w a t e r column. Calcium c a r b o n a t e i s a l s o p r e c i p i t a t e d i n t h e l a k e on r o c k s , sediments,
Marl p r o d u c t i o n i n c r e a s e s a s l a k e p r o d u c t i v i t y i n c r e a s e s ,
marl. and
p l a n t s u r f a c e s i n n e a r s h o r e a r e a s of t h e l a k e a s
and
noticeable
accumulations
of marl
along
portions
of H i g g i n s Lake (Appendix B ) p r o v i d e a n e a r l y
shoreline
of
the
warning
of n u t r i e n t l o a d i n g t o t h o s e a r e a s . s p e c i f i c c o n d u c t a n c e of l a k e w a t e r i s a measure of
The
a b i l i t y of a s o l u t i o n t o a l l o w e l e c t r i c a l f l o w , ~ L t h increasing
ionic content (especially
the
and i s i n c r e a s e d
calcium,
magnesium,
sodium, p o t a s s i u m , c a r b o n a t e and b i c a r b o n a t e , s u l f a t e , c h l o r i d e ) . Conductance i n t h e North and South b a s i n s of H i g g i n s Lake from 250-277 urnhos/cm and 253-298 umhos/cm, summer
and
from
winter (Fig. typical
of
11).
ranged
respectively, during
231-241 umhos/cm and 210-230
umhos/un
during
These r e l a t i v e l y h i g h c o n d u c t a n c e v a l u e s a r e
hardwater l a k e s ,
b u t i n c r e a s e s i n conductance
over
time i n a g i v e n l a k e can o f t e n s i g n a l c h a n g e s i n t r o p h i c s t a t e . C h l o r i d e ( C l ) i s t h e major h a l i d e s t o r e d i n most algal
cells,
Pollutional
but
i s u s u a l l y n o t t h e dominant a n i o n
sources
of
chlorides
can
g r e a t l y and i n c l u d e a t m o s p h e r i c
from
sewage,
chloride
and
winter
road
in
modify
concentrations domestic
freshwater
natural
inputs,
salting.
lakes.
seepage
Generally,
i s n o t c o n s i d e r e d h a r m f u l t o l i v i n g organisms i n a l a k e
4 until
reaches concentrations of
it
Chloride
levels
10
(Wetzel,
1983).
i n b o t h b a s i n s d u r i n g summer and w i n t e r
showed
l i t t l e v a r i a t i o n , r a n g i n g from 3.9-6.2 Silica dominated
silica
mg/l
mg/l.
(SiO ) i s a n e s s e n t i a l n u t r i e n t i n l a k e 2 by d i a t o m a l g a e , and a n i n v e r s e r e l a t i o n s h i p
and d i a t o m d e n s i t i e s i s a f r e q u e n t c o n s e q u e n c e
u p t a k e (Lund,
1964;
high
of
levels
Munawar & Munawar,
other
growth-stimulating
nitrogen
and
phosphorus
sewage),
s i l i c a l o a d i n g i s minor.
and . p h o s p h o r u s c a n depletion
of
conditions
i n water
thus
cause
from
diatoms
between of
nutrients
human
algal
Compared t o t h e such
as
(e.g.,
sources
Excessive loading of nitrogen rapid
algal
growth
available s i l i c a t o limiting levels.
and blue-green
green
1975).
systems
a r e frequently replaced
by
and
the
Under
less
such
desirable
a l g a e which d o n o t r e q u i r e s i l i c a ( S c h e l s k e
& Stoermer, 1971).
During w i n t e r , s i l i c a i n t h e North b a s i n r a n g e d from 7.8-8.9 w h i l e t h e S o u t h b a s i n had a s l i g h t l y e l e v a t e d r a n g e o f 8.3-
mg/l,
9.9 mg/l ( F i g .
lla,b).
Both b a s i n s d i s p l a y g r a d u a l i n c r e a s e s i n
s i l i c a l e v e l s n e a r t h e b o t t o m , l a r g e l y b e c a u s e of t h e r e s u p p l y of
silica
to
t h e h y p o l i m n i o n from t h e
sediments.
Summer
silica
l e v e l s i n b o t h b a s i n s a r e s l i g h t l y r e d u c e d below w i n t e r v a l u e s i n both basins, levels basin
are and
oxygen
presumably by a l g a l u p t a k e
(Fig.
llc, d)
.
p a r t i c u l a r l y d e p r e s s e d a t 8 m and 1 2 m i n t h e a t 8 m i n t h e South basin
l e v e l s a t those depths,
and,
like
the
Silica North
increased
i n d i c a t e higher diatom d e n s i t i e s
a t t h e thermocline. Carbon d i o x i d e , pH and A l k a l i n i t y
The
pH o f most n a t u r a l waters f a l l s i n t h e r a n g e of 4.0
to
9.0.
Deviation
presence
from
n e u t r a l pH of 7.0
a
of a c i d s o r b a s e s ,
usually
have
the
Hardwater
lake.
b a s i c pH v a l u e s 0 7 ) owing
carbonate/bicarbonate content. pH
by
e i t h e r produced by organisms w i t h i n
t h e l a k e o r by t h e e n t r y of c h e m i c a l s i n t o t h e lakes
caused
is
to
their
high
Within a g i v e n l a k e , i n c r e a s e s i n
often r e f l e c t increased photosynthesis,
while declines often
accompany i n c r e a s e d r e s p i r a t i o n . Carbon
dioxide
on b i c a r b o n a t e s .
dioxide
living
It i s a l s o added t o t h e w a t e r by t h e a c t i o n of added
organisms. acids
i s a n end p r o d u c t of r e s p i r a t i o n by
less
is
atmospheric
than
pressure
supersaturated
with
The s a t u r a t i o n c o n c e n t r a t i o n of
1.1 mg/l (Lind,
at
1979).
normal
carbon
temperatures
Waters
are
and
frequently
c a r b o n d i o x i d e when r e s p i r a t i o n
rates
are
high. The a l k a l i n i t y of w a t e r r e p r e s e n t s t h e q u a n t i t y and k i n d s of compounds p r e s e n t t h a t c o l l e c t i v e l y i n c r e a s e t h e pH. of
i o n s c o n t r i b u t e most t o t o t a l a l k a l i n i t y :
-
bicarbonate
(HCO
bicarbonates
are
-
),
and
hydroxide
Three kinds
-
carbonate
(CO ), 3 C a r b o n a t e s and
(OH ).
3 common t o most w a t e r s while
contributions
by
h y r o x i d e s a r e u s u a l l y minimal. The
vertical
alkalinity
in
the
distribution
water
column
b i o l o g i c a l l y mediated r e a c t i o n s .
of is
carbon
dioxide,
strongly
pH
and
influenced
by
Most c o n s p i c u o u s i s t h e u p t a k e
t h r o u g h p h o t o s y n t h e s i s i n t h e e u p h o t i c z o n e , which r e d u c e s
of CO L
b o t h CO
and a l k a l i n i t y w h i l e i n c r e a s i n g pH.
In
contrast,
the
. l
L
release
of
CO
during r e s p i r a t i o n i n deeper water decreases 2 and i n c r e a s e s a l k a l i n i t y .
pH
, pH and a l k a l i n i t y v a l u e s i n both 2 u n i f o r m t h r o u g h o u t t h e water column ( F i g . 1 2 a , b ) .
During basins
the winter,
are
CO
Values
o f CO
a r e low i n b o t h b a s i n s , w i t h s l i g h t i n c r e a s e s a t 2 t h e bottom c a u s e d by r e s p i r a t i o n i n o r n e a r t h e s e d i m e n t s . The pH
b o t h b a s i n s r a n g e d from 8.7-8.8.
in
Alkalinity values
for
b o t h b a s i n s a r e a l s o similar, r a n g i n g from 100-118 mg/l. D u r i n g summer,
CO
was e l e v a t e d i n t h e h y p o l i m n i o n , a s was 2 110-118 m g / l ) , w h i l e pH v a l u e s d e c l i n e d ( F i g .
a l k a l i n i t y (range: 12c,d). to
Further i n c r e a s e s i n l a k e productivity can be
expected
and t h e d e c l i n e i n pH
a c c e n t u a t e b o t h t h e i n c r e a s e i n CO
in
2 the
a s s o c i a t e d w i t h t h e i n c r e a s e d d e c o m p o s i t i o n of
hypolimnion,
o r g a n i c matter u t i l i z e d i n r e s p i r a t i o n . Nitrogen
The major f o r m s o f n i t r o g e n u s u a l l y measured i n f r e s h water include
dissolved
inorganic
and p a r t i c u l a t e
nutrients
ammonia
and
organic
nitrogen,
nitrate.
and
The
the
combined
measurement o f b o t h i n o r g a n i c and o r g a n i c n i t r o g e n i s r e f e r r e d t o
as
total
dissolved nitrogen
N i t r o g e n i s a l s o a b u n d a n t i n w a t e r as
nitrogen. gas
,
N
2 fixation
b u t t h i s form c a n o n l y b e a small number of
by
utilized
blue-green
the
through
algae
and
bacteria.
(NO ), although usually present in low 3 c o n c e n t r a t i o n s i n n a t u r a l waters, i s o f t e n t h e most a b u n d a n t Nitrate
inorganic
form
of t h e element.
t o be similar i n most l a k e s .
tends exceeds
combined
of
nitrate
inflow
usually
nitrogen
release
In winter,
and i s s u p p l e m e n t e d by
a l g a l uptake,
from t h e s e d i m e n t s . than
The s e a s o n a l c y c l e
I n summer, n i t r a t e u p t a k e i s u s u a l l y f a s t e r
inputs,
and c o n c e n t r a t i o n s i n t h e
water
column
therefore decline.
M a j o r s o u r c e s of n i t r a t e f o r l a k e s a r e r i v e r
i n f l o w s , d i r e c t p r e c i p i t a t i o n and groundwater.
(NH
) i s a l s o t a k e n up a s a nutrient by 3 and may a l s o be c o n v e r t e d t o n i t r a t e by b a c t e r i a l
Ammonia phytoplankton
It p e r s i s t s , however, as a major e x c r e t o r y p r o d u c t o f
oxidation.
a q u a t i c organisms and t h e end p r o d u c t of t h e breakdown of o r g a n i c nitrogen.
The amount of ammonia p r e s e n t
t h u s depends l a r g e l y on
t h e r e l a t i v e r a t e s of t h e s e p r o c e s s e s . Seasonal patterns
cycles
depending
of on
ammonia the
usually
trophic
follow
state
of
one
the
of
two
lake.
In
o l i g o t r o p h i c l a k e s , ammonia p e r s i s t s a t low l e v e l s t h r o u g h o u t t h e year,
v a r i e s l i t t l e with depth.
and
contrast,
eutrophic
lakes,
by
summer v a l u e s of ammonia a r e u s u a l l y much lower i n t h e
epilimnion
t h a n i n t h e hypolimnion owing t o t h e d e c o m p o s i t i o n of
o r g a n i c m a t t e r s e t t l i n g t o t h e bottom, concentrations
may
major
of
sources
precipitation, inputs
In
often
and d u r i n g w i n t e r ammonia
i n c r e a s e t o l e v e l s exceeding ammonia
atmospheric contain
to
lakes
are
1 mg/l.
streams,
inflowing
d u s t and n i t r o g e n f i x a t i o n .
much h i g h e r l e v e l s
of
The
ammonia
Sewage than
of
nitrate. Nitrate ug/l winter
for
concentrations
the
North and South b a s i n s 13a,b),
(Fig.
13c,d).
expected (Fig. 11-21
ug/l
respectively noted
near
ranged from 36-95 u g / l
and
12-36
(Fig.
and
respectively
declined s l i g h t l y during
and
23-393
during summer
the as
Ammonia l e v e l s d u r i n g w i n t e r r a n g e d from ug/l for the
13a,b).
A
North
and
South
basins,
s l i g h t i n c r e a s e i n ammonia
t h e bottom i n both b a s i n s ,
produced l a r g e l y by
was the
d e c o m p o s i t i o n of o r g a n i c n i t r o g e n . v a l u e s f o r ammonia were 6-51 u g / l and 18-66 u g / l f o r
Summer the
North
and S o u t h b a s i n s ( F i g .
13c,d),
and
show
a
slight
were
Hypolimnetic v a l u e s
increase
over w i n t e r c o n c e n t r a t i o n s .
elevated
i n comparison t o t h o s e of t h e e p i l i m n i o n i n b o t h b a s i n s
( F i g . 13c, d )
.
T o t a l n i t r o g e n d u r i n g w i n t e r a v e r a g e d 1 6 3 u g / l and 214 far
the
North and S o u t h b a s i n s ( F i g .
13a,b).
ug/l
The North
basin
p r o f i l e shows a g r a d u a l i n c r e a s e toward t h e bottom s e d i m e n t s , and an
even
seen
sharper increase i n t o t a l nitrogen near the
i n t h e South basin.
varied
from
85-245
respectively (Fig. relatively
constant
near t h e sediments.
ug/l
13c,d).
Total nitrogen values for
the
North
and
bottom
during South
summer basins,
were
Concentrations i n both basins
i n t h e epilimnion,
with gradual
is
increases
Fluctuations i n t o t a l nitrogen coincided, a s
e x p e c t e d , w i t h f l u c t u a t i o n s i n n i t r a t e and ammonia l e v e l s . Phosphorus P h o s p h o r u s i s a common l i m i t i n g n u t r i e n t i n many l a k e s owing to
its
waters
f r e q u e n t geochemical s c a r c i t y . present primarily a s
is
inorganic these,
Phosphorus
organically
p o l y p h o s p h a t e s and a s i n o r g a n i c the
form
most
usable
as
a
in
bound
natural
phosphorus,
orthophosphates. nutrient
is
Of
inorganic
o r t h o p h o s p h a t e (PO ) , which o f t e n c o n s t i t u t e s a s m a l l f r a c t i o n of 4 t o t a l phosphorus. The v e r t i c a l d i s t r i b u t i o n of phosphorus, nitrogen,
much l i k e t h a t
v a r i e s according t o lake trophic s t a t e .
lakes
usually
depth.
More
Oligotrophic
show l i t t l e v a r i a t i o n i n phosphorus c o n t e n t productive lakes,
i n contrast,
of
accumulate
with large
amounts
of
phosphorus
in
the
hypolimnion
during
summer
stratification.
is
Phosphorus
added
p r e c i p i t a t i o n , overland regeneration.
Most
to
a
runoff, natural
lake
primarily
groundwater, hydrological
through sedbent
and
inputs
have
low
R e s i d e n t i a l development s u r r o u n d i n g a k k e ,
phosphorus c o n t e n t .
however, u s u a l l y r e s u l t s i n i n c r e a s e s i n phosphorus d i s c h a r g e d t o l a k e s i n approximately d i r e c t proportion t o population (Weibel,
1969).
fertilization,
Inputs storm
of
sewer
phosphorus
drainage,
and
from
densities
heavy
sewage
lawn all
can
s i g n i f i c a n t l y e l e v a t e o v e r a l l phosphorus a v a i l a b i l i t y . Winter
o r t h o p h o s p h a t e v a l u e s i n b o t h b a s i n s of H i g g i n s Lake w i t h mean v a l u e s of 5.3 and 6.2 u g / l f o r t h e North
a r e v e r y low,
and S o u t h b a s i n s ,
14a,b).
respectively (Fig.
v a r i a t i o n with depth i n t h e South b a s i n , increase during
at winter
was s i m i l a r l y low,
while showing a
basin.
t h e bottom of t h e North
There w a s l i t t l e
Total
slight
phosphorus
w i t h mean v a l u e s o f 1 8 . 7
and
1 5 . 2 u g / l f o r t h e North and South b a s i n s , r e s p e c t i v e l y . Summer o r t h o p h o s p h a t e v a l u e s f o r b o t h b a s i n s show more two-fold i n c r e a s e o v e r w i n t e r v a l u e s a t all d e p t h s ( F i g . probably population
owing
in
during
part
to
summer.
the In
greatly the
North
increased basin
than
14c,d), riparian
the
mean
o r t h o p h o s p h a t e c o n c e n t r a t i o n i n c r e a s e d from 5.2 u g / l i n w i n t e r t o a
summer v a l u e of 11.3 u g h .
hypolimnion were a p p a r e n t . the
Again,
s l i g h t increases
in
the
The summer o r t h o p h o s p h a t e p r o f i l e f o r
S o u t h b a s i n showed pronounced i n c r e a s e s i n t h e
hypolimnion.
T o t a l phosphorus v a l u e s d u r i n g summer i n t h e South b a s i n l i k e w i s e
show a t l e a s t a two-fold i n c r e a s e o v e r w i n t e r c o n c e n t r a t i o n s , and
t h e sediment-water i n t e r f a c e . and
at
s u b s t a n t i a l l y w i t h d e p t h t o a maximum of 1 8 3 . 1 u g / l
increase
total
phosphorus
in
I n c r e a s e s i n both
t h e hypolimnion c a n
orthophosphate be
expected
if
f u r t h e r n u t r i e n t e n r i c h m e n t of t h e l a k e o c c u r s . Phytoplankton They
P h y t o p l a n k t o n a r e a l g a e suspended i n t h e w a t e r column.
a r e t h e most i m p o r t a n t primary p r o d u c e r s i n most l a k e s , and t h e i r growth
provides
invertebrates
the
and
principal
f i s h (Fig.
basis
15).
for
the
growth
of
Phytoplankton s p e c i e s
are
found v a r y i n g q u a n t i t i e s a c c o r d i n g t o s e a s o n and l a k e t y p e .
The
dominant a l g a l g r o u p s i n l a k e s of n o r t h e r n Michigan a r e t h e g r e e n algae
(Chlorophyta),
blue-green
algae
( E a c i l l a r i o p h y t a ) , and golden-brown Several
(Cyanophyta),
diatoms
a l g a e (Chrysophyta).
k i n d s of e n v i r o n m e n t a l f a c t o r s i n t e r a c t t o r e g u l a t e
s p a t i a l and t e m p o r a l growth.
A s w e l l a s t e m p e r a t u r e and l i g h t , a
number o f o r g a n i c and i n o r g a n i c n u t r i e n t s p l a y c r i t i c a l r o l e s the
success
of a l g a l p o p u l a t i o n s . increased,
rates
of
A s t h e supply algal
in
of
limiting
production
likewise
nutrients
is
increase.
Increased phytoplankton d e n s i t i e s p r o g r e s s i v e l y reduce
l i g h t p e n e t r a t i o n and t h e d e p t h of t h e e u p h o t i c zone. eventually
reached
at
which
self-shading
A p o i n t is
inhibits
i n c r e a s e s i n p r o d u c t i v i t y i n very e u t r o p h i c l a k e s ,
further
r e g a r d l e s s of
n u t r i e n t supply (Wetzel, 1983).
A observed
distinct
p e r i o d i c i t y i n t h e biomass o f p h y t o p l a n k t o n
i n temperate l a k e s .
Growth i s g r e a t l y reduced
w i n t e r by low l i g h t and c o l d t e m p e r a t u r e s .
is
during
P h y t o p l a n k t o n numbers
n o r m a l l y peak d u r i n g s p r i n g , s u p p o r t e d by i n c r e a s i n g t e m p e r a t u r e s
and
light,
nutrients
and by t h e mixing upward i n t o t h e e u p h o t i c from
phytoplankton
the
bottom
biomass
waters.
The
spring
zone
of
maximum
of
i s u s u a l l y f o l l o w e d by a p e r i o d of
lower
biomass d u r i n g summer, a s n u t r i e n t s u p p l i e s a r e d e p l e t e d by a l g a l uptake,
algal
consumption by z o o p l a n k t o n
increases,
and
many
a l g a e s i n k t o t h e bottom. In consists
oligotrophic lakes, of
t h e p h y t o p l a n k t o n community u s u a l l y
cryptomonads and s m a l l g r e e n a l g a e
during
winter,
p r i m a r i l y of d i a t o m s i n s p r i n g , and of g r e e n a l g a e d u r i n g summer. Accumulations of a l g a e a t t h e t h e r m o c l i n e a r e t y p i c a l i n
summer,
owing t o t h e g r e a t e r d e n s i t y (and t h u s buoyancy) of c o l d e r w a t e r . Chlorophyll-a
i s t h e primary pigment u s e d by
The measurement of c h l o r o p h y l l - a t h u s s e r v e s
f o r photosynthesis. as
a c o n v e n i e n t i n d e x of t o t a l a l g a l biomass,
of
lake trophic status.
Survey
(1975)
phytoplankton
The U.S.
and by e x t e n s i o n ,
EPA National
has c l a s s i f i e d l a k e s according t o
Eutrophication the
following
summer c h l o r o p h y l l - a c o n c e n t r a t i o n s : 12 u g / l = e u t r o p h i c . Chlorophyll-a low, in
values
f o r b o t h b a s i n s of H i g g i n s
are
u g / l w i t h a mean of 2.3 u g / l a d 2.4
r a n g i n g from 0.90-3.78
t h e North and South b a s i n s ( F i g .
i n d i c a t i v e of o l i g o t r o p h i c c o n d i t i o n s . viable
Lake
16c,f).
These v a l u e s
are
The c o n t i n u e d p r e s e n c e o f
a l g a e a t c o n s i d e r a b l e d e p t h i s a consequence of t h e
good
l i g h t p e n e t r a t i o n i n H i g g i n s Lake, and i s a g a i n c h a r a c t e r i s t i c of oligotrophic high uptake
at
waters.
Although a l g a l biomass i s
t h e thermocline,
not
r a t e s of p h o t o s y n t h e s i s and
a p p e a r t o be maximal,
accounting f o r t h e high
unusually nutrient dissolved
oxygen
and
low n i t r a t e ,
phosphate
and
silica
concentrations
between 8-12 m. Also d e p i c t e d i n F i g u r e 1 6 a r e phaeopigment v a l u e s f o r basins.
Phaeopigments
chlorophyll-a,
are
produced
by t h e
both
decomposition
of
and t h u s s e r v e a s a measure of t h e h e a l t h of
phytoplankton
community.
High
phaeopigment l e v e l s
the
are
often
c h a r a c t e r i s t i c of t h e d e c l i n e of t h e s p r i n g maximum, f o r example, or
may
indicate
unusually
heavy
grazing
by
zooplankton.
Phaeopigment l e v e l s i n H i g g i n s Lake a r e low i n most of t h e
water
column, p r o v i d i n g e v i d e n c e of a r e l a t i v e l y s t a b l e a l g a l community i n t h e d a y s p r i o r t o sampling. expected,
near
t h e bottom,
Phaeopigment v a l u e s i n c r e a s e , a s owing t o t h e d e c o m p o s i t i o n of a l g a e
which have sunk o u t of t h e w a t e r column d u r i n g p r e c e d i n g weeks. Zooplankton Zooplankton
are
microscopic
a l g a e o r smaller z o o p l a n k t o n ,
are
mm
in
individuals
on
and which i n t u r n a r e u t i l i z e d
as
protozoans,
( c l a d o c e r a n s and copepods). 1.0
feed
The c h i e f components of z o o p l a n k t o n
f o o d by most f i s h ( F i g . 1 5 ) . communities
length.
i n v e r t e b r a t e s which
rotifers,
and
crustaceans
Most zooplankton a r e a b o u t 0 . 5 mm t o
Zooplankton
abundances
range
from
l i t e r i n v e r y o l i g o t r o p h i c waters t o more
per
(UR 5 - 71) (6w- 71)
7-83 (20cm/50cm) w/l)
Table 6.
Site
(cont.)
Table 7.
Site
Periphyton growth on artificial substrates as represented by chlorophyll-a and phaeopigment values for the period of May-June,l983 in Higgins Lake, Michigan at 18 sites. Natural Substr2te
(mdm 1
Artificial Substrats-Pot (mdm 1 Chl-a Phaeo
Artificial Substrat?-Rock (ma/m Chl-a Phaeo
>
Chl-a
Phaeo
1
0.10
0.06
0.29
0.00
--
2
12.86
3.60
0.18
0.00
3
14.55
1.32
0.62
0.00
---
4
23.65
--
--
3.15
5
0.00
3.52
0.26
6
4.34 38-34
3.40
0.58
0.05
---
---
7
46.41
--
--
4.57
0.55
8
44.15
5 77 27 77
9.96
1.81
75
8.11
9
6.37
0.00
1.12
0.00
4.46
0.32
10
4.11
1.36
0.25
0.02
--
--
11
5.02
8.91
--
3 67
0.00
12
13.43
7.91
2.41
0.00
13
8.41
1.41
----
1.56
0.16
14
15-87
2.34
1.12
0.03
--
--
15
25.21
12.84
--
5.05
0.00
16
6.40
0.15
5.12
0.00
17
0 39
0.19
---
----
2.25
0.00
18
26.03
5.21
0.79
0.00
2.12
0.00
'
18
77
---
30
---
-'
0.38
Table 8.
Site
Periphyton growth on artificial substrates as represented by ash-free dry weight values for the of May-June, 1983 in Higgins M e , Michigan at 18 sites.
Artificial
Artificial
Table 9.
Carparison of nutrient conctmtratiaw very close to shore (20 an depth) and further f m shore (50 an depth) on July 22, 1983 with cancentrations in the euphotic zone of the North and South basins on July 19, 1983: x(S.E.1
-
20 an: 50 an:
N. & S, Basins
Table 10. Mean n u t r i e n t c o n c e n t r a t i o n s , based upon a l l 3 sampling d a t e s , f o r 18 nearshore s i t e s , Higgins Lake, Michigan. Site
Figure 1.
A n outline of the State of lichigan indicating
the location of Higgins Lake, Michigan.
SCALE
Figure 2.
Bathymetric map o f Higgins Lake, ?v?ichigan.
\ -ins
Lake
WETLANDS 1.0 mi
0 SCALE
Figure 4.
Topographic map of the Higgins Lake, Michigan watershed. 74
Figure
5.
Drainage patterns within the Higgins Lake, Michigan watershed. The arrows indicate the direction.ofnet groundwater flow.
Grayling-Montcalm Grayling -Rubicon
Scale
Montcalm- Graycalm
Figure
6.
Soil associations of t h e Higgins Lake, Michigan watershed.
76
LAND US€ TYPES
E l
Figure
7.
-w#dl
Agricultural
Scale
Land use types within the Higgins Lake, Michigan watershed.
Figure 8.
A
-
North Hole Sampling Site
B
-
South Hole Sampling Site
An outline of Higgins Lake, Michigan indicating the location of the deepwater sampling stations utilized for this study.
NORTH BASIN Figure A
200
400
600
800
Figure 4 81-
16;.
20-
Figure
24-
--
Light profiles for Higgins Lake, Michigan. Figures A & C depict Secchi depth and light attenuation, Figures B & D depict light penetration. - 79
SOUTH BASIN Figure
Figure
Figure 9.
Light p r o f i l e s f o r Higgins W e , Michigan. 80
NORTH BASIN -WINTER I
.
,
40
.
,
Figure A
.
.
.
.
4
80 . 8
.
,
$
l2.0 m
v
12
"c u
-nluE
SOUTH BASIN-WINTER l
Figure B
Figure 10.
.
.
.
.
.
.
.
.
.
.
.
f
-
rramsuTIRI
00
mpr~
'c n
Temperature, dissolved oxygen, and per cent saturation depth profiles for Higgins Lake, Michigan.
NORTH BASIN -SUMMER I
4,
.
.
.
Figure C
8.
,
12.
16.
.
4
l
'
"
"
20 .
,
24 .
,
22
8
"
'
"
"
"
80
40
28 Z wpwnrwre 'c . d
.
'
SCOWL-
-
~
120
160nsm~morr-
SOUTH BASIN-SUMMER t
4
.
.
.
Figure D
8 .
,
12 ,
.
4
~
"
'
"
40
Figure 10.
S .
.
20 .
.
8
"
"
"
"
80
24 ,
I2
"
,
28 .
.
g - ' c u I
16 w
WL
u
~
120
%snn.~~*r
-
~em~eratiredissolved oxy en, and oer cent saturation depth prof~lesFor Higgins Lake, Michigan, 82
NORTH BASIN-WINTER Figure
SOUTH BASIN-WINTER
4
F i g u r e 11.
8
U
-
I a-m g / i l 6 s q w ~ n
H a r e s s , ~ o n d ut i v i t s i l i c a an@ c h l o r i d e dep% p r o f l l l e s Eor ~ i & i n s ~ a k 6 ,Mlchlgan.
NORTH BASIN-SUMMER b
.
.
80
.
.
Figure C
L60 .
.
I
.
.
I
.
I
80
40
a40 I .
~clmaimm~rmrem m .
i
160-~==+-
120
SOUTH BASIN-SUMMER t
160
%O .
.
m
a
Figure D
.
.
.
"
'
"
"
Figure 11.
"
'
4
"
"
.
.
.
.
i
8
4 I
.
80
40
i
.
I
CL-
WL
a40 l20 .
320onarerrvrrr-m -
4
l
a
,
-
m
~
~
-
-
8 l2 1 6 % ~ n ~ Hardness, conductivity, silica, and chloride depth profiles for Higgins Lake, Michigan.
NORTH BASIN -WINTER 40 b
Figure A
.
.
.
.
.
4
.
.
.
80 .
.
.
.
l2a .
.
K
8
160 .
3
-
W W ? . V L U
* -a+ m-
-
*WL
SOUTH BASIN-WINTER Figure
Figure 12.
q d free carbon.dioxide depth pH, alkalini profiles for lgglns Lake, Mlchlgan.
7ft
NORTH BASIN-SUMMER Figure C
SOUTH
BASIN -SUMMER
Figure D
Figure 12,
pH, glkal'nit a d f ee ca bo dioxide depth profiles *or %iggms h e , filcRigan.
WRTH BASIN-WINTER Figure
-
SOUTH BASIN WINTER Figure
ill!
Figure 13.
n i t r a t e , and t o t a l n i t r o g e n depth p r o f l l e s f o r Hlggins Lake, Michigan.
Armnogia,
NOfTH BASIN -SUMMER Figure
-
SOUTH BASIN SUMMER Figure
Figure 13.
Ammonia, nitrate, and total nitrogen depth profiles for Hlggins Lake, Michigan. 88
NORTH BASIN- WINTER
Figure
SOUTH BASIN -WINTER Figure
Figure 14.
Orthophosphate and total phosphorus depth profiles for Hlgglns Lake, Michigan,
NORTH BASIN- SUMMER Figure C
-
SOUTH BASIN SUMMER Figure D
Figure 14.
Orthophosphate and total phosphorus depth profiles for Hlgglns Lake, Michigan.
trout, perches, smaU mouth bass, large mouth bass, and pike.)
A
smnll Fish
(ie.
larval and pre juvenile stages of species; small minnows, ex.
(ie.
microscopic animals such a8 Daphnin and
(ie.
--
snails &d clams insect larvae wonns and some crustaceans) small
organic matter
Phytoplankton (algae) & Aquatic V a s c u l a r Plants
I
I
PRv
%
PRIMARY PROWCrKR$
Figure 15.
q
I
I
Generalized food web and energy-pyramid for Higgins Lake, Michigan depicting phytoplankton as primary producers for the system.
NORTH BASIN
Figure
Figure
--.
-*-
Figure 16,
4
-
Zooplankton and phytoplankton depth profiles for Higgins Lake, Michigan.
SOUTH BASIN Figure D
mdau
Dahl).
Boak
0,
Figure
--a
-*-
Figure 16.
6
-
Zooplankton and phytoplankton depth profiles for Higgins Lake, ~ichigan.
Figure
Figure B
Figure C
Figure 17.
1983
Ternperawe dissolved oxy en, wd er cent saturatlon depth profzles For ~ l ~ ~ iLake R s since 1974.
Figure A
'.+'a-
Figure
wem e -
Figure C
F i g u r e 18.
1983
Ammonia, n i t a t e , f o r H l g g i n s f a k e s%$et?@@. 95
nitrogen depth p r o f i l e s
Figure
Figure
Figure
Figure 19.
Orthophosphate and total phosphorus depth profiles for Higgins Lake, Michigan since 1974. 96
Figure 20.
Predicted trophic status of Higgins Lake and several other Northern Michigan lakes based upon Carlson's index.
Growth Isoclines (Essential Resources)
Figure 21.
Growth isoclines associated with the nutrients nitrogen and phosphorus indicating optimal algal growth at a ratio of 15:l.
NORTH BASIN Figure
Figure B
SOUTH BASIN Figure
Figure
Figure 22.
24
cimm
Total nitrogen to total phosphorus ratio and light penetration depth profiles for Higgins Lake, Michigan. 99
1-St. Louis 2-Minto Pointe 3-Maple 4-Lone Pine 5-Battin Marsh 6-west 7-Newman 8-Big Creek 9-Little Creek
Figure 23.
11-conference Center Crk. 12-Cedar 13-Lansing 14-Cottage Grove Assoc. 15-Henry 16-Hitchcock 17-Gallagher 18-2nd
An outline of Higgins W e , Michigan indicating the location of the 18 nearshore sampling sites utilized for the study.
INSPECTION MANHOLE
Figure 24.
An example of a functioning septic system. 101
A- Rubber Stopper B - Clay flower Pot C - Plastic Petri Dish D ~ubberStopper E -Wooden Dowel
-
Figure 25.
Artificial substrates used at 18 sites, i n c l u d ing road ends, residential locations, and i n fluent streams.
MAY
Figure 26.
JUNE
J ULY
Changes-in nearshore mean phosphate and nitrate concentrations during the Summer of 1983 in Higgins Lake, Michigan.
-
0 LAKE WATER Figure 27.
Control grid pot placement utilized for the nearshore nutrient limitation study at the Cottage Grove Association location.
Fig. 28.
Chlorophyll-a and ash-free dry weight of periphyton accumulations on Flower Pot Substrates, Cottage Grove Site.
105
Figure 2 9 .
Past and projected population trends for the Higgins W e , Michigan watershed, 106
APPENDIX A Surmary of l?e&hcw's
for ~ i - s
(1980) Phosphorus Rudqet -1
Lake.
1) The model predicts ambient concentrations of phosphorus (P) as ug/l in the lake, based upon the mathematical formulation: where qs is water loading (f/yr) L is P-loading (gm/m /yr) Vs is P settling velocity - 11.6 m/yr
-
2) In order to calculate L, it is necessary to obtain estimates of areal dimensions of Forested, Agricultural, and Urban land within the watershed, and multiply these values by appropriate P-loading coefficients, For Higgins Lake these were: Land Use Type
Agriculture Forest Urban
Area(ha)
"Most Likely" Export Coeff, (ka/ha/vr)
Total Yearly
8.0 (0.01%)
20
.40
8354
.20
1671.2 (42.49%)
389
90
350.7 (8.89%)
Phosphorus inputs via precipitation were estimated from rainfall valoume and concentration. Inputs from septic tanks assumed a P-loading value of 0.6 kg/capita. An estimated 1447 residents in houses along the shoreline, expressed on a yearly basis, and a soil retention capacity of 25% were used in the computations: Source
Precipitation
Input Calculations
Total Yearly
( .30 kg/ha/yr) (4175 ha)
1253 (32.86%)
septic Tanks
TOTAL 3933 (100.00%)
3) The total phosphorus loading estimate, when divided by lake surface asea, resulted in an areal loading estimate (L) of 0.97 gm/m /yr. This in turn allowed a prediction of 7.8 ug/l PO4-P ambient concentration in the water column.
APPENDIX B A SHORELINE SURVEY OF HIGGINS LAKE, MICHIGAN The shoreline of Higgins Lake, Michigan was divided into a series of one mile segments and surveyed for the following: 1) Densities and locations of residences along the,shoreline
2) Type of substrate(s)
3) Presence and relative abundance of Clado~hora 4) Presence of marl The maps in this appendix may be interpreted using the following information: 1) Densities and locations of residences along the shoreline are denoted as dots along the shoreline in the appendix. 2) Substrate types are denoted by the following symbols: Sand Gravel (0-5 cm)
m..
Cobble (5-20 cm)
***
Rocks (greater than 20 cm) A A A
3) Presence and abundance of Cladophora is denoted by the following symbols:
I (slight growth on few rocks) A A A I1 (Slight growth on many rocks) I11 (Nonfilamentous green bands) 0 0 0 IV (Filamentous green bands)
***
4 ) The presence of marl is noted in the Comments section
for each segment. Also noted in the Comments section for each sement are studv sites utilized, presence and general location Gf surface watkr inflows, and the presence of detritus.
TIII;E
NUMBER 1
1) Much floating dead Cladophora between Lincoln and Helen Avenues. 2) Heavy marl deposits between Helen and Dunlop Avenues.
WAUKEGON
. ..
.. CHICAGO
..
MILE NUMBER 2
1) Some floating dead Cladophora between St. Louis and Waukegon Avenues. 2) Heavy marl deposits-between Washington and Waukegon Avenues. 3) Septic tank site - St. Louis Avenue
MILE NUMBER 3
1) Intermediate marl deposits throughout
entire segment, 2) Road end site - Minto Pt. Road
MILE NUMBER 4
1) Heavy marl deposits between Naple Avenue and Pt. Detroit. 2 ) Road end site - Maple Avenue 3) Road end site - Lone Pine Avenue
MILE NUMBER 5
-
1) Surface water inflow s i t e B a t t i n Drain 2 ) Water g r e a t l y d i s c o l o r e d n e a r B a t t i n
Drain
MILE NUMBER 6
1) Heavy s h o r e l i n e e r o s i o n from wave a c t i o n throughout e n t i r e segment.
MIE3 NUMBER 7
1) Light marl d e p o s i t s throughout e n t i r e segment.
*
MICHIGAN
MILE NUMBER 8
1) Light marl deposits throughout entire segment. 2) ~ e a v yshoreline detritus band between Tie and Michigan Avenues. 3) Road end site-- West Avenue
PUBLIC FlSHlN
8
MILE NUMBER 9
1) Many heavily wooded lots throughout segment. 2) Heavy shoreline detritus band throughout segment. 3) Intermediate marl deposits throughout segment. 4 ) Road end site Newman Avenue
-
3
WILSON:
1) Light s h o r e l i n e band of d e t r i t u s through-
o u t segment.
2 ) S e p t i c tank s i t e
-
Stuckey Avenue Big and
3 ) Surface w a t e r i n f l o w s i t e s L i t t l e Creeks
-
MILE NUMBER 11
1) Light detritus band throughout entire segment. 2) Eight surface water outflows located along segment.
MILE NUMBER 12
1) Intermediate marl deposits throughout entire segment. 2) Light detritus band throughout entire segment. 3) Surface water inflow site - Conference Center Creek 4 ) Septic tank site - Cedar Avenue 5 ) Road end site - Lansing Avenue
MILE NUMBER 13
1) Heavy marl deposits throughout entire
wooded area. area has extremely steep grade.
COTTAGE GROVE ASSOCIATION
z T -4 OC
MIU NUMBER 14
1) Heavy marl deposits throughout entire segment. 2) Control site - Cottage Grove Association 3) Septic tank site - H e m j Avenue
MILE NUMBER
15
1) Light detritus band throughout entire segment.
Z
3 0 Z
Y
NEWMAN
1) Large condominium near northwest end of segment. 2) Septic tank site - Gallagher Avenue
MIIE NUMBER 18
1) Light detritus barld throughout entire segment. 2) Intermediate marl deposits throughout entire segment.
CHARLES
+aai3 %$-
1) Heavy marl deposits throughout entire segment. 2) Septic tank site 2nd Avenue
-
1) Heavy marl deposits throughout entire segment.
z 8 U
SOUTH HlGGlNS STATE PARK
z
I
4
1nL;E
NUMBER 21
*-COMMENTS
***
1) Light marl deposits throughout entire segment.
THE UNIVERSITY OF MICHIGAN
,Q
RENEW PHONE 764-1494 DATE DUE
2 3 1994 MAY 1 6 1996
I
I
I /
I
%!BE lmGETs;Tm 16s:-
m m u fSLasD
Leelanau Co., Michigan F
BRIAN
by
T. E~AZL,ETT
University a£ Michigan -Biological Station 1983
3. LAKEl PLAIN WOODS
I I
L
Miles