University of Michigan University Library

0 downloads 0 Views 4MB Size Report
Nov 27, 2006 - Central Michigan University. Kt. Pleasant, MI 48859 .... lake, and an input-output nutrient budget model for phosphorus is summarized ..... the July sampling by bottom-to-surface tows with a conical 1/4 m plankton net with 80 ...
Nut Sw . QH

aaa

THE WT\TIVERSITYOF MICHIW

flba A3

0

\a,

A Water Quality Study of Higgins Lake, Michigan Technical Report No.12 Richard Schultz and Winfield Fairchild

A WATER QUALITY STUDY OF HIGGINS LAKE, MICHIGAN

Richard Schultz P r o j e c t Coordinator Biology Department C e n t r a l Michigan U n i v e r s i t y K t . P l e a s a n t , M I 48859

D r . G. Winfield F a i r c h i l d P r o j e c t Supervisor Biology Department West Chester U n i v e r s i t y West Chester, PA 19383

August 1 9 8 4

TABLE OF CONTENTS

.. . .

........................................... p . 2 .............................................. p . 4 .................................. p . 5 ........... p . 9 . ................ p.12 .............................................. p.12 .............................................. p.13 ........................................... p.13 ................ ..... p.14 p.15 ............... p.17 ........................................ p.19 ...................................... p.21 ................................... p.23 ..................................... p.25 ....................................... p.26 ........... p.28 .. . .......... p.30 ................ p.32 . .............. p.36 . .............................................. p.38 .............................................. p.39 .............. p.40 .............. p.41 .. p.41 . . ......................... p .4 9 .............................................. p.49 .............................................. p.50 ....................................... p.52 . ........................................ p.52 ................ . ..................................... pp.545 2 . .................................... p.55 . ............................................... p.59 . . ............................................. p.7l .......... p.107 ........ p.108

I INTRODUCTION I1 SUMMARY I11 HISTORICAL OVERVIEW I V PHYSICAL FEATURES OF THE LAKE AND WATERSHED V LIMNOLOGY OF TdE NORTH AND SOUTH BASINS METHODS RESULTS Light Temperature and D i s s o l v e d Oxygen Hardness. C o n d u c t i v i t y . C h l o r i d e and S i l i c a Carbon Dioxide. pH and A l k a l i n i t y Nitrogen Phosphorus Phytoplankton Zooplankton Sediments V I EVIDENCE FOR EUTROPHICATION I N HIGGINS LAKE V I I N VS P LIMITATION - NORTH AND SOUTH BASINS VIII A PHOSPHORUS BUDGET FOR HIGGINS LAKE I V SOURCES OF NUTRIENTS ALONG THE LAKESHORE METHODS RESULTS S e a s o n a l T r e n d s in N u t r i e n t Supply Nearshore 5 Differences Comparison o f N u t r i e n t s and P e r i p h y t o n by Site x N vs P LIMITATION: NEARSHORE METHODS RESULTS X I RECOMMENDATIONS FURTHER STUDY WATER QUALITY IlANAGEPIENT ALTERNATIVES X I 1 ACKNOWLEDGEMENTS XI11 LITERATURE CITED X I V TABLES XV FIGURES APPENDIX A : A PHOSPHORUS BUDGET FOR HIGGINS LAKE APPENDIX B: FEATURES OF THE HIGGINS LAKE SHORELINE

I. INTRODUCTION Higgins

Lake

has

l o n g been n o t e d f o r i t s

extremely

cleanest

and i s p r e s e n t l y r e g a r d e d a s o n e o f t h e

water q u a l i t y ,

l a k e s i n Michigan.

Recently,

high

however, p r o p e r t y owners and l a k e

a s s o c i a t i o n members h a v e r e p o r t e d d e c r e a s e s i n water c l a r i t y , t h e appearance

of

noticeable

i n c r e a s e i n a l g a l growth n e a r t h e

are

l a k e bottom bands o f d e t r i t u s ,

a l l s i g n s of c u l t u r a l e u t r o p h i c a t i o n ,

productivity, increases the

to

undesirable

describe

stages

in

the

O l i g o t r o p h i c l a k e s t e n d t o be c l e a r , low

an increase

levels,

" ~ l i ~ o t r o p h i c " , "mesotrophic"

biological

production

very

shoreline.

These in

lake

stimulated Limnologists

i n nutrients supplied t o the lake.

terms

roughly

often

a

and a l s o

and

concentrations throughout t h e year.

dissolved

to

process.

r e l a t i v e l y deep l a k e s high

use

"eutrophic"

eutrophication

and

by

with

oxygen

Eutrophic lakes i n c o n t r a s t

a r e t u r b i d water b o d i e s w i t h h i g h b i o l o g i c a l p r o d u c t i v i t y a n d low dissolved

oxygen

levels

stratification.

in

water

t h e deeper

Mesotrophic

lakes

during

ther~al

show

intermediate

c h a r a c t e r i s t i c s between o l i g o t r o p h y and e u t r o p h y ,

and o f t e n have

p r o d u c t i v e warmwater f i s h e : . i e s (NEMCOG, 1 9 7 9 ) .

A

growing

eutrophication, recreational Gerrish Biological

c o n c e r n t h a t H i g g i n s Lake thereby

value,

prompted

began

the

be

lake 's

to

contact

Station

to

i n i t i a t e a comprehensive

at

experiencing economic

t h e Township B o a r d s o f

Townships

the

University

Dr.

of water

Lyon

and and

Michigan quality

G.

Winfield

t h a t time P r o f e s s o r o f L i n n o l o g y a t t h e

Station,

s u r v e y of H i g g i n s Lake. Fairchild,

decreasing

may

I n January of

1983,

work on t h e p r o j e c t w i t h t h e h i r i n g o f R i c h a r d S c h u l t z ,

a

graduate

student

in

aquatic

biology

at

Central

Michigan

University, a s project coordinator.

A

large

chemical,

portion

and

of t h i s r e p o r t

biological

conditions

addresses which

the

physical,

characterize

p r e s e n t t r o p h i c s t a t e o f H i g g i n s Lake ( S e c t i o n s IV-VI).

the

The d a t a

a r e i n t e n d e d a s a b a s e l i n e f o r f u t u r e s t u d i e s , and h a v e a l s o been compared

with

previously

examine

changes

in

collected

water

quality

information

in

during

past

the

order

to

decade.

P h o s p h o r u s i s t h e n i d e n t i f i e d a s a major l i m i t i n g n u t r i e n t i n t h e l a k e , and a n i n p u t - o u t p u t

n u t r i e n t b u d g e t model f o r phosphorus is

summarized ( S e c t i o n s V I I - V I I I ) . has

been

supplying

the

i m p a c t o f human

nutrients

A major c o n c e r n of t h e r e s e a r c h

recreation

and

development

t o nearshore a r e a s of t h e lake,

quality

i s d e s c r i b e d f o r 18 sites a l o n g t h e l a k e s h o r e

IX-X).

Finally,

general

and

in

water

(Sections

recommendations a r e made f o r

further

l o n g term s t u d y and water q u a l i t y management ( S e c t i o n X I ) . r e s u l t s o f t h e s t u d y a r e b r i e f l y summarized i n S e c t i o n 11.

Major

11. SUMMARY Higgins

concentrations

penetration, The

remains an o l i g o t r o p h i c l a k e

of

high

water

Both deep b a s i n s s t u d i e s h a v e h i g h year-round d i s s o l v e d

quality. oxygen

Lake

t h r o u g h o u t t h e w a t e r column,

and low n u t r i e n t and c h l o r o p h y l l - a

plankton

community

also

contains

deep

light

concentrations.

biological

indicator

s p e c i e s , s u c h a s t h e c a l a n o i d copepod S e n e c e l l a c a l a n o i d e s , which a r e i n d i c a t i v e of o l i g o t r o p h y . The

North

B a s i n of H i g g i n s Lake h a s s l i g h t l y h i g h e r

q u a l i t y t h a n t h e South Basin, and l o c a t i o n , the future.

b e c a u s e o f i t s morphometry

which,

may be p a r t i c u l a r l y s e n s i t i v e t o e u t r o p h i c a t i o n i n Analysis of nitrogen:

phosphorus r a t i o s

t h a t both b a s i n s a r e phosphorus-limited I n c o n t r a s t t o t h e deep b a s i n s , Lake

have

heavy

indicates

d u r i n g mid-summer.

n e a r s h o r e a r e a s of

c o n s i s t e n t l y h i g h c o n c e n t r a t i o n s of

Higgins

phosphorus,

and

a c c u m u l a t i o n s o f b o t h marl and t h e f i l a m e n t o u s g r e e n

alga

Cladophora

glomerata

at

many

locations.

Inorganic

(especially n i t r a t e ) is depleted t o potentially limiting An i n s i t u b i o s t i m u l a t i o n e x p e r i m e n t , nearshore growth

water

sampling

locations,

nitrogen levels.

c o n d u c t e d a t o n e o f t h e 18

provides confirmation

that

the

o f a l g a l p e r i p h y t o n n e a r s h o r e i s n i t r o g e n - l i m i t e d by mid-

summer, a p p a r e n t l y owing t o h i g h p h o s p h o r u s l o a d i n g ,

It human land, be

is

s u g g e s t e d t h a t water q u a l i t y b e managed by

sources

of

phosphorus,

particularly

from

reducing riparian

and t h a t f u r t h e r development o f t h e H i g g i n s Lake w a t e r s h e d

c o n s i d e r e d c a r e f u l l y w i t h r e g a r d t o i t s i m p a c t upon

loading t o t h e lake.

nutrient

111. HISTORICAL OVERVIEW Prior was

t o t h e i n i t i a t i o n of t h i s study,

conducted

following

o f work done p r e v i o u s l y

on

a l i t e r a t u r e search Higgins

Lake.

The

s t u d i e s provide a b a s i s f o r t h e present research.

Bosserman

(1969) c o m p l e t e d a n i n v e n t o r y of p r e s e n t l a n d u s e uses

i n t h e H i g g i n s Lake B a s i n and examined t h e e f f e c t s o f t h e s e on

the

quality

of t h e l a k e w a t e r .

He walked

the

t a k i n g n o t e of a l l i n f l o w i n g and o u t f l o w i n g s u r f a c e

shoreline, waters,

and

c o m p i l e d b a s i c m o r p h o m e t r i c , b i o l o g i c a l , and c h e m i c a l i n f o r m a t i o n for

t h e lake.

From t h e s e d a t a ,

Bosserman c o n c l u d e d t h a t t h e r e

were f o u r b a s i c s o u r c e s o f p o l l u t i o n t o H i g g i n s Lake:

(2) ice-caused

and o u t f a l l s , action, number

of

management m e a s u r e s ,

revetments,

ice

and

e r o s i o n , (3) e r o s i o n c a u s e d by wave

( 4 ) e r o s i o n c a u s e d by r o a d e n d s .

and

He

suggested

including the use

of

also

t h e use of vegetative

cover

to

a

jetties,

sea walls t o p r o t e c t a g a i n s t e r o s i o n from

and

and

(1) d r a i n s

wind

deal

with

p r o b l e m s o f d r a i n a g e and r o a d end e r o s i o n . D u r i n g 1 9 7 1 , t h e S t u d e n t Water P u b l i c a t i o n s Club of Michigan U n i v e r s i t y c o n d u c t e d a s u r v e y of H i g g i n s Lake d e a l i n g w i t h

State two

issues

of

importance

to

water

quality.

Their

report

d i s c u s s e d t h e d r a i n a g e of B a t t i n Swamp,

from which l a r g e amounts

of

Comfort.

tannins

enter

the lake near Point

a t t e m p t s were made t o f i l l i n t h e d r a i n , fear

that

tannins. had

the

nutrients

were

A

number

i n p a r t b e c a u s e of

b e i n g added t o

the

lake

with

of the the

It was f i n a l l y d e c i d e d t h a t t h e County Road Commission as

a

means

of

s e c o n d c o n c e r n a d d r e s s e d by t h e s t u d y was t h e o v e r u s e

of

legal

right

to

maintain t h e

drain

r e g u l a t i n g w a t e r l e v e l s i n t h e swamp.

A

A s e r i e s of i n t e r v i e w s w i t h

t h e two S t a t e P a r k s on H i g g i n s Lake.

to

p a r k employees r e v e a l e d t h a t t h e p a r k s were f r e q u e n t l y f i l l e d

parks'

lagoon sewage s y s t e m s ,

thereby causing increased

combatting

this

problem,

sewage

A s a means

i n f i l t r a t i o n i n t o groundwater f e e d i n g i n t o t h e l a k e . of

the

and t h a t t h i s o v e r u s e might l e a d t o o v e r l o a d i n g of

capacity

i t was s u g g e s t e d t h a t

the

parks

r e s t r i c t t h e number of s i t e s a v a i l a b l e on a p a r t i c u l a r day. The

Student

Water

Publications

Club

of

Michigan

State

U n i v e r s i t y w a s c o n t a c t e d by t h e H i g g i n s Lake B o a r d - i n e a r l y and

1972

r e q u e s t e d t o c o l l e c t w a t e r samples from a series of r i p a r i a n from w i t h i n t h e l a k e i t s e l f ,

wells,

and from a s s o c i a t e d s t r e a m s

t o d e t e r m i n e b a c t e r i a l d e n s i t i e s and n u t r i e n t c o n c e n t r a t i o n s . the

20

wells t e s t e d ,

Several

areas

two were p o s i t i v e of

coliform

bacteria.

of t h e l a k e and a number of s u r f a c e i n f l o w s

showed p o s i t i v e tests f o r b a c t e r i a ,

Of

also

i n d i c a t i n g t h a t sewage

from

s e p t i c t a n k s may be l e a k i n g i n t o t h e l a k e . The

Michigan

Childs, tanks

1973) and

lawn

Department

has

Natural

Resources

(Ellis

i n v e s t i g a t e d n u t r i e n t movements from

fertilization to

nearby

t h i s s t u d y were two-fold:

objectives

of

nutrients

(phosphorus

groundwater

of

and

nitrates)

Houghton

(1) t o were

&

septic

Lake.

The

determine

if

moving

with

the

t o Houghton Lake from s e p t i c t a n k s y s t e m s and ( 2 ) t o

d e t e r m i n e t h e e f f e c t s of lawn f e r t i l i z a t i o n on t h e

concentration

of phosphorus i n o v e r l a n d r u n o f f . I n d e t e r m i n i n g n u t r i e n t movement from s e p t i c t a n k s ,

wells table.

were

drilled

t o a d e p t h of 22-24 f e e t

below

the

38 t e s t water

N u t r i e n t c o n c e n t r a t i o n s i n a l l wells were t h e n m o n i t o r e d .

The

study

concluded

household

septic

eventually

tanks

reached

nutrients

with

that:

(1) phosphates

migrated through

Houghton

the

Lake,

groundwater

the

(2)

and

was

and

nitrates

from

groundwater the

traceable

and

movement for

of

distances

exceeding one hundred f e e t a t s e v e r a l s i t e s . The

f o r lawn f e r t i l i z a t i o n were d e r i v e d by u s e

data

q u e s t i o n n a i r e and t h r o u g h p e r s o n a l i n t e r v i e w s . it was a p p a r e n t t h a t a b o u t o n e - h a l f

It

over-fertilized.

a

From t h e s e d a t a ,

of t h e s i t e s s t u d i e d had been

recommended

was

of

that

no

phosphorus

f e r t i l i z e r be a p p l i e d t o lawns surrounding t h e l a k e without p r i o r s o i l t e s t i n g t o v e r i f y t h e need. I n r e s p o n s e t o a c c e l e r a t e d s h o r e l i n e development, Markey,

t h e Lyon,

G e r r i s h , and Beaver C r e e k Township B o a r d s c o n t r a c t e d t h e

P r o g r e s s i v e E n g i n e e r i n g Company t o i n i t i a t e a n e n g i n e e r i n g

study

regarding hazards a s s o c i a t e d with wastewater discharge within t h e community.

The

determine

firm

a F a c i l i t i e s Plan i n

developed

1976

t h e most c o s t - e f f e c t i v e method f o r u p g r a d i n g

wastewater

treatment

development

facilities.

In

conjunction

to

existing with

the

a s e r i e s o f s t u d i e s were c o n d u c t e d i n

of t h i s p l a n ,

t h e l a k e a r e a t o determine s o i l types, depths t o t h e water t a b l e , and

the

phosphorus

adsorption

F a c i l i t i e s Plan concluded t h a t :

capacity

Higgins

on-site (e.g.,

installation

degradation

soils.

some areas

of

and ( 2 ) u n l e s s

public

The

adjacent

Lake d i d n o t r e c e i v e a d e q u a t e sewage t r e a t m e n t

treatment systems,

implemented,

the

( 1 ) due p r i m a r i l y t o e i t h e r h i g h

w a t e r t a b l e s o r t h e d e n s i t y of development, to

of

sanitary

corrective sewer

from

measures

systems)

were

p u b l i c h e a l t h h a z a r d s would c o n t i n u e , and a g r a d u a l of

the

q u a l i t y of nearby s u r f a c e

and

groundwater

r e s o u r c e s c o u l d be e x p e c t e d . quality

The N a t i o n a l E u t r o p h i c a t i o n Survey r e l e a s e d a w a t e r analysis

of

Higgins

limnological

measurements

conclusions lake

with

inorganic

Lake

basins.

emphasizing The

( 1 ) H i g g i n s Lake was a n

mean l e v e l s of d i s s o l v e d and

nitrogen,

transparency,

1975),

EPA,

of t h e deep

were r e a c h e d : low

(U.S.

chlorophyll-a,

and

oligotrophic

total high

a

following

phosphorus, Secchi

disk

( 2 ) phosphorus l i m i t a t i o n t o a l g a l growth o c c u r r e d

i n September, whereas s l i g h t n i t r o g e n l i m i t a t i o n o c c u r r e d i n J u n e and November, and ( 3 ) s e p t i c t a n k s c o n t r i b u t e d r o u g h l y 28% of t h e total

phosphorus

load,

w i t h 72% coming

from

sources (e.g.,

runoff, precipitation).

although

p r e s e n t phosphorus l o a d i n g was

effort

the

other

non-point

The s t u d y c o n c l u d e d t h a t , quite

low,

s h o u l d be made t o r e d u c e a l l phosphorus i n p u t s t o

every ensure

continued high water q u a l i t y . Finally, nutrient

Dr.

budget

Kenneth model

Reckhow for

(1980,

predicting

1983) lake

developed

phosphorus

c o n c e n t r a t i o n s from known p h y s i c a l d a t a and used H i g g i n s Lake a n example f o r t h i s method. should

as

Reckhow p r e d i c t e d t h a t H i g g i n s Lake

have a low phosphorus c o n c e n t r a t i o n ,

l a k e a s being oligotrophic.

a

and c a t e g o r i z e d t h e

IX. PHYSICAL FEATURES OF THE LAKE AND ITS WATERSHED Lake i s l o c a t e d i n Crawford and Roscommon

Higgins (T24-25N,

Counties

R3-4W) i n t h e n o r t h c e n t r a l p o r t i o n of n o r t h e r n

lower

Michigan ( F i g . I ) , f i v e miles west o f t h e v i l l a g e Roscommon.

is a deep,

lake origin

c o l d w a t e r l a k e of P l e i s t o c e n e g l a c i a l i c e b l o c k

underlain

Eschmann,

1970). ice

melting

The

by

Mississippian

Period

bedrock

(Dorr

&

Lakes of t h i s n a t u r e a r e formed as a r e s u l t of

blocks l e f t behind i n a n a r e a scoured

out

by

the

g l a c i e r a s i t r e t r e a t e d (Goldman & Horne, 1 9 8 3 ) . P i g g i n s Lake h a s a maximum l e n g t h of 6 . 3 3 m i l e s , of

3.30 miles,

breadth

and a maximum d e p t h of

The l a k e ' s s u r f a c e area of 1 0 , 3 1 7 a c r e s r a n k s t e n t h i n

136.2 f t . size

a mean d e p t h of 4 4 . 3 f t ,

a

among

Michigan's

lakes

and

is

large

relative

to

its

watershed a r e a of 21,653 a c r e s (Table 1 ) . About o n e - t h i r d o f H i g g i n s Lake i s s h o a l (0-20 f t ) and a b o u t one-half

o f t h e l a k e h a s d e p t h s e x c e e d i n g 50 f t ( F i g . 2 ) .

3,

hypsographic

a

representation

of

or

depth-area

curve,

t h e r e l a t i o n s h i p between t h e

is

a

Figure graphic

lake's

surface 10 3 a r e a and i t s d e p t h . The volume o f H i g g i n s Lake i s 1 . 9 9 X 1 0 ft 8 3 (5.64 X 1 0 rn ) and t h e l a k e ' s volume development f a c t o r ( D ) i s v

Lakes w i t h D

0.97. sided

v a l u e s g r e a t e r t h a n 1 . 0 are t y p i c a l l y s t e e p

v and p o s s e s s l a r g e w a t e r volumes r e l a t i v e t o t h e i r

surface

Examples a r e B u r t Lake (D = 1 . 6 ) a n d B l a c k Lake ( D = 1 . 5 ) v v Lakes w i t h D v a l u e s l e s s ( T a b l e 2 ) (Gannon & Paddock, 1 9 7 4 ) . v t h a n 1 . 0 f r e q u e n t l y h a v e e x t e n s i v e s h o a l a r e a s , and l e s s w a t e r

area.

volume r e l a t i v e t o o t h e r l a k e s of similar s u r f a c e a r e a and d e p t h . a r e Crooked Lake (D = 0 . 5 ) and P i c k e r e l Lake (D = 0 . 5 ) . v v G e n e r a l l y , t h e g r e a t e r t h e D o f a l a k e , t h e more r e s i s t a n t i t i s

Examples

V

t o e u t r o p h i c a t i o n from i n c r e a s e d n u t r i e n t l o a d i n g . The

H i g g i n s Lake s h o r e l i n e measures 20.49 m i l e s ,

shoreline

development

factor

(D )

of

1.44.

and h a s a

The

shoreline

relative

potential

L

development for

f a c t o r p r o v i d e s a n i n d e x of t h e

i n p u t s t o t h e l a k e from p o i n t s a l o n g

the

shoreline.

Lakes

with high D

v a l u e s have e x t e n s i v e s h o r e l i n e s f o r t h e i r s i z e , and L o f t e n s u b j e c t t o r a p i d e u t r o p h i c a t i o n b e c a u s e of the

are

consequent

opportunity

development.

for

Examples

of

nutrient

inputs

from

riparian

D

high

va.lues a r e s e e n i n L C h a r l e v o i x (D = 3 . 1 , Crooked Lake (D = 3 . 0 ) and Walloon L L ( D =3.0) (Gannon & Paddock, 1 9 7 4 ) .

Lake Lake

T

L

Higgins

Lake h a s o n l y two major s u r f a c e i n p u t s ,

and

L i t t l e Creek.

the

Cut

River

volume p e r The central divide

The l a k e e m p t i e s i n t o Houghton Lake

and h a s a f l u s h i n g r a t e of 9.8% of

Creek through

the

lake's

year. watershed

highland between

Landscape

area

of H i g g i n s Lake

Lake

features

Michigan and Lake Huron

glacier.

topographically

situated

flat,

Most and

of

in

surface

drainage

basins.

and

probably

The h i l l s n e a r t h e n o r t h d e p o s i t s from t h e edge of

t h e Higgins

the

the

of t h e a r e a a r e intermorainic

shore a r e marginal moraines,

retreating

is

r e g i o n of t h e Lower P e n i n s u l a on

o r i g i n a t e d some 1 1 , 0 0 0 y e a r s ago. south

Big

Lake

watershed

r e p r e s e n t s a g l a c i a l outwash

and a

is

plain.

E l e v a t i o n s w i t h i n t h e w a t e r s h e d v a r y from 1154 t o 1300 f e e t above sea

l e v e l (Fig.

generally Cut

River,

4:

a f t e r U.S.G.S.,

s u r r o u n d e d by u p l a n d s . in

B a t t i n Marsh,

1963).

The s h o r e l i n e

is

Large w e t l a n d s e x i s t n e a r t h e

and i n p o r t i o n s of t h e

watershed

d r a i n e d by B i g and L i t t l e C r e e k s . by

the

marginal

m o r a i n e s and

Groundwater f l o w i s i n f l u e n c e d generally

follows

the

surface

c o n t o u r s ( F i g . 5 : a f t e r Mich. Water R e s o u r c e s Commission, 1 9 7 4 ) . The

soils

i n t h e H i g g i n s Lake a r e a a r e

till, a m i x t u r e of g r a v e l , s a n d , and c l a y s ,

generally

high.

Although

five

primarily

glacial

S o i l permeability is

s o i l series a r e found

in

the

w a t e r s h e d , t h r e e p r e d o m i n a t e and a r e d i s c u s s e d h e r e ( F i g . 6 : a f t e r

USDA, 1 9 2 4 , 1 9 2 7 ) .

The s o i l t y p e i m m e d i a t e l y a d j a c e n t t o much o f

s h o r e l i n e i s of t h e Grayling-Rubicon

the type

exhibit

a s l o p e o f 0-6%,

rapid

series.

soil

S o i l s of t h i s

permeability

(6-20

i n / h r ) and h i g h p h o s p h o r u s a d s o r p t i o n c a p a c i t y . A

The s l o p e a s s o c i a t e d w i t h t h i s s o i l t y p e i s 6-

Montcalm s e r i e s . 25%,

Grayling-

second major s o i l t y p e i n t h e watershed i s t h e

indicating

often

considerable

relief

and

high

erosion

T h i s series a l s o h a s h i g h p e r m e a b i l i t y (6-20 i n / h r ) ,

potential.

b u t lower phosphorus a d s o r p t i o n c a p a c i t y . The Carbondale-Roscommon series e x h i b i t s a s l o p e o f 0-2% and is

often

organic soils

found i n swamps and l o w l a n d s . and

have

have

a

high

moisture

The s o i l s

holding

are

highly

capacity.

The

m o d e r a t e l y h i g h p e r m e a b i l i t y (2-6 i n / h r ) and a

high

phosphorus a d s o r p t i o n c a p a c i t y . Coniferous watershed (Fig.

and

deciduous

f o r e s t s comprise

7 : a f t e r Michigan DNR, 1 9 7 0 ) .

which make up 4.4% of t h e t o t a l w a t e r s h e d , along t h e lakeshore. systems.

Agriculture

95.3%

of

the

Residential areas,

are chiefly clustered

A l l u n i t s a r e p r e s e n t l y s e r v i c e d by s e p t i c

a c c o u n t s f o r o n l y 0.20% of t h e

and c o n s i s t s c h i e f l y o f p a s t u r e l a n d .

watershed

V. LIMNOLOGY OF THE NORTH AND SOUTH BASINS METHODS P h y s i c a l , c h e m i c a l and b i o l o g i c a l measurements were t a k e n a t two d e e p w a t e r s t a t i o n s ,

termed t h e North and S o u t h b a s i n s

8 ) on March 3 and J u l y 1 9 , Temperature

and

(Fig.

1983.

d i s s o l v e d oxygen

were

profiles

obtained

a YSI Model 51B d i s s o l v e d oxygen p r o b e and t h e r m i s t o r a t 5

using

rn i n t e r v a l s d u r i n g t h e March s a m p l i n g and a t 1 m i n t e r v a l s d u r i n g

the

J u l y sampling.

P e r c e n t s a t u r a t i o n of d i s s o l v e d oxygen

d e t e r m i n e d by nomagraph. a standard Secchi disk.

was

L i g h t t r a n s p a r e n c y was d e t e r m i n e d w i t h L i g h t p e n e t r a t i o n was f u r t h e r q u a n t i f i e d

a LiCor s u b m a r i n e photometer f i t t e d w i t h Weston c e l l s

using

and

c o l o r f i l t e r s during t h e J u l y sampling. Water

s a m p l e s were o b t a i n e d w i t h a 3 l i t e r Kemmerer b o t t l e .

H a r d n e s s was d e t e r m i n e d by t i t r a t i o n (APHA, was

measured

on

an

Conductivity Bridge. 0

umhos/cm a t 25 Total

Industrial

1976).

Instruments

Conductivity

Model

RC-16B2

C o n d u c t i v i t y r e c o r d i n g s were c o r r e c t e d

.

alkalinity

was

measured by t i t r a t i o n w i t h

i n d i c a t o r s o l u t i o n of bromcresol-green

methyl-red

a

mixed

(APHA,

1975).

D e t e r m i n a t i o n s o f pH were made u s i n g a Beckman S e l e c t m e t e r . carbon

dioxide

alkalinity nitrogen, were

to

was

d e t e r m i n e d by nomagraph

measurements.

Ammonia,

from

the

nitrate/nitrite,

Free

pH

and total

o r t h o p h o s p h a t e , t o t a l p h o s p h o r u s , s i l i c a , and c h l o r i d e

determined

calorimetrically

on a T e c h n i c o n

Dual

Channel

A u t o a n a l y z e r (APHA, 1 9 7 6 ) . Plankton

s a m p l e s were o b t a i n e d d u r i n g t h e J u l y s a m p l i n g

by

tows w i t h a c o n i c a l 1 / 4 m plankton n e t w i t h

80

bottom-to-surface

urn

nylon

mesh.

Lugol's

iodine

samples

were

Phytoplankton and were

examined

preserved

in

111 f l u o r o m e t e r .

(Holm-Hansen, collect

preserved

qualitatively.

5% b u f f e r e d

1%

in

Zooplankton

formalin

for

later

C h l o r o p h y l l - a v a l u e s were d e t e r m i n e d w i t h a T u r n e r

enumeration. Model

samples were

An Ekman g r a b ( 1 5 cm X 1 5 cm) was used

1965).

bottom

Values were c o r r e c t e d f o r phaeopigments

samples,

which were t h e n d r i e d and

to

ignited

to

d e t e r m i n e % o r g a n i c m a t t e r u s i n g s t a n d a r d methods (APHA, 1 9 7 6 ) . RESULTS Light The

measurement

of

solar

radiation

is

of

i m p o r t a n c e t o t h e s t u d y of f r e s h w a t e r e c o s y s t e m s , energy

diagnostic value

Higgins

readings of

more

in

Lake h a s c l e a r ,

l i g h t penetration.

Readings while

its

of

quality.

depth

b e c a u s e of i t s

c o n t r i b u t i o n t o t h e l a k e w a t e r and t o p h o t o s y n t h e s i s ,

because

good

fundamental

of

12

interpreting

water

unstained water t h a t

allows

The North and South b a s i n s had

Secchi

m and 1 0 m

respectively

10-20 m a r e c h a r a c t e r i s t i c of productive

lake

and

lakes often

exhibit

(Fig.

9a,c).

oligotrophic

lakes,

considerably

less

transparency. The intensity

euphotic

is

respiration,

zone,

sufficiently is

usually

the

portion of t h e l a k e

high

that

where

photosynthesis

considered t o extend t o a depth

l i g h t i n t e n s i t y e q u a l s 1%of i n c i d e n t l i g h t .

light exceeds where

H i g g i n s Lake h a s a n

e x t e n s i v e e u p h o t i c zone e x t e n d i n g t o a p p r o x i m a t e l y 24 m. T o t a l l i g h t is a t t e n u a t e d exponentially i n t h e water (Fig.

9a,c).

column

Red l i g h t waves a r e a b s o r b e d r e a d i l y by t h e w a t e r

i t s e l f and r e v e a l l i t t l e a b o u t water q u a l i t y . deep

penetration

indicates and

of blue l i g h t i n both basins of

thus

consistent with t h e

Green l i g h t ,

Higgins

l i t t l e a l g a l biomass i n t h e water

relatively

is

The c o m p a r a t i v e l y

lake's

Lake

column,

oligotrophic

status.

n o t used i n p h o t o s y n t h e s i s , p e n e t r a t e s s t i l l d e e p e r

t h a n b l u e l i g h t , as e x p e c t e d ( F i g . 9 b , d ) . Temperature

As

and D i s s o l v e d

solar

Oxygen

r a d i a t i o n p a s s e s downward from t h e s u r f a c e

a

Wind d r i v e n m i x i n g

l a k e , much o f i t s e n e r g y i s a b s o r b e d a s h e a t . causes

the

result

i s a s i g m o i d c u r v e o f water t e m p e r a t u r e w i t h d e p t h

10c,d).

of

h e a t e d upper w a t e r s t o r e d i s t r i b u t e

downward.

The (Fig.

These c u r v e s show t h e r m a l s t r a t i f i c a t i o n , w i t h a zone o f

d e n s e , c o l d w a t e r ( t h e h y p o l i m n i o n ) b e n e a t h a zone o f less d e n s e , warmer the

water ( t h e e p i l i m n i o n ) .

is

hypolimnion

Separating the epilimnion

t h e thermocline,

a

zone

in

from

water

which

0

temperature

drops

than 1 C with each

more

meter

increase

in

depth. Both b a s i n s of H i g g i n s Lake p o s s e s s a n e x t e n s i v e h y p o l i m n i o n in

comparison

to

t h e epilimnion.

epilimnion e x t e n d s t o 8 m,

1 4 m.

The

extending

8-12 m.

South

In

the

North

basin,

the

and t h e t h e r m o c l i n e o c c u r s between 9-

b a s i n ' s epilimnion

is

slightly

shallower,

only t o 7 m,

w h i l e t h e t h e r m o c l i n e i s l o c a t e d between

During w i n t e r ,

a s i s t y p i c a l of l a k e s under ice c o v e r ,

both basins d i s p l a y a s l i g h t i n v e r s e t h e r n e l s t r a t i f i c a t i o n (Fig. 10a,b). There (1)

a r e two major s o u r c e s o f oxygen t o t h e w a t e r

a t m o s p h e r i c oxygen d i s s o l v e s s l o w l y i n t o water a t

column: the

lake

and ( 2 ) p h y t o p l a n k t o n c o n t r i b u t e oxygen as a by-product

surface, of

photosynthesis

which

may

i n t h e euphotic zcne.

be p a r t i c u l a r l y pronounced i n

generally

attributable

to

organismal

I n b o t h b a s i n s of H i g g i n s Lake, thermocline

the

"positive

hypolimnion,

respiration

are

and

the

(Fig.

maximum oxygen l e v e l s a r e

10c,d).

These

h e t e r o g r a d e " oxygen p r o f i l e s ,

photosynthesis the

the

oxygen,

of o r g a n i c matter which h a s s e t t l e d t o t h e bottom.

decomposition

in

Decreases i n

i n t h e thermocline,

hypolimnion.

curves

found

represent

and i n d i c a t e h i g h a l g a l

with g r e a t e r r e s p i r a t i o n

in

Summer oxygen v a l u e s were g e n e r a l l y l o w e r

in

t h e h y p o l i m n i o n o f t h e S o u t h b a s i n and d e c l i n e d t o 52% s a t u r a t i o n a t t h e sediment-water i n t e r f a c e .

The s o l u b i l i t y o f oxygen d e c r e a s e s as t e m p e r a t u r e i n c r e a s e s . than

Cold w a t e r c a n t h u s h o l d more g a s i n s o l u t i o n a t s a t u r a t i o n

warm

water,

oxygen

and b o t h b a s i n s a c c o r d i n g l y show g r e a t e r

levels

saturation during

during

approaches

winter

in

the

winter

than

in

dissolved

summer.

100% t h r o u g h o u t t h e e n t i r e

Percent

water

b o t h b a s i n s w i t h t h e e x c e p t i o n of

column

the

lower

r e a c h e s o f t h e S o u t h b a s i n , where i t d r o p s t o 67% ( F i g . 1 0 a , b ) . Hardness, Conductivity, Chloride_aA S i l i c a Hardness i n lakewater is defined a s t h e t o t a l of

concentration

c a l c i u m and magnesium i o n s e x p r e s s e d as mg Calcium

carbonate

(CaCO ) p e r l i t e r . The u s u a l c l a s s i f i c a t i o n of h a r d n e s s i s t h a t 3 o f Brown, S k o u g s t a d , and Fishman (1970): 0-60 = s o f t w a t e r , 61120 very

= moderately hard water,

hard

South llc,d).

water.

basin

121-180 = h a r d w a t e r ,

H i g g i n s Lake i s t h u s a h a r d w a t e r

being s l i g h t l y harder than t h e

Calcium

North

and > I 8 0 lake, basin

=

the (Fig.

c a r b o n a t e l e v e l s i n t h e North b a s i n a r e n e a r l y

uniform t h r o u g h o u t ,

is

profile

more

thermocline activity

irregular.

is

and

r a n g i n g from 120-124 mg/l.

attributed

A decrease to

the

in

increased

The South b a s i n hardness

at

the

photosynthetic

t h e p r e c i p i t a t i o n of c a l c i u m c a r b o n a t e

from

that

p o r t i o n of t h e w a t e r column. Calcium c a r b o n a t e i s a l s o p r e c i p i t a t e d i n t h e l a k e on r o c k s , sediments,

Marl p r o d u c t i o n i n c r e a s e s a s l a k e p r o d u c t i v i t y i n c r e a s e s ,

marl. and

p l a n t s u r f a c e s i n n e a r s h o r e a r e a s of t h e l a k e a s

and

noticeable

accumulations

of marl

along

portions

of H i g g i n s Lake (Appendix B ) p r o v i d e a n e a r l y

shoreline

of

the

warning

of n u t r i e n t l o a d i n g t o t h o s e a r e a s . s p e c i f i c c o n d u c t a n c e of l a k e w a t e r i s a measure of

The

a b i l i t y of a s o l u t i o n t o a l l o w e l e c t r i c a l f l o w , ~ L t h increasing

ionic content (especially

the

and i s i n c r e a s e d

calcium,

magnesium,

sodium, p o t a s s i u m , c a r b o n a t e and b i c a r b o n a t e , s u l f a t e , c h l o r i d e ) . Conductance i n t h e North and South b a s i n s of H i g g i n s Lake from 250-277 urnhos/cm and 253-298 umhos/cm, summer

and

from

winter (Fig. typical

of

11).

ranged

respectively, during

231-241 umhos/cm and 210-230

umhos/un

during

These r e l a t i v e l y h i g h c o n d u c t a n c e v a l u e s a r e

hardwater l a k e s ,

b u t i n c r e a s e s i n conductance

over

time i n a g i v e n l a k e can o f t e n s i g n a l c h a n g e s i n t r o p h i c s t a t e . C h l o r i d e ( C l ) i s t h e major h a l i d e s t o r e d i n most algal

cells,

Pollutional

but

i s u s u a l l y n o t t h e dominant a n i o n

sources

of

chlorides

can

g r e a t l y and i n c l u d e a t m o s p h e r i c

from

sewage,

chloride

and

winter

road

in

modify

concentrations domestic

freshwater

natural

inputs,

salting.

lakes.

seepage

Generally,

i s n o t c o n s i d e r e d h a r m f u l t o l i v i n g organisms i n a l a k e

4 until

reaches concentrations of

it

Chloride

levels

10

(Wetzel,

1983).

i n b o t h b a s i n s d u r i n g summer and w i n t e r

showed

l i t t l e v a r i a t i o n , r a n g i n g from 3.9-6.2 Silica dominated

silica

mg/l

mg/l.

(SiO ) i s a n e s s e n t i a l n u t r i e n t i n l a k e 2 by d i a t o m a l g a e , and a n i n v e r s e r e l a t i o n s h i p

and d i a t o m d e n s i t i e s i s a f r e q u e n t c o n s e q u e n c e

u p t a k e (Lund,

1964;

high

of

levels

Munawar & Munawar,

other

growth-stimulating

nitrogen

and

phosphorus

sewage),

s i l i c a l o a d i n g i s minor.

and . p h o s p h o r u s c a n depletion

of

conditions

i n water

thus

cause

from

diatoms

between of

nutrients

human

algal

Compared t o t h e such

as

(e.g.,

sources

Excessive loading of nitrogen rapid

algal

growth

available s i l i c a t o limiting levels.

and blue-green

green

1975).

systems

a r e frequently replaced

by

and

the

Under

less

such

desirable

a l g a e which d o n o t r e q u i r e s i l i c a ( S c h e l s k e

& Stoermer, 1971).

During w i n t e r , s i l i c a i n t h e North b a s i n r a n g e d from 7.8-8.9 w h i l e t h e S o u t h b a s i n had a s l i g h t l y e l e v a t e d r a n g e o f 8.3-

mg/l,

9.9 mg/l ( F i g .

lla,b).

Both b a s i n s d i s p l a y g r a d u a l i n c r e a s e s i n

s i l i c a l e v e l s n e a r t h e b o t t o m , l a r g e l y b e c a u s e of t h e r e s u p p l y of

silica

to

t h e h y p o l i m n i o n from t h e

sediments.

Summer

silica

l e v e l s i n b o t h b a s i n s a r e s l i g h t l y r e d u c e d below w i n t e r v a l u e s i n both basins, levels basin

are and

oxygen

presumably by a l g a l u p t a k e

(Fig.

llc, d)

.

p a r t i c u l a r l y d e p r e s s e d a t 8 m and 1 2 m i n t h e a t 8 m i n t h e South basin

l e v e l s a t those depths,

and,

like

the

Silica North

increased

i n d i c a t e higher diatom d e n s i t i e s

a t t h e thermocline. Carbon d i o x i d e , pH and A l k a l i n i t y

The

pH o f most n a t u r a l waters f a l l s i n t h e r a n g e of 4.0

to

9.0.

Deviation

presence

from

n e u t r a l pH of 7.0

a

of a c i d s o r b a s e s ,

usually

have

the

Hardwater

lake.

b a s i c pH v a l u e s 0 7 ) owing

carbonate/bicarbonate content. pH

by

e i t h e r produced by organisms w i t h i n

t h e l a k e o r by t h e e n t r y of c h e m i c a l s i n t o t h e lakes

caused

is

to

their

high

Within a g i v e n l a k e , i n c r e a s e s i n

often r e f l e c t increased photosynthesis,

while declines often

accompany i n c r e a s e d r e s p i r a t i o n . Carbon

dioxide

on b i c a r b o n a t e s .

dioxide

living

It i s a l s o added t o t h e w a t e r by t h e a c t i o n of added

organisms. acids

i s a n end p r o d u c t of r e s p i r a t i o n by

less

is

atmospheric

than

pressure

supersaturated

with

The s a t u r a t i o n c o n c e n t r a t i o n of

1.1 mg/l (Lind,

at

1979).

normal

carbon

temperatures

Waters

are

and

frequently

c a r b o n d i o x i d e when r e s p i r a t i o n

rates

are

high. The a l k a l i n i t y of w a t e r r e p r e s e n t s t h e q u a n t i t y and k i n d s of compounds p r e s e n t t h a t c o l l e c t i v e l y i n c r e a s e t h e pH. of

i o n s c o n t r i b u t e most t o t o t a l a l k a l i n i t y :

-

bicarbonate

(HCO

bicarbonates

are

-

),

and

hydroxide

Three kinds

-

carbonate

(CO ), 3 C a r b o n a t e s and

(OH ).

3 common t o most w a t e r s while

contributions

by

h y r o x i d e s a r e u s u a l l y minimal. The

vertical

alkalinity

in

the

distribution

water

column

b i o l o g i c a l l y mediated r e a c t i o n s .

of is

carbon

dioxide,

strongly

pH

and

influenced

by

Most c o n s p i c u o u s i s t h e u p t a k e

t h r o u g h p h o t o s y n t h e s i s i n t h e e u p h o t i c z o n e , which r e d u c e s

of CO L

b o t h CO

and a l k a l i n i t y w h i l e i n c r e a s i n g pH.

In

contrast,

the

. l

L

release

of

CO

during r e s p i r a t i o n i n deeper water decreases 2 and i n c r e a s e s a l k a l i n i t y .

pH

, pH and a l k a l i n i t y v a l u e s i n both 2 u n i f o r m t h r o u g h o u t t h e water column ( F i g . 1 2 a , b ) .

During basins

the winter,

are

CO

Values

o f CO

a r e low i n b o t h b a s i n s , w i t h s l i g h t i n c r e a s e s a t 2 t h e bottom c a u s e d by r e s p i r a t i o n i n o r n e a r t h e s e d i m e n t s . The pH

b o t h b a s i n s r a n g e d from 8.7-8.8.

in

Alkalinity values

for

b o t h b a s i n s a r e a l s o similar, r a n g i n g from 100-118 mg/l. D u r i n g summer,

CO

was e l e v a t e d i n t h e h y p o l i m n i o n , a s was 2 110-118 m g / l ) , w h i l e pH v a l u e s d e c l i n e d ( F i g .

a l k a l i n i t y (range: 12c,d). to

Further i n c r e a s e s i n l a k e productivity can be

expected

and t h e d e c l i n e i n pH

a c c e n t u a t e b o t h t h e i n c r e a s e i n CO

in

2 the

a s s o c i a t e d w i t h t h e i n c r e a s e d d e c o m p o s i t i o n of

hypolimnion,

o r g a n i c matter u t i l i z e d i n r e s p i r a t i o n . Nitrogen

The major f o r m s o f n i t r o g e n u s u a l l y measured i n f r e s h water include

dissolved

inorganic

and p a r t i c u l a t e

nutrients

ammonia

and

organic

nitrogen,

nitrate.

and

The

the

combined

measurement o f b o t h i n o r g a n i c and o r g a n i c n i t r o g e n i s r e f e r r e d t o

as

total

dissolved nitrogen

N i t r o g e n i s a l s o a b u n d a n t i n w a t e r as

nitrogen. gas

,

N

2 fixation

b u t t h i s form c a n o n l y b e a small number of

by

utilized

blue-green

the

through

algae

and

bacteria.

(NO ), although usually present in low 3 c o n c e n t r a t i o n s i n n a t u r a l waters, i s o f t e n t h e most a b u n d a n t Nitrate

inorganic

form

of t h e element.

t o be similar i n most l a k e s .

tends exceeds

combined

of

nitrate

inflow

usually

nitrogen

release

In winter,

and i s s u p p l e m e n t e d by

a l g a l uptake,

from t h e s e d i m e n t s . than

The s e a s o n a l c y c l e

I n summer, n i t r a t e u p t a k e i s u s u a l l y f a s t e r

inputs,

and c o n c e n t r a t i o n s i n t h e

water

column

therefore decline.

M a j o r s o u r c e s of n i t r a t e f o r l a k e s a r e r i v e r

i n f l o w s , d i r e c t p r e c i p i t a t i o n and groundwater.

(NH

) i s a l s o t a k e n up a s a nutrient by 3 and may a l s o be c o n v e r t e d t o n i t r a t e by b a c t e r i a l

Ammonia phytoplankton

It p e r s i s t s , however, as a major e x c r e t o r y p r o d u c t o f

oxidation.

a q u a t i c organisms and t h e end p r o d u c t of t h e breakdown of o r g a n i c nitrogen.

The amount of ammonia p r e s e n t

t h u s depends l a r g e l y on

t h e r e l a t i v e r a t e s of t h e s e p r o c e s s e s . Seasonal patterns

cycles

depending

of on

ammonia the

usually

trophic

follow

state

of

one

the

of

two

lake.

In

o l i g o t r o p h i c l a k e s , ammonia p e r s i s t s a t low l e v e l s t h r o u g h o u t t h e year,

v a r i e s l i t t l e with depth.

and

contrast,

eutrophic

lakes,

by

summer v a l u e s of ammonia a r e u s u a l l y much lower i n t h e

epilimnion

t h a n i n t h e hypolimnion owing t o t h e d e c o m p o s i t i o n of

o r g a n i c m a t t e r s e t t l i n g t o t h e bottom, concentrations

may

major

of

sources

precipitation, inputs

In

often

and d u r i n g w i n t e r ammonia

i n c r e a s e t o l e v e l s exceeding ammonia

atmospheric contain

to

lakes

are

1 mg/l.

streams,

inflowing

d u s t and n i t r o g e n f i x a t i o n .

much h i g h e r l e v e l s

of

The

ammonia

Sewage than

of

nitrate. Nitrate ug/l winter

for

concentrations

the

North and South b a s i n s 13a,b),

(Fig.

13c,d).

expected (Fig. 11-21

ug/l

respectively noted

near

ranged from 36-95 u g / l

and

12-36

(Fig.

and

respectively

declined s l i g h t l y during

and

23-393

during summer

the as

Ammonia l e v e l s d u r i n g w i n t e r r a n g e d from ug/l for the

13a,b).

A

North

and

South

basins,

s l i g h t i n c r e a s e i n ammonia

t h e bottom i n both b a s i n s ,

produced l a r g e l y by

was the

d e c o m p o s i t i o n of o r g a n i c n i t r o g e n . v a l u e s f o r ammonia were 6-51 u g / l and 18-66 u g / l f o r

Summer the

North

and S o u t h b a s i n s ( F i g .

13c,d),

and

show

a

slight

were

Hypolimnetic v a l u e s

increase

over w i n t e r c o n c e n t r a t i o n s .

elevated

i n comparison t o t h o s e of t h e e p i l i m n i o n i n b o t h b a s i n s

( F i g . 13c, d )

.

T o t a l n i t r o g e n d u r i n g w i n t e r a v e r a g e d 1 6 3 u g / l and 214 far

the

North and S o u t h b a s i n s ( F i g .

13a,b).

ug/l

The North

basin

p r o f i l e shows a g r a d u a l i n c r e a s e toward t h e bottom s e d i m e n t s , and an

even

seen

sharper increase i n t o t a l nitrogen near the

i n t h e South basin.

varied

from

85-245

respectively (Fig. relatively

constant

near t h e sediments.

ug/l

13c,d).

Total nitrogen values for

the

North

and

bottom

during South

summer basins,

were

Concentrations i n both basins

i n t h e epilimnion,

with gradual

is

increases

Fluctuations i n t o t a l nitrogen coincided, a s

e x p e c t e d , w i t h f l u c t u a t i o n s i n n i t r a t e and ammonia l e v e l s . Phosphorus P h o s p h o r u s i s a common l i m i t i n g n u t r i e n t i n many l a k e s owing to

its

waters

f r e q u e n t geochemical s c a r c i t y . present primarily a s

is

inorganic these,

Phosphorus

organically

p o l y p h o s p h a t e s and a s i n o r g a n i c the

form

most

usable

as

a

in

bound

natural

phosphorus,

orthophosphates. nutrient

is

Of

inorganic

o r t h o p h o s p h a t e (PO ) , which o f t e n c o n s t i t u t e s a s m a l l f r a c t i o n of 4 t o t a l phosphorus. The v e r t i c a l d i s t r i b u t i o n of phosphorus, nitrogen,

much l i k e t h a t

v a r i e s according t o lake trophic s t a t e .

lakes

usually

depth.

More

Oligotrophic

show l i t t l e v a r i a t i o n i n phosphorus c o n t e n t productive lakes,

i n contrast,

of

accumulate

with large

amounts

of

phosphorus

in

the

hypolimnion

during

summer

stratification.

is

Phosphorus

added

p r e c i p i t a t i o n , overland regeneration.

Most

to

a

runoff, natural

lake

primarily

groundwater, hydrological

through sedbent

and

inputs

have

low

R e s i d e n t i a l development s u r r o u n d i n g a k k e ,

phosphorus c o n t e n t .

however, u s u a l l y r e s u l t s i n i n c r e a s e s i n phosphorus d i s c h a r g e d t o l a k e s i n approximately d i r e c t proportion t o population (Weibel,

1969).

fertilization,

Inputs storm

of

sewer

phosphorus

drainage,

and

from

densities

heavy

sewage

lawn all

can

s i g n i f i c a n t l y e l e v a t e o v e r a l l phosphorus a v a i l a b i l i t y . Winter

o r t h o p h o s p h a t e v a l u e s i n b o t h b a s i n s of H i g g i n s Lake w i t h mean v a l u e s of 5.3 and 6.2 u g / l f o r t h e North

a r e v e r y low,

and S o u t h b a s i n s ,

14a,b).

respectively (Fig.

v a r i a t i o n with depth i n t h e South b a s i n , increase during

at winter

was s i m i l a r l y low,

while showing a

basin.

t h e bottom of t h e North

There w a s l i t t l e

Total

slight

phosphorus

w i t h mean v a l u e s o f 1 8 . 7

and

1 5 . 2 u g / l f o r t h e North and South b a s i n s , r e s p e c t i v e l y . Summer o r t h o p h o s p h a t e v a l u e s f o r b o t h b a s i n s show more two-fold i n c r e a s e o v e r w i n t e r v a l u e s a t all d e p t h s ( F i g . probably population

owing

in

during

part

to

summer.

the In

greatly the

North

increased basin

than

14c,d), riparian

the

mean

o r t h o p h o s p h a t e c o n c e n t r a t i o n i n c r e a s e d from 5.2 u g / l i n w i n t e r t o a

summer v a l u e of 11.3 u g h .

hypolimnion were a p p a r e n t . the

Again,

s l i g h t increases

in

the

The summer o r t h o p h o s p h a t e p r o f i l e f o r

S o u t h b a s i n showed pronounced i n c r e a s e s i n t h e

hypolimnion.

T o t a l phosphorus v a l u e s d u r i n g summer i n t h e South b a s i n l i k e w i s e

show a t l e a s t a two-fold i n c r e a s e o v e r w i n t e r c o n c e n t r a t i o n s , and

t h e sediment-water i n t e r f a c e . and

at

s u b s t a n t i a l l y w i t h d e p t h t o a maximum of 1 8 3 . 1 u g / l

increase

total

phosphorus

in

I n c r e a s e s i n both

t h e hypolimnion c a n

orthophosphate be

expected

if

f u r t h e r n u t r i e n t e n r i c h m e n t of t h e l a k e o c c u r s . Phytoplankton They

P h y t o p l a n k t o n a r e a l g a e suspended i n t h e w a t e r column.

a r e t h e most i m p o r t a n t primary p r o d u c e r s i n most l a k e s , and t h e i r growth

provides

invertebrates

the

and

principal

f i s h (Fig.

basis

15).

for

the

growth

of

Phytoplankton s p e c i e s

are

found v a r y i n g q u a n t i t i e s a c c o r d i n g t o s e a s o n and l a k e t y p e .

The

dominant a l g a l g r o u p s i n l a k e s of n o r t h e r n Michigan a r e t h e g r e e n algae

(Chlorophyta),

blue-green

algae

( E a c i l l a r i o p h y t a ) , and golden-brown Several

(Cyanophyta),

diatoms

a l g a e (Chrysophyta).

k i n d s of e n v i r o n m e n t a l f a c t o r s i n t e r a c t t o r e g u l a t e

s p a t i a l and t e m p o r a l growth.

A s w e l l a s t e m p e r a t u r e and l i g h t , a

number o f o r g a n i c and i n o r g a n i c n u t r i e n t s p l a y c r i t i c a l r o l e s the

success

of a l g a l p o p u l a t i o n s . increased,

rates

of

A s t h e supply algal

in

of

limiting

production

likewise

nutrients

is

increase.

Increased phytoplankton d e n s i t i e s p r o g r e s s i v e l y reduce

l i g h t p e n e t r a t i o n and t h e d e p t h of t h e e u p h o t i c zone. eventually

reached

at

which

self-shading

A p o i n t is

inhibits

i n c r e a s e s i n p r o d u c t i v i t y i n very e u t r o p h i c l a k e s ,

further

r e g a r d l e s s of

n u t r i e n t supply (Wetzel, 1983).

A observed

distinct

p e r i o d i c i t y i n t h e biomass o f p h y t o p l a n k t o n

i n temperate l a k e s .

Growth i s g r e a t l y reduced

w i n t e r by low l i g h t and c o l d t e m p e r a t u r e s .

is

during

P h y t o p l a n k t o n numbers

n o r m a l l y peak d u r i n g s p r i n g , s u p p o r t e d by i n c r e a s i n g t e m p e r a t u r e s

and

light,

nutrients

and by t h e mixing upward i n t o t h e e u p h o t i c from

phytoplankton

the

bottom

biomass

waters.

The

spring

zone

of

maximum

of

i s u s u a l l y f o l l o w e d by a p e r i o d of

lower

biomass d u r i n g summer, a s n u t r i e n t s u p p l i e s a r e d e p l e t e d by a l g a l uptake,

algal

consumption by z o o p l a n k t o n

increases,

and

many

a l g a e s i n k t o t h e bottom. In consists

oligotrophic lakes, of

t h e p h y t o p l a n k t o n community u s u a l l y

cryptomonads and s m a l l g r e e n a l g a e

during

winter,

p r i m a r i l y of d i a t o m s i n s p r i n g , and of g r e e n a l g a e d u r i n g summer. Accumulations of a l g a e a t t h e t h e r m o c l i n e a r e t y p i c a l i n

summer,

owing t o t h e g r e a t e r d e n s i t y (and t h u s buoyancy) of c o l d e r w a t e r . Chlorophyll-a

i s t h e primary pigment u s e d by

The measurement of c h l o r o p h y l l - a t h u s s e r v e s

f o r photosynthesis. as

a c o n v e n i e n t i n d e x of t o t a l a l g a l biomass,

of

lake trophic status.

Survey

(1975)

phytoplankton

The U.S.

and by e x t e n s i o n ,

EPA National

has c l a s s i f i e d l a k e s according t o

Eutrophication the

following

summer c h l o r o p h y l l - a c o n c e n t r a t i o n s : 12 u g / l = e u t r o p h i c . Chlorophyll-a low, in

values

f o r b o t h b a s i n s of H i g g i n s

are

u g / l w i t h a mean of 2.3 u g / l a d 2.4

r a n g i n g from 0.90-3.78

t h e North and South b a s i n s ( F i g .

i n d i c a t i v e of o l i g o t r o p h i c c o n d i t i o n s . viable

Lake

16c,f).

These v a l u e s

are

The c o n t i n u e d p r e s e n c e o f

a l g a e a t c o n s i d e r a b l e d e p t h i s a consequence of t h e

good

l i g h t p e n e t r a t i o n i n H i g g i n s Lake, and i s a g a i n c h a r a c t e r i s t i c of oligotrophic high uptake

at

waters.

Although a l g a l biomass i s

t h e thermocline,

not

r a t e s of p h o t o s y n t h e s i s and

a p p e a r t o be maximal,

accounting f o r t h e high

unusually nutrient dissolved

oxygen

and

low n i t r a t e ,

phosphate

and

silica

concentrations

between 8-12 m. Also d e p i c t e d i n F i g u r e 1 6 a r e phaeopigment v a l u e s f o r basins.

Phaeopigments

chlorophyll-a,

are

produced

by t h e

both

decomposition

of

and t h u s s e r v e a s a measure of t h e h e a l t h of

phytoplankton

community.

High

phaeopigment l e v e l s

the

are

often

c h a r a c t e r i s t i c of t h e d e c l i n e of t h e s p r i n g maximum, f o r example, or

may

indicate

unusually

heavy

grazing

by

zooplankton.

Phaeopigment l e v e l s i n H i g g i n s Lake a r e low i n most of t h e

water

column, p r o v i d i n g e v i d e n c e of a r e l a t i v e l y s t a b l e a l g a l community i n t h e d a y s p r i o r t o sampling. expected,

near

t h e bottom,

Phaeopigment v a l u e s i n c r e a s e , a s owing t o t h e d e c o m p o s i t i o n of a l g a e

which have sunk o u t of t h e w a t e r column d u r i n g p r e c e d i n g weeks. Zooplankton Zooplankton

are

microscopic

a l g a e o r smaller z o o p l a n k t o n ,

are

mm

in

individuals

on

and which i n t u r n a r e u t i l i z e d

as

protozoans,

( c l a d o c e r a n s and copepods). 1.0

feed

The c h i e f components of z o o p l a n k t o n

f o o d by most f i s h ( F i g . 1 5 ) . communities

length.

i n v e r t e b r a t e s which

rotifers,

and

crustaceans

Most zooplankton a r e a b o u t 0 . 5 mm t o

Zooplankton

abundances

range

from

l i t e r i n v e r y o l i g o t r o p h i c waters t o more

per



(UR 5 - 71) (6w- 71)

7-83 (20cm/50cm) w/l)

Table 6.

Site

(cont.)

Table 7.

Site

Periphyton growth on artificial substrates as represented by chlorophyll-a and phaeopigment values for the period of May-June,l983 in Higgins Lake, Michigan at 18 sites. Natural Substr2te

(mdm 1

Artificial Substrats-Pot (mdm 1 Chl-a Phaeo

Artificial Substrat?-Rock (ma/m Chl-a Phaeo

>

Chl-a

Phaeo

1

0.10

0.06

0.29

0.00

--

2

12.86

3.60

0.18

0.00

3

14.55

1.32

0.62

0.00

---

4

23.65

--

--

3.15

5

0.00

3.52

0.26

6

4.34 38-34

3.40

0.58

0.05

---

---

7

46.41

--

--

4.57

0.55

8

44.15

5 77 27 77

9.96

1.81

75

8.11

9

6.37

0.00

1.12

0.00

4.46

0.32

10

4.11

1.36

0.25

0.02

--

--

11

5.02

8.91

--

3 67

0.00

12

13.43

7.91

2.41

0.00

13

8.41

1.41

----

1.56

0.16

14

15-87

2.34

1.12

0.03

--

--

15

25.21

12.84

--

5.05

0.00

16

6.40

0.15

5.12

0.00

17

0 39

0.19

---

----

2.25

0.00

18

26.03

5.21

0.79

0.00

2.12

0.00

'

18

77

---

30

---

-'

0.38

Table 8.

Site

Periphyton growth on artificial substrates as represented by ash-free dry weight values for the of May-June, 1983 in Higgins M e , Michigan at 18 sites.

Artificial

Artificial

Table 9.

Carparison of nutrient conctmtratiaw very close to shore (20 an depth) and further f m shore (50 an depth) on July 22, 1983 with cancentrations in the euphotic zone of the North and South basins on July 19, 1983: x(S.E.1

-

20 an: 50 an:

N. & S, Basins

Table 10. Mean n u t r i e n t c o n c e n t r a t i o n s , based upon a l l 3 sampling d a t e s , f o r 18 nearshore s i t e s , Higgins Lake, Michigan. Site

Figure 1.

A n outline of the State of lichigan indicating

the location of Higgins Lake, Michigan.

SCALE

Figure 2.

Bathymetric map o f Higgins Lake, ?v?ichigan.

\ -ins

Lake

WETLANDS 1.0 mi

0 SCALE

Figure 4.

Topographic map of the Higgins Lake, Michigan watershed. 74

Figure

5.

Drainage patterns within the Higgins Lake, Michigan watershed. The arrows indicate the direction.ofnet groundwater flow.

Grayling-Montcalm Grayling -Rubicon

Scale

Montcalm- Graycalm

Figure

6.

Soil associations of t h e Higgins Lake, Michigan watershed.

76

LAND US€ TYPES

E l

Figure

7.

-w#dl

Agricultural

Scale

Land use types within the Higgins Lake, Michigan watershed.

Figure 8.

A

-

North Hole Sampling Site

B

-

South Hole Sampling Site

An outline of Higgins Lake, Michigan indicating the location of the deepwater sampling stations utilized for this study.

NORTH BASIN Figure A

200

400

600

800

Figure 4 81-

16;.

20-

Figure

24-

--

Light profiles for Higgins Lake, Michigan. Figures A & C depict Secchi depth and light attenuation, Figures B & D depict light penetration. - 79

SOUTH BASIN Figure

Figure

Figure 9.

Light p r o f i l e s f o r Higgins W e , Michigan. 80

NORTH BASIN -WINTER I

.

,

40

.

,

Figure A

.

.

.

.

4

80 . 8

.

,

$

l2.0 m

v

12

"c u

-nluE

SOUTH BASIN-WINTER l

Figure B

Figure 10.

.

.

.

.

.

.

.

.

.

.

.

f

-

rramsuTIRI

00

mpr~

'c n

Temperature, dissolved oxygen, and per cent saturation depth profiles for Higgins Lake, Michigan.

NORTH BASIN -SUMMER I

4,

.

.

.

Figure C

8.

,

12.

16.

.

4

l

'

"

"

20 .

,

24 .

,

22

8

"

'

"

"

"

80

40

28 Z wpwnrwre 'c . d

.

'

SCOWL-

-

~

120

160nsm~morr-

SOUTH BASIN-SUMMER t

4

.

.

.

Figure D

8 .

,

12 ,

.

4

~

"

'

"

40

Figure 10.

S .

.

20 .

.

8

"

"

"

"

80

24 ,

I2

"

,

28 .

.

g - ' c u I

16 w

WL

u

~

120

%snn.~~*r

-

~em~eratiredissolved oxy en, and oer cent saturation depth prof~lesFor Higgins Lake, Michigan, 82

NORTH BASIN-WINTER Figure

SOUTH BASIN-WINTER

4

F i g u r e 11.

8

U

-

I a-m g / i l 6 s q w ~ n

H a r e s s , ~ o n d ut i v i t s i l i c a an@ c h l o r i d e dep% p r o f l l l e s Eor ~ i & i n s ~ a k 6 ,Mlchlgan.

NORTH BASIN-SUMMER b

.

.

80

.

.

Figure C

L60 .

.

I

.

.

I

.

I

80

40

a40 I .

~clmaimm~rmrem m .

i

160-~==+-

120

SOUTH BASIN-SUMMER t

160

%O .

.

m

a

Figure D

.

.

.

"

'

"

"

Figure 11.

"

'

4

"

"

.

.

.

.

i

8

4 I

.

80

40

i

.

I

CL-

WL

a40 l20 .

320onarerrvrrr-m -

4

l

a

,

-

m

~

~

-

-

8 l2 1 6 % ~ n ~ Hardness, conductivity, silica, and chloride depth profiles for Higgins Lake, Michigan.

NORTH BASIN -WINTER 40 b

Figure A

.

.

.

.

.

4

.

.

.

80 .

.

.

.

l2a .

.

K

8

160 .

3

-

W W ? . V L U

* -a+ m-

-

*WL

SOUTH BASIN-WINTER Figure

Figure 12.

q d free carbon.dioxide depth pH, alkalini profiles for lgglns Lake, Mlchlgan.

7ft

NORTH BASIN-SUMMER Figure C

SOUTH

BASIN -SUMMER

Figure D

Figure 12,

pH, glkal'nit a d f ee ca bo dioxide depth profiles *or %iggms h e , filcRigan.

WRTH BASIN-WINTER Figure

-

SOUTH BASIN WINTER Figure

ill!

Figure 13.

n i t r a t e , and t o t a l n i t r o g e n depth p r o f l l e s f o r Hlggins Lake, Michigan.

Armnogia,

NOfTH BASIN -SUMMER Figure

-

SOUTH BASIN SUMMER Figure

Figure 13.

Ammonia, nitrate, and total nitrogen depth profiles for Hlggins Lake, Michigan. 88

NORTH BASIN- WINTER

Figure

SOUTH BASIN -WINTER Figure

Figure 14.

Orthophosphate and total phosphorus depth profiles for Hlgglns Lake, Michigan,

NORTH BASIN- SUMMER Figure C

-

SOUTH BASIN SUMMER Figure D

Figure 14.

Orthophosphate and total phosphorus depth profiles for Hlgglns Lake, Michigan.

trout, perches, smaU mouth bass, large mouth bass, and pike.)

A

smnll Fish

(ie.

larval and pre juvenile stages of species; small minnows, ex.

(ie.

microscopic animals such a8 Daphnin and

(ie.

--

snails &d clams insect larvae wonns and some crustaceans) small

organic matter

Phytoplankton (algae) & Aquatic V a s c u l a r Plants

I

I

PRv

%

PRIMARY PROWCrKR$

Figure 15.

q

I

I

Generalized food web and energy-pyramid for Higgins Lake, Michigan depicting phytoplankton as primary producers for the system.

NORTH BASIN

Figure

Figure

--.

-*-

Figure 16,

4

-

Zooplankton and phytoplankton depth profiles for Higgins Lake, Michigan.

SOUTH BASIN Figure D

mdau

Dahl).

Boak

0,

Figure

--a

-*-

Figure 16.

6

-

Zooplankton and phytoplankton depth profiles for Higgins Lake, ~ichigan.

Figure

Figure B

Figure C

Figure 17.

1983

Ternperawe dissolved oxy en, wd er cent saturatlon depth profzles For ~ l ~ ~ iLake R s since 1974.

Figure A

'.+'a-

Figure

wem e -

Figure C

F i g u r e 18.

1983

Ammonia, n i t a t e , f o r H l g g i n s f a k e s%$et?@@. 95

nitrogen depth p r o f i l e s

Figure

Figure

Figure

Figure 19.

Orthophosphate and total phosphorus depth profiles for Higgins Lake, Michigan since 1974. 96

Figure 20.

Predicted trophic status of Higgins Lake and several other Northern Michigan lakes based upon Carlson's index.

Growth Isoclines (Essential Resources)

Figure 21.

Growth isoclines associated with the nutrients nitrogen and phosphorus indicating optimal algal growth at a ratio of 15:l.

NORTH BASIN Figure

Figure B

SOUTH BASIN Figure

Figure

Figure 22.

24

cimm

Total nitrogen to total phosphorus ratio and light penetration depth profiles for Higgins Lake, Michigan. 99

1-St. Louis 2-Minto Pointe 3-Maple 4-Lone Pine 5-Battin Marsh 6-west 7-Newman 8-Big Creek 9-Little Creek

Figure 23.

11-conference Center Crk. 12-Cedar 13-Lansing 14-Cottage Grove Assoc. 15-Henry 16-Hitchcock 17-Gallagher 18-2nd

An outline of Higgins W e , Michigan indicating the location of the 18 nearshore sampling sites utilized for the study.

INSPECTION MANHOLE

Figure 24.

An example of a functioning septic system. 101

A- Rubber Stopper B - Clay flower Pot C - Plastic Petri Dish D ~ubberStopper E -Wooden Dowel

-

Figure 25.

Artificial substrates used at 18 sites, i n c l u d ing road ends, residential locations, and i n fluent streams.

MAY

Figure 26.

JUNE

J ULY

Changes-in nearshore mean phosphate and nitrate concentrations during the Summer of 1983 in Higgins Lake, Michigan.

-

0 LAKE WATER Figure 27.

Control grid pot placement utilized for the nearshore nutrient limitation study at the Cottage Grove Association location.

Fig. 28.

Chlorophyll-a and ash-free dry weight of periphyton accumulations on Flower Pot Substrates, Cottage Grove Site.

105

Figure 2 9 .

Past and projected population trends for the Higgins W e , Michigan watershed, 106

APPENDIX A Surmary of l?e&hcw's

for ~ i - s

(1980) Phosphorus Rudqet -1

Lake.

1) The model predicts ambient concentrations of phosphorus (P) as ug/l in the lake, based upon the mathematical formulation: where qs is water loading (f/yr) L is P-loading (gm/m /yr) Vs is P settling velocity - 11.6 m/yr

-

2) In order to calculate L, it is necessary to obtain estimates of areal dimensions of Forested, Agricultural, and Urban land within the watershed, and multiply these values by appropriate P-loading coefficients, For Higgins Lake these were: Land Use Type

Agriculture Forest Urban

Area(ha)

"Most Likely" Export Coeff, (ka/ha/vr)

Total Yearly

8.0 (0.01%)

20

.40

8354

.20

1671.2 (42.49%)

389

90

350.7 (8.89%)

Phosphorus inputs via precipitation were estimated from rainfall valoume and concentration. Inputs from septic tanks assumed a P-loading value of 0.6 kg/capita. An estimated 1447 residents in houses along the shoreline, expressed on a yearly basis, and a soil retention capacity of 25% were used in the computations: Source

Precipitation

Input Calculations

Total Yearly

( .30 kg/ha/yr) (4175 ha)

1253 (32.86%)

septic Tanks

TOTAL 3933 (100.00%)

3) The total phosphorus loading estimate, when divided by lake surface asea, resulted in an areal loading estimate (L) of 0.97 gm/m /yr. This in turn allowed a prediction of 7.8 ug/l PO4-P ambient concentration in the water column.

APPENDIX B A SHORELINE SURVEY OF HIGGINS LAKE, MICHIGAN The shoreline of Higgins Lake, Michigan was divided into a series of one mile segments and surveyed for the following: 1) Densities and locations of residences along the,shoreline

2) Type of substrate(s)

3) Presence and relative abundance of Clado~hora 4) Presence of marl The maps in this appendix may be interpreted using the following information: 1) Densities and locations of residences along the shoreline are denoted as dots along the shoreline in the appendix. 2) Substrate types are denoted by the following symbols: Sand Gravel (0-5 cm)

m..

Cobble (5-20 cm)

***

Rocks (greater than 20 cm) A A A

3) Presence and abundance of Cladophora is denoted by the following symbols:

I (slight growth on few rocks) A A A I1 (Slight growth on many rocks) I11 (Nonfilamentous green bands) 0 0 0 IV (Filamentous green bands)

***

4 ) The presence of marl is noted in the Comments section

for each segment. Also noted in the Comments section for each sement are studv sites utilized, presence and general location Gf surface watkr inflows, and the presence of detritus.

TIII;E

NUMBER 1

1) Much floating dead Cladophora between Lincoln and Helen Avenues. 2) Heavy marl deposits between Helen and Dunlop Avenues.

WAUKEGON

. ..

.. CHICAGO

..

MILE NUMBER 2

1) Some floating dead Cladophora between St. Louis and Waukegon Avenues. 2) Heavy marl deposits-between Washington and Waukegon Avenues. 3) Septic tank site - St. Louis Avenue

MILE NUMBER 3

1) Intermediate marl deposits throughout

entire segment, 2) Road end site - Minto Pt. Road

MILE NUMBER 4

1) Heavy marl deposits between Naple Avenue and Pt. Detroit. 2 ) Road end site - Maple Avenue 3) Road end site - Lone Pine Avenue

MILE NUMBER 5

-

1) Surface water inflow s i t e B a t t i n Drain 2 ) Water g r e a t l y d i s c o l o r e d n e a r B a t t i n

Drain

MILE NUMBER 6

1) Heavy s h o r e l i n e e r o s i o n from wave a c t i o n throughout e n t i r e segment.

MIE3 NUMBER 7

1) Light marl d e p o s i t s throughout e n t i r e segment.

*

MICHIGAN

MILE NUMBER 8

1) Light marl deposits throughout entire segment. 2) ~ e a v yshoreline detritus band between Tie and Michigan Avenues. 3) Road end site-- West Avenue

PUBLIC FlSHlN

8

MILE NUMBER 9

1) Many heavily wooded lots throughout segment. 2) Heavy shoreline detritus band throughout segment. 3) Intermediate marl deposits throughout segment. 4 ) Road end site Newman Avenue

-

3

WILSON:

1) Light s h o r e l i n e band of d e t r i t u s through-

o u t segment.

2 ) S e p t i c tank s i t e

-

Stuckey Avenue Big and

3 ) Surface w a t e r i n f l o w s i t e s L i t t l e Creeks

-

MILE NUMBER 11

1) Light detritus band throughout entire segment. 2) Eight surface water outflows located along segment.

MILE NUMBER 12

1) Intermediate marl deposits throughout entire segment. 2) Light detritus band throughout entire segment. 3) Surface water inflow site - Conference Center Creek 4 ) Septic tank site - Cedar Avenue 5 ) Road end site - Lansing Avenue

MILE NUMBER 13

1) Heavy marl deposits throughout entire

wooded area. area has extremely steep grade.

COTTAGE GROVE ASSOCIATION

z T -4 OC

MIU NUMBER 14

1) Heavy marl deposits throughout entire segment. 2) Control site - Cottage Grove Association 3) Septic tank site - H e m j Avenue

MILE NUMBER

15

1) Light detritus band throughout entire segment.

Z

3 0 Z

Y

NEWMAN

1) Large condominium near northwest end of segment. 2) Septic tank site - Gallagher Avenue

MIIE NUMBER 18

1) Light detritus barld throughout entire segment. 2) Intermediate marl deposits throughout entire segment.

CHARLES

+aai3 %$-

1) Heavy marl deposits throughout entire segment. 2) Septic tank site 2nd Avenue

-

1) Heavy marl deposits throughout entire segment.

z 8 U

SOUTH HlGGlNS STATE PARK

z

I

4

1nL;E

NUMBER 21

*-COMMENTS

***

1) Light marl deposits throughout entire segment.

THE UNIVERSITY OF MICHIGAN

,Q

RENEW PHONE 764-1494 DATE DUE

2 3 1994 MAY 1 6 1996

I

I

I /

I

%!BE lmGETs;Tm 16s:-

m m u fSLasD

Leelanau Co., Michigan F

BRIAN

by

T. E~AZL,ETT

University a£ Michigan -Biological Station 1983

3. LAKEl PLAIN WOODS

I I

L

Miles