Using Ultrasonic Pulse and Artificial Intelligence to Investigate ... - MDPI

0 downloads 0 Views 2MB Size Report
Jul 9, 2018 - Artificial intelligence (AI) is used to assess these variables. The test .... into 50 mm × 45 mm × 120 mm cubes, as shown in Figure 1a. The cube ...
applied sciences Article

Using Ultrasonic Pulse and Artificial Intelligence to Investigate the Thermal-Induced Damage Characteristics of Concrete Li-Hsien Chen 1 , Wei-Chih Chen 2, *, Yao-Chung Chen 2 , Hsin-Jung Lin 2 , Chio-Fang Cai 3 , Ming-Yuan Lei 3 , Tien-Chih Wang 3 and Kuo-Wei Hsu 4 1 2 3 4

*

Department of Civil Engineering, National Taipei University of Technology, Taipei 10608, Taiwan; [email protected] Department of Civil and Construction Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; [email protected] (Y.-C.C.); [email protected] (H.-J.L.) Architecture and Building Research Institute, Ministry of the Interior, Taipei 23143, Taiwan; [email protected] (C.-F.C.); [email protected] (M.-Y.L.); [email protected] (T.-C.W.) Department of Computer Science, National Chengchi University, Taipei 11605, Taiwan; [email protected] Correspondence: [email protected].; Tel.: +886-273-331-41 (ext. 7516)

Received: 30 May 2018; Accepted: 6 July 2018; Published: 9 July 2018

 

Featured Application: The developed wave velocity ratio measured using the ultrasonic pulse technique can be used to identify the degree of thermal-induced damage in concrete. It has a potential applying to investigate the degree of damage to buildings and the maximum fire temperature after a fire disaster. Abstract: Using the traditional assessment method considering single-input and single-output variables, the correlation between ignition loss and maximum temperature is usually used to evaluate the fire-damage degree of concrete. To improve this method, multi-input and multi-output variables are examined in this study using a newly-developed experiment consisting of a thermo-induced damage test, ultrasonic pulse (UP) measurement technique, and uniaxial compressive test. The input variables include the designed strength, rate of heating, maximum temperature, and exposure time. The output variables include the stiffness, strength, toughness, and ratio of shear wave velocity to pressure wave velocity (Vs /Vp ). Artificial intelligence (AI) is used to assess these variables. The test results show that the stiffness, strength, and toughness decreased with an increase in maximum temperature. The measured Vs /Vp has a high positive correlation with maximum temperature and the reduced ratio of stiffness, strength, and toughness. This correlation was also identified using AI analysis. The findings in this study suggest that the wave velocity ratio obtained using the UP technique can be applied to quantitatively evaluate thermal-induced damage in concrete. Keywords: thermal-induced damage; fire disaster; ultrasonic pulse; wave-velocity ratio; artificial intelligence; WEKA

1. Introduction A reinforced concrete (RC) structure is the main system for buildings and construction in Taiwan. The quality/quantity evaluation of fire-induced damage in RC structures is important for living safety. Tovey [1] proposed several methods such as the color change identification method, core experiment, ultrasonic pulse (UP) measurement, and the correlation of concrete strength reduction with temperature to evaluate the degree of fire-damage. However, the color change identification Appl. Sci. 2018, 8, 1107; doi:10.3390/app8071107

www.mdpi.com/journal/applsci

Appl. Sci. 2018, 8, 1107

2 of 10

method, core experiment, and UP measurement are not widely used due to their low accuracy [2]. The correlation between the ignition loss (weight loss) and the maximum fire temperature was usually investigated and used to evaluate the degree of fire-damage in past decades [3,4]. With the development of science and technology, the UP technique with a high accuracy has been developed and used as a non-destructive detection technique. However, the low correlation between pressure wave velocity (Vp ) measured using UP measurement and uniaxial compressive strength was found by some researchers [5–8]. Artificial Intelligence was then used to construct a model of Vp and strength relation [9,10]. In this study, the correlation between UP wave velocity ratio Vs /Vp (ratio of shear wave velocity to pressure wave velocity) and the maximum temperature, reduced ratio of stiffness, strength, and toughness of concrete subjected to thermal damage was investigated. A new thermo-solid damage experiment that consisted of the thermo-induced damage test, UP measurement technique, and uniaxial compressive test was established. Furthermore, to identify these experimental results, the data mining/machine learning method was used to evaluate the correlation between thermal conditions (the rate of heating, maximum temperature, exposure time, as well as cooling condition), mechanical parameters (stiffness, strength, and toughness), and the UP wave velocity ratio. 2. Mechanical Behavior of Thermal-Induced Damage in Concrete The thermal-induced damage process in concrete could be defined as the rate of heating, maximum temperature, exposure time, and cooling method. The effect of these four conditions on the mechanical behavior of concrete is defined as follows. 2.1. Heating Rate (Rheat ) The temperature difference between the surface and the center of the specimen generates thermal stress, causing crack formation. With a high heating rate, more cracks are formed, thus reducing the concrete strength. This mechanical behavior was observed by Anderberg and Thelandersson [11] who conducted compressive testing with different heating rates for concrete. 2.2. Maximum Temperature (Tmax ) The maximum temperature is the main factor that reduces concrete strength. High temperature makes the bonded water between the cement and particle material disappear and results in particle phase change. A crack is formed at the interface of these materials within the concrete. In general, with higher maximum temperature treatment, a lower stiffness and strength are produced [3,12]. 2.3. Exposure Time (Etime ) Mohamedbhai [13], who conducted the heat-driven-damage test with different maximum temperatures (200, 400, 600, and 800 ◦ C) and exposure times (1, 2, 3, and 4 h), indicated that concrete strength was reduced at the maximum temperature range from 300 ◦ C to 600 ◦ C with a 2 h exposure time. 2.4. Cooling Method (Mcool ) After the heat treatment, different cool down rates will also have different temperature effects on the specimen surface and center, inducing secondary damage in the concrete. The three cooling methods include cooling in a furnace, cooling in air, and cooling in water. 3. Thermal-Solid Damage Experiment Thermal-solid damage experiments were conducted to investigate the thermal-induced characteristics of concrete. The uniaxial compressive test (stress-induced damage) was conducted after specimens were subjected to heating (thermal-induced damage) under different thermal-conditions (Table 1). Tests were designed based on the mechanical behavior of thermal-induced damage described

Appl. Sci. 2018, 8, x FOR PEER REVIEW    Appl. Sci. 2018, 8, 1107

3 of 10  3 of 10

conditions  (Table  1).  Tests  were  designed  based  on  the  mechanical  behavior  of  thermal‐induced  damage  Section  2. the During  the  testing,  the  circumferential  extensometer  was  used  to  in Sectiondescribed  2. Duringin  the testing, circumferential extensometer was used to stabilize crack growth. stabilize crack growth. Furthermore, after heating treatment, ultrasonic pulse measurement was used  Furthermore, after heating treatment, ultrasonic pulse measurement was used to find the correlation to find the correlation between UP waves and mechanical properties.    between UP waves and mechanical properties. Table 1. Experimental conditions and measurement. Table 1. Experimental conditions and measurement.  

Material  Material

Thermal-Solid Damage Method Thermal‐Solid  Damage Method 

Measurement Measurement 

Concrete  qu = 70 MPa (designed strength)  Concrete qu = 70 MPa (designed strength) heating rate  Rheat = 5 °C/min  ◦ heating rate Rheat = 5 C/min maximum  Tmax = 25, 200, 300, 400, 500, 600, 800,  Tmax = 25, 200, 300, 400, 500, 600, thermal-induced thermal‐ maximum temperature temperature  1000, 1200 °C  800, 1000, 1200 ◦ C induced  exposure time  E time  = 300 min  exposure time Etime = 300 min cooling method  M cool :cool down in furnace  cooling method Mcool :cool down in furnace obtaining the stiffness, strength, and  obtaining the stiffness, strength, stress‐ uniaxial  stress-induced uniaxial compressive test and toughness after toughness after thermal‐induced  induced  compressive test  damage  thermal-induced damage ultrasonic pulse (UP) measure: VS , VP , VS /VP S, VP, VS/VP  ultrasonic pulse (UP)  measure: V

3.1. Thermo-Induced-Damage Concrete Specimen 3.1. Thermo‐Induced‐Damage Concrete Specimen  The concrete produced by Ya ReadyReady  MixedMixed  Concrete Corporation in Taiwan The 70 70 MPa MPa strength strength  concrete  produced  by Tung Ya  Tung  Concrete  Corporation  in  was used as the test material. Considering the size effect and end effect, the specimens were fabricated Taiwan was used as the test material. Considering the size effect and end effect, the specimens were  into 50 mm × 45 mm × 120 mm cubes, as shown in Figure 1a. The cube specimens were then placed fabricated into 50 mm × 45 mm × 120 mm cubes, as shown in Figure 1a. The cube specimens were  in an oven at 105 ± 5 ◦ C and remained there for 24 h to produce void water dissipation. The prepared then placed in an oven at 105 ± 5 °C and remained there for 24 h to produce void water dissipation.  specimens were used to simulate thermal-induced damage with different temperature conditions The prepared specimens were used to simulate thermal‐induced damage with different temperature  in a high temperature oven (Figure 1b). When the thermal-induced damaged specimen cooled, conditions in a high temperature oven (Figure 1b). When the thermal‐induced damaged specimen  ◦ C/min, exposure time the specimen was stored in vacuum packaging. The heating rate Rheat = 5heat cooled, the specimen was stored in vacuum packaging. The heating rate R  = 5 °C/min, exposure  E = 300 min, and maximum temperature T = 25, 200, 300, 400, 500, 600, 800, and 1000 ◦ C. max max = 25, 200, 300, 400, 500, 600, 800, and 1000 °C.  time time = 300 min, and maximum temperature T time E

  (a) 

  (b) 

Figure 1. 1.  Thermo-induced-damage Thermo‐induced‐damage  concrete  high  Figure concrete specimen  specimen preparation:  preparation: (a) concrete specimen;  (a) concrete specimen; (b)  (b) high temperature oven.  temperature oven.

3.2. Stress‐Induced Damage Test (Uniaxial Compressive Test)  3.2. Stress-Induced Damage Test (Uniaxial Compressive Test) Uniaxial  compressive  tests  were  conducted  after  thermal‐induced  damage  treatment.  The  Uniaxial compressive tests were conducted after thermal-induced damage treatment. multifunction, precision, high‐stiffness servo‐controlled hydraulic test system MTS 810 with a 1MN  The multifunction, precision, high-stiffness servo-controlled hydraulic test system MTS 810 with output  force  capacity  was  adopted  as  the  load  system.  A  circumferential  extensometer  (model  a 1MN output force capacity was adopted as the load system. A circumferential extensometer 632.92F‐05C, MTS Corp., Eden Prairie, MN, USA) was installed through the roller chain (Figure 2)  (model 632.92F-05C, MTS Corp., Eden Prairie, MN, USA) was installed through the roller chain and used to obtain the entire load curve. Data recorded by the extensometer indicates changes in the  (Figure 2) and used to obtain the entire load curve. Data recorded by the extensometer indicates circumference of the specimen during the test. The length increment was used as a feedback signal  changes in the circumference of the specimen during the test. The length increment was used as to automatically control the load output.  a feedback signal to automatically control the load output.

Appl. Sci. 2018, 8, 1107 Appl. Sci. 2018, 8, x FOR PEER REVIEW   

4 of 10 4 of 10 

Appl. Sci. 2018, 8, x FOR PEER REVIEW   

4 of 10 

  Figure 2. Uniaxial Compressive test with a circumferential extensometer.  Figure 2. Uniaxial Compressive test with a circumferential extensometer.   Figure 2. Uniaxial Compressive test with a circumferential extensometer.  3.3. Ultrasonic Pulse Measurement  3.3. Ultrasonic Pulse Measurement  

3.3. Ultrasonic Pulse Measurement    The  ultrasonic pulse pulse  measurement  principle  to  generate  a  vibration  source  with  a  fixed  The ultrasonic measurement principle is to is  generate a vibration source with a fixed frequency frequency by driving the piezoelectric material within the ultrasonic transducer (Figure 3b,c). When  by driving the piezoelectric material within the ultrasonic transducer (Figure The  ultrasonic  pulse  measurement  principle  is  to  generate  a  vibration  source 3b,c). with  a When fixed  the the transmitting transducer makes contact with one side of the test specimen, the vibration source is  frequency by driving the piezoelectric material within the ultrasonic transducer (Figure 3b,c). When  transmitting transducer makes contact with one side of the test specimen, the vibration source is the transmitting transducer makes contact with one side of the test specimen, the vibration source is  transmitted within the specimen material as a stress wave and received by the receiving transducer  transmitted within the specimen material as a stress wave and received by the receiving transducer on transmitted within the specimen material as a stress wave and received by the receiving transducer  on  the  other  the  specimen.  If  the  detected  is the known,  wave can velocity  can  be  the other side side  of theof  specimen. If the detected distancedistance  is known, wavethe  velocity be calculated. on  the   other  side  of  the  specimen.  If  the  detected  distance  is  known,  the  wave  velocity  can  be  calculated.  The speed of wave propagation will be affected by the type of medium. It is prevalent that the calculated.    fewerThe speed of wave propagation will be affected by the type of medium. It is prevalent that the  the voids and defects within the material, the higher the wave transmission speed [14–16]. The speed of wave propagation will be affected by the type of medium. It is prevalent that the  fewer the voids and defects within the material, the higher the wave transmission speed [14–16]. It  It should be noted that the generated stress wave type can be a pressure wave (P wave) defined as the fewer the voids and defects within the material, the higher the wave transmission speed [14–16]. It  should be noted that the generated stress wave type can be a pressure wave (P wave) defined as the  particles in the material vibrating along the wave propagation axis, or a shear wave (S wave) defined should be noted that the generated stress wave type can be a pressure wave (P wave) defined as the  particles in the material vibrating along the wave propagation axis, or a shear wave (S wave) defined  as wave vibration direction perpendicular to the wave propagation direction. particles in the material vibrating along the wave propagation axis, or a shear wave (S wave) defined  as wave vibration direction perpendicular to the wave propagation direction.  Ultrasonic pulse measurement was first used to detect defects in metal material in 1929. At present, as wave vibration direction perpendicular to the wave propagation direction.  measurement  was  used  to detect  detect  defects  metal  material  in  1929.  Ultrasonic  pulse  was first  first  used  to  defects  in in  metal  material  in  1929.  At  At  it hasUltrasonic  been used pulse  widely inmeasurement  civil engineering to evaluate rock quality, species, strength, and properties present, it has been used widely in civil engineering to evaluate rock quality, species, strength, and  present, it has been used widely in civil engineering to evaluate rock quality, species, strength, and  including density, porosity, and elastic modulus [17–19]. This study is the first attempt at using properties including density, porosity, and elastic modulus [17–19]. This study is the first attempt at  properties including density, porosity, and elastic modulus [17–19]. This study is the first attempt at  ultrasonic pulse measurement to examine the thermal-induced damage level of concrete. Ultrasonic using  ultrasonic  pulse  measurement to  to  examine  the  damage  level  of  concrete.  using  ultrasonic  pulse  the thermal‐induced  thermal‐induced  damage  level  of  concrete.  pulse measurement wasmeasurement  practiced in this examine  study using the UK-1401 dry point ultrasonic tester with Ultrasonic pulse measurement was practiced in this study using the UK‐1401 dry point ultrasonic  Ultrasonic pulse measurement was practiced in this study using the UK‐1401 dry point ultrasonic  P/S wave transmitted and received transducers from Acoustic Control Systems (ACS), as shown in tester with P/S wave transmitted and received transducers from Acoustic Control Systems (ACS), as  tester with P/S wave transmitted and received transducers from Acoustic Control Systems (ACS), as  Figure 3. The measured wave velocity and distance of UK-1401 ranged from 1000 to 9990 m/s and shown in Figure 3. The measured wave velocity and distance of UK‐1401 ranged from 1000 to 9990  shown in Figure 3. The measured wave velocity and distance of UK‐1401 ranged from 1000 to 9990  from 50 to 250mm, respectively. m/s and from 50 to 250mm, respectively.    m/s and from 50 to 250mm, respectively.   

 

 

(b) 

(b) 

  (a) 

  (c) 

 

 

Figure 3. Dry point ultrasonic tester:(a)  (a) device; (b) pressure wave transducer Figure 3. Dry point ultrasonic tester: (a) device; (b) pressure wave transducer of 100 kHz; (c) shear  (c)  of 100 kHz; (c) shear wave wave transducer of 50 kHz.  transducer of 50 kHz.

Figure 3. Dry point ultrasonic tester: (a) device; (b) pressure wave transducer of 100 kHz; (c) shear  wave transducer of 50 kHz. 

Appl. Sci. 2018, 8, 1107

5 of 10

4. Machine Learning

Appl. Sci. 2018, 8, x FOR PEER REVIEW   

5 of 10 

To find the correlation between the input and output variables in the thermal-induced damage 4. Machine Learning  experiment (Table 1), in this study, WEKA (Waikato Environment for Knowledge Analysis) developed To find the correlation between the input and output variables in the thermal‐induced damage  at the University of Waikato, New Zealand, was used as the machine learning/data mining tool [20,21]. experiment  in  this  machine study,  WEKA  (Waikato  Environment  Knowledge  Analysis)  WEKA performs (Table  several1),  standard learning tasks including datafor  preprocessing, classification, developed at the University of Waikato, New Zealand, was used as the machine learning/data mining  clustering, regression, feature selection, and visualization. The correlation of variables in WEKA was chosen tool [20,21]. WEKA performs several standard machine learning tasks including data preprocessing,  by finding a variable set that gives the maximum value in Equation (1). In Equation (1), correl is the classification, clustering, regression, feature selection, and visualization. The correlation of variables  function of correlation, Fi is the i-th input variable, T is the output variable, and Fj is the j-th input variable, in  WEKA  was  chosen  by  finding  a  variable  set  that  gives  the  maximum  value  in  Equation  (1).  In  respectively. In this study, the designed strength, ratei is the i‐th input variable, T is the output variable,  of heating, maximum temperature, and exposure Equation (1),    is the function of correlation, F time were variables; whereas the wave-velocity ratio, stiffness, strength, and toughness were output and Finput j is the j‐th input variable, respectively. In this study, the designed strength, rate of heating,  variables. Correlation is a measurement of the linear relationship between two variables. The target of maximum temperature, and exposure time were input variables; whereas the wave‐velocity ratio,  Equation (1) is to find a set of variables that are correlated to the output as much as possible, but correlated stiffness, strength, and toughness were output variables. Correlation is a measurement of the linear  relationship between two variables. The target of Equation (1) is to find a set of variables that are  to each other as less as possible. Such a set of variables is supposed to be more discriminative. correlated to the output as much as possible, but correlated to each other as less as possible. Such a  set of variables is supposed to be more discriminative.  ∑i correl ( Fi , T ) , i , Fj ∑i ∑ j,j6=∑i correl F ∑ ∑ ,

,

,



(1)

(1) 

5. Results and Discussions 5. Results and Discussions 

5.1. Experimental Results

5.1. Experimental Results 

The uniaxial compressive test was conducted on concrete after heat treatment. During the The uniaxial compressive test was conducted on concrete after heat treatment. During the test,  test, the circumference extensometer was used to stabilize the fracture propagation. The complete the circumference extensometer was used to stabilize the fracture propagation. The complete stress‐ stress-strain curve can therefore be obtained. Some basic mechanical parameters such as stiffness, strain curve can therefore be obtained. Some basic mechanical parameters such as stiffness, strength,  strength, and toughness can be defined, as shown in Figure 4. In Figure 4a, the peak point (P) and toughness can be defined, as shown in Figure 4. In Figure 4a, the peak point (P) value qu and the  value qu and the gradient at the half of qu (point E) were defined as the strength and the stiffness gradient at the half of qu (point E) were defined as the strength and the stiffness (elastic modulus),  (elastic modulus), respectively. In addition, the area under the OP curve in Figure 4a can be calculated respectively. In addition, the area under the OP curve in Figure 4a can be calculated as the toughness  as theat the pre‐peak stage (T toughness at the pre-peak stage (Tpre ), whereas the area under the OQ curve (Q is the point at pre), whereas the area under the OQ curve (Q is the point at half of q u after  half ofpeak) in Figure 4b is the post‐peak toughness (T qu after peak) in Figure 4b is the post-peak toughness (Tpost ). The influence of heat temperature post). The influence of heat temperature on stiffness,  on stiffness, strength, and toughness and its relation with the ultrasonic wave is discussed strength, and toughness and its relation with the ultrasonic wave is discussed as follows.    as follows.

E(0.5 qu ) 1

P (qu) Stress (MPa)

Stress (MPa)

P (qu)

m

Q (0.5qu)

Tpre

Tpost O

O

Strain (%)

 

(a) 

Strain (%)

 

(b) 

Figure  4.  Complete  stress‐strain  curve:  (a)  definition  of  stiffness  (E),  strength  (qu),  and  pre‐peak 

Figure 4. Complete stress-strain curve: (a) definition of stiffness (E), strength (qu ), and pre-peak toughness (Tpre); (b) definition of post‐peak toughness (Tpost).  toughness (Tpre ); (b) definition of post-peak toughness (Tpost ).

5.1.1. Relation of Loading Behavior and Heat Temperature 

5.1.1. Relation of Loading Behavior and Heat Temperature

Figure 5 shows the complete loading curve with different maximum temperatures obtained in 

this study, including the pre‐ and post‐peak loading processes. As expected, the stiffness, strength,  Figure 5 shows the complete loading curve with different maximum temperatures obtained in this study, including the pre- and post-peak loading processes. As expected, the stiffness, strength,

Appl. Sci. 2018, 8, 1107 Appl. Sci. 2018, 8, x FOR PEER REVIEW   

6 of 10 6 of 10 

and toughness decreased with an increase in maximum temperature. The reduced stiffness, 6 of 10  strength, and toughness decreased with an increase in maximum temperature. The reduced stiffness, strength,  Appl. Sci. 2018, 8, x FOR PEER REVIEW    ◦ C, the stiffness, strength, and pre-peak toughness ratios are shown in Figure 6. At T = 200 and pre‐peak toughness ratios are shown in Figure 6. At Tmax = 200 °C, the stiffness, strength, and pre‐ max and toughness decreased with an increase in maximum temperature. The reduced stiffness, strength,  and pre-peak toughness were not reduced significantly. However, when Tmax reached to 400 ◦ C, peak toughness were not reduced significantly. However, when T max reached to 400 °C, the stiffness,  and pre‐peak toughness ratios are shown in Figure 6. At T max = 200 °C, the stiffness, strength, and pre‐ the stiffness, strength, pre-peak toughness were reduced significantly. The reduced stiffness, strength, and  pre‐peak and toughness  were reduced significantly.  The reduced stiffness,  strength, and  peak toughness were not reduced significantly. However, when T max reached to 400 °C, the stiffness,  ◦ strength, and pre-peak toughness ratios are 51%, 48%, and 36%, respectively. At T = 600 C, pre‐peak toughness ratios are 51%, 48%, and 36%, respectively. At Tmax = 600 °C, the reduced stiffness,  max strength, and  pre‐peak  toughness  were reduced significantly.  The reduced stiffness,  strength, and  the reduced stiffness, strength, and pre-peak toughness ratios reached 79%, 71%, and 61%, respectively. strength, and pre‐peak toughness ratios reached 79%, 71%, and 61%, respectively. When T max = 800  pre‐peak toughness ratios are 51%, 48%, and 36%, respectively. At Tmax = 600 °C, the reduced stiffness,  When Tmax = 800 ◦ C, the material  lost its strength. °C, the material lost its strength.  strength, and pre‐peak toughness ratios reached 79%, 71%, and 61%, respectively. When Tmax = 800  °C, the material lost its strength.   

    Figure 5. Completed uniaxial compressive curves for concrete subjected to various temperatures.  Figure 5. Completed uniaxial compressive curves for concrete subjected to various temperatures.  Figure 5. Completed uniaxial compressive curves for concrete subjected to various temperatures.

  Figure 6. Maximum temperature effect on stiffness, strength, and pre‐peak toughness.  Figure 6. Maximum temperature effect on stiffness, strength, and pre-peak toughness.

 

As the heat temperature increases, cracks are formed at the particle and cementitious material  As theFigure 6. Maximum temperature effect on stiffness, strength, and pre‐peak toughness.  heat temperature increases, cracks are formed at the particle and cementitious material interface  and  also  the  C‐S‐H  (calcium‐silicate‐hydrate)  colloid,  provided  that  the  cementitious  interface and also the C-S-H (calcium-silicate-hydrate) colloid, provided that the cementitious material material strength is initially decomposed at a 200 °C temperature. When the elevated temperature  As the heat temperature increases, cracks are formed at the particle and cementitious material  strength is initially decomposed atcalcium  a 200 ◦ Chydroxide  temperature. When the calcium  elevatedcarbonate  temperature reaches reaches  500  °C  and  600  °C,  (Ca(OH) 2)  and  (CaCO 3)  interface  and  also  the  C‐S‐H  (calcium‐silicate‐hydrate)  colloid,  provided  that  the  cementitious  ◦ ◦ 500 Cdecomposition occurs [16]. This is why the stiffness and strength decrease as the heat temperature is  and 600 C, calcium hydroxide (Ca(OH)2 ) and calcium carbonate (CaCO3 ) decomposition material strength is initially decomposed at a 200 °C temperature. When the elevated temperature  occursincreased. As the stiffness and strength decrease, the toughness with respect to the area under the  [16]. This is why the stiffness and strength decrease as the heat temperature is increased. As the reaches  500  °C  and  600  °C,  calcium  hydroxide  (Ca(OH) 2)  and  calcium  carbonate  (CaCO3)  stress‐strain curve is also decreased, as shown in Figure 5.    the stiffness and strength decrease, the toughness with respect to area under the stress-strain curve is decomposition occurs [16]. This is why the stiffness and strength decrease as the heat temperature is  For  the  also decreased, as post‐peak  shown in behavior,  Figure 5. two  classified  post‐peak  behavior  fracture  types  for  rock:  snap  increased. As the stiffness and strength decrease, the toughness with respect to the area under the  through (Class I) and snap back (Class II), were defined using uniaxial compressive tests, as shown  For the post-peak behavior, two classified post-peak behavior fracture types for rock: snap through in Figure 7 (Wawersik 1968). In Class I (stable fracture type), the post‐peak cumulative strain energy  stress‐strain curve is also decreased, as shown in Figure 5.    (Class I) and snap back (Class II), were defined using uniaxial compressive tests, as shown in Figure 7 cannot  sustain  crack  propagation.  The  specimen  carrying  decreases  the for  increase  For  the  post‐peak  behavior,  two  classified  post‐peak capacity  behavior  fracture with  types  rock: in  snap  (Wawersik 1968). In Class I (stable fracture type), the post-peak cumulative strain energy cannot sustain strain. In Class II (unstable fracture type), the post‐peak strain or degree of specimen displacement  through (Class I) and snap back (Class II), were defined using uniaxial compressive tests, as shown 

crack propagation. The specimen carrying capacity decreases with the increase in strain. In Class II in Figure 7 (Wawersik 1968). In Class I (stable fracture type), the post‐peak cumulative strain energy  (unstable fracture type), the post-peak strain or degree of specimen displacement decreases; however, cannot  sustain  crack  propagation.  The  specimen  carrying  capacity  decreases  with  the  increase  in  strain. In Class II (unstable fracture type), the post‐peak strain or degree of specimen displacement 

Appl. Sci. 2018, 8, x FOR PEER REVIEW    Appl. Sci. 2018, 8, x FOR PEER REVIEW    Appl. Sci. 2018, 8, 1107

7 of 10  7 of 10  7 of 10

decreases; however, the energy stored in the specimen can sustain crack propagation, even without  decreases; however, the energy stored in the specimen can sustain crack propagation, even without  external pressure. Figure 5 shows that concrete suffers from heat‐driven damage, causing the post‐ the energy stored in the specimen can sustain crack propagation, even without external pressure. external pressure. Figure 5 shows that concrete suffers from heat‐driven damage, causing the post‐ peak  stability  from  snap  back  (Class  II)  convert  to  snap  through  (Class  I),  and  the  transition  Figurestability  5 showsfrom  that concrete suffers from causing the post-peak stability from peak  snap  back  (Class  II) heat-driven convert  to  damage, snap  through  (Class  I),  and  the  transition  temperature is between 200 to 400 °C. Therefore, the post‐peak toughness increased at T max = 200−500  snap back (Class II) convert to snap through (Class I), and the transition temperature is between 200 to temperature is between 200 to 400 °C. Therefore, the post‐peak toughness increased at T max = 200−500  °C (Figure 8).    400 ◦ C. Therefore, the post-peak toughness increased at Tmax = 200−500 ◦ C (Figure 8). °C (Figure 8).   

stress stress

A A

B B

CLASS II CLASS II

CLASS I CLASS I C C

D D strain strain

E E

 

 

Figure 7. Rock failure behavior classification in uniaxial compression adapted from Wawersik (1968).  Figure 7. Rock failure behavior classification in uniaxial compression adapted from Wawersik (1968). Figure 7. Rock failure behavior classification in uniaxial compression adapted from Wawersik (1968). 

 

 

Figure 8. Maximum temperature effect on post-peak toughness. Figure 8. Maximum temperature effect on post‐peak toughness.  Figure 8. Maximum temperature effect on post‐peak toughness. 

5.1.2. Damage Characteristics Examined Using the Wave Velocity Ratio  5.1.2. Damage Characteristics Examined Using the Wave Velocity Ratio   5.1.2. Damage Characteristics Examined Using the Wave Velocity Ratio    Naus [22] [22]  indicated  that  when  concrete  is  subjected  heat  damage,  the  Poisson’s  ratio  of  Naus indicated that when concrete is subjected to heatto  damage, the Poisson’s ratio of concrete Naus  [22]  indicated  that  when  concrete  is  subjected  to  heat  damage,  the  Poisson’s  ratio  concrete will decrease with an increase in maximum temperature. This is because the heat‐damage  will decrease with an increase in maximum temperature. This is because the heat-damage resulting of  in concrete will decrease with an increase in maximum temperature. This is because the heat‐damage  resulting  in  concrete  cracks  increases  decrease  the  lateral According deformation.  According  to  the  wave shear‐ concrete cracks increases to decrease theto lateral deformation. to the shear-pressure resulting  in  concrete  increases  to  decrease  lateral  deformation.  According  to  the  shear‐ pressure wave velocity ratio (V /Vp) relation to Poisson’s ratio, as shown in Equation (2) [15], V s/Vp  velocity ratio (Vs /Vp )cracks  relation to sPoisson’s ratio, asthe  shown in Equation (2) [15], Vs /Vp increases with pressure wave velocity ratio (V p) relation to Poisson’s ratio, as shown in Equation (2) [15], Vs/Vp  aincreases with a decreasing Poisson’s ratio. In other words, as the maximum temperature increases,  decreasing Poisson’s ratio. Ins/V other words, as the maximum temperature increases, the measured increases with a decreasing Poisson’s ratio. In other words, as the maximum temperature increases,  Vs/V p  of  concrete  should UP be measurement increased.  UP was measurement  used  in  this  study  Vthe  should be increased. used in thiswas  study to measure the Vto  s /Vmeasured  p of concrete s the  measured  V s/Vp  of  concrete  should  be  increased.  UP  measurement  was  used  in  this  study  to  s and V p of concrete after heat treatment. The normalized V s/Vp was then calculated.    measure the V and Vp of concrete after heat treatment. The normalized Vs /Vp was then calculated. measure the Vs and Vp of concrete after heat treatment. The normalized Vs/Vp was then calculated.    s (2)  Vs (1 − 2ν),  ,  , (2)  = (2) Vp 2(1 − υ) where  ν  is the Poisson’s ratio.    where Figure  ν  is the Poisson’s ratio.  shows  the  Vs/V p  relation  to  maximum  temperature  and  reduced  ratio  of  stiffness,  where ν is the9 Poisson’s ratio. Figure  9  shows  the  Vs/Vp  relation  to  smaximum  temperature  and  reduced  ratio  of  stiffness,  strength, and toughness. As expected, as V p increased with an increase in maximum temperature,  Figure 9 shows the Vs /Vp relation to /V maximum temperature and reduced ratio of stiffness, strength, and toughness. As expected, as V s/Vp increased with an increase in maximum temperature,  as  shown  in  Figure  9a,  the  V s /V p   also  increased  with  an  increase  in  the in reduced  ratio  of  stiffness,  strength, and toughness. As expected, as Vs /Vp increased with an increase maximum temperature, as  shown  in  Figure  9a,  the  Vs/Vp  also  increased  with  an  increase  in  the  reduced  ratio  of  stiffness, 

Appl. Sci. 2018, 8, 1107

8 of 10

Appl. Sci. 2018, 8, x FOR PEER REVIEW   

8 of 10 

0

reduced ratio of stiffness (%)

maximum temperature (℃)

as shown in Figure 9a, the Vs /Vp also increased with an increase in the reduced ratio of stiffness, strength, and  and toughness,  toughness, as  as shown −d. It  It is  is interesting  interesting to has a  a high  high strength,  shown  in in Figure Figure 9b 9b−d.  to  note note that that VVSS/V /VPP  has  positive correlation with the maximum temperature and the reduced ratio of stiffness, strength, positive correlation with the maximum temperature and the reduced ratio of stiffness, strength, and  2 value) between V /V and maximum temperature, 2  value)  and toughness. coefficient of determination toughness.  The The coefficient  of  determination  (R(R between VS/V maximum  temperature,  S P and  P reduced ratio of stiffness, strength, and toughness reached 0.82, 0.94, 0.93, and 0.88, respectively. reduced ratio of stiffness, strength, and toughness reached 0.82, 0.94, 0.93, and 0.88, respectively. This  This suggests that VS /VP could be applied to identify the degree of thermal-induced damage in suggests that V S/VP could be applied to identify the degree of thermal‐induced damage in concrete  concrete based on the experimental result in Figure 9. based on the experimental result in Figure 9.   

400

800

y = 6319.9x2 - 6194.4x + 1595.5 R² = 0.8235

1200 0.30

0.40

0.50

0.60

0.70

0.80

Vs/Vp

0.90

-40 0 40 80

y = 584.88x2 - 497.63x + 105.8 R² = 0.9366

120 0.30

0.40

0.50

 

-40 0 40

120 0.30

y = 594.42x2 - 519.33x + 112.26 R² = 0.9305 0.40

0.50

0.60

Vs/Vp

(c) 

0.70

0.80

0.90

 

(b)  reduced ratio of toughness(%)

reduced ratio of strength (%)

(a) 

80

0.60

Vs/Vp

0.70

0.80

0.90

 

-40 0 40 80 120 0.30

y = 495.49x2 - 421x + 86.491 R² = 0.8831 0.50

0.70

0.90

Vs/Vp

 

(d) 

Figure 9. Correlation of wave velocity ratio (V S/VP) to reduced ratio of (a) maximum temperature; (b)  Figure 9. Correlation of wave velocity ratio (V S /VP ) to reduced ratio of (a) maximum temperature; stiffness; (c) strength; (d) and pre‐peak toughness, respectively.  (b) stiffness; (c) strength; (d) and pre-peak toughness, respectively.

5.2. Artificial Intelligence Analysis    5.2. Artificial Intelligence Analysis Artificial  Intelligence  was  used  to  identify  the  experimental  findings.  In  machine  learning  Artificial Intelligence was used to identify the experimental findings. In machine learning processing,  21  experimental  data  records  were  used.  Table  2  shows  the  correlation  coefficient  processing, 21 experimental data records were used. Table 2 shows the correlation coefficient between between the input and output variables. The correlation coefficient in Table 2 was used to examine  the input and output variables. The correlation coefficient in Table 2 was used to examine the degree the degree of correlation between input and output variables. An absolute value of the coefficient  of correlation between input and output variables. An absolute value of the coefficient greater than or greater than or equal to 0.8 represents high correlation; whereas a value smaller than 0.8 but greater  equal to 0.8 represents high correlation; whereas a value smaller than 0.8 but greater than or equal to than or equal to 0.7 shows medium‐high correlation. Therefore, the maximum temperature with high  0.7 shows medium-high correlation. Therefore, the maximum temperature with high or medium-high or  medium‐high  correlation  to  Vs/Vp,  stiffness,  pre‐peak  toughness,  and  post‐peak  toughness  was  correlation to Vs /Vp , stiffness, pre-peak toughness, and post-peak toughness was obtained. obtained.    An Artificial Neural Network (ANN) was built using WEKA. The inputs of the ANN include An Artificial Neural Network (ANN) was built using WEKA. The inputs of the ANN include  the aforementioned variables, and the output is the maximum temperature. For prediction, the mean the aforementioned variables, and the output is the maximum temperature. For prediction, the mean  absolute error is 99.2042, and the root-mean-square error is 130.3246. A high correlation coefficient absolute error is 99.2042, and the root‐mean‐square error is 130.3246. A high correlation coefficient of  of 0.8646 between the real maximum temperature and the one predicted by the ANN model is 0.8646 between the real maximum temperature and the one predicted by the ANN model is obtained.  obtained. High correlation means high covariance between the two temperatures, and high covariance High correlation means high covariance between the two temperatures, and high covariance means  means that the model describes how the predicted maximum temperature varies or changes with that the model describes how the predicted maximum temperature varies or changes with the real  the real maximum temperature well. Therefore, the maximum temperature can be predicted using maximum  temperature  well.  Therefore,  the  maximum  temperature  can  be  predicted  using  the  the established ANN model. These results show that the fire-damage temperature could be simply established  ANN  model.  These  results  show  that  the  fire‐damage  temperature  could  be  simply  detected by Vs/Vp. Note that the rate of heating is only related to the strength with a coefficient of  0.19. However, more data records are needed to confirm this finding. Table 3 shows the correlation 

Appl. Sci. 2018, 8, 1107

9 of 10

detected by Vs /Vp . Note that the rate of heating is only related to the strength with a coefficient of 0.19. However, more data records are needed to confirm this finding. Table 3 shows the correlation coefficient between the output variables. The Vs /Vp has a high correlation with stiffness, strength, and pre-peak toughness, as shown in Table 3. These analysis results show a good agreement with those from the experiment. Table 2. Correlation coefficient between input and output variables. Output Variables

Input Variables Wave Velocity Ratio

Stiffness

Strength

Pre-Peak Toughness

Post-Peak Toughness

−0.14 0.78 0.17

0.23 −0.87 −0.42

0.49 0.19 −0.65 −0.41

0.37 −0.7 −0.4

0.24 −0.73 −0.22

designed strength rate of heating maximum temperature exposure time

Table 3. Correlation coefficient between output variables. Output Variables

Stiffness

Strength

Pre-Peak Toughness

Post-Peak Toughness

wave velocity ratio stiffness strength pre-peak toughness

−0.91

−0.89 0.99

−0.84 0.94 0.97

−0.67 0.8 0.84 0.9

6. Conclusions This study was the first to apply ultrasonic pulse measurement to investigate the thermal-induced damage characteristics of concrete by conducting the uniaxial compressive test after concrete was subjected to heating under different thermal conditions (the rate of heating, maximum temperature, exposure time, as well as cooling condition). During the uniaxial compressive test process, a circumferential extensometer was used to prevent unstable crack growth. A complete stress-strain curve was then obtained. The experimental results show that the stiffness, strength, and pre-peak toughness decrease with an increase in maximum temperature, whereas the post-peak toughness increased with an increase in maximum temperature at a maximum temperature ranging from 200 to 500 ◦ C. In addition, the wave velocity ratios in relation to the maximum temperature, stiffness, strength, and pre-peak toughness were obtained. The obtained experimental data was then analyzed using artificial intelligence. The thermal conditions in the experiment were used as input variables. The experimental stiffness, strength, toughness, and wave velocity ratio results were used as output variables. The obtained correlation of the input and output variables using artificial intelligence showed that the wave velocity ratio has a high relation with the maximum temperature, stiffness, strength, and pre-peak toughness. These results indicate that the wave velocity ratio can be used to identify the thermal-induced damage characteristics. Ultrasonic pulse measurement coupled with the uniaxial compressive test can be employed to investigate the degree of damage with respect to the maximum temperature of concrete subject to heating. Author Contributions: Conceptualization, L.-H.C. and Y.-C.C.; Methodology, L.-H.C.; Software, K.-W.H.; Visualization, W.-C.C. and H.-J.L.; Formal Analysis, W.-C.C., H.-J.L., and K.-W.H.; Validation, M.-Y.L. and T.-C.W.; Resources, C.-F.C.; Writing-Original Draft Preparation, W.-C.C.; Writing-Review & Editing, W.-C.C.; Supervision, L.-H.C.; Project Administration, H.-J.L. Funding: This research was funded by Architecture and Building Research Institute, Ministry of the Interior, ROC (Taiwan) grant number 105301070000G0032. Acknowledgments: This research is supported by the Architecture and Building Research Institute, Ministry of the Interior, ROC (Taiwan). Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2018, 8, 1107

10 of 10

References 1. 2. 3. 4. 5. 6. 7.

8. 9. 10. 11. 12. 13. 14. 15. 16.

17.

18.

19. 20. 21. 22.

Tovey, A.K. Assessment and repair of fire-damaged concrete structures-an update. Spec. Publ. 1986, 92, 47–62. Luo, B.-Y. Fire-Resistance Property of Reinforced Lightweight Aggregate Concrete Wall. Master’s Thesis, National Chung Hsing University, Taichung, Taiwan, 2008. Arioz, O. Effects of elevated temperatures on properties of concrete. Fire Saf. J. 2007, 42, 516–522. [CrossRef] Janotka, I.; Nürnbergerová, T. Effect of temperature on structural quality of the cement paste and high-strength concrete with silica fume. Nucl. Eng. Des. 2005, 235, 2019–2032. [CrossRef] Del Rio, L.; Jimenez, A.; Lopez, F.; Rosa, F.; Rufo, M.; Paniagua, J. Characterization and hardening of concrete with ultrasonic testing. Ultrasonics 2004, 42, 527–530. [CrossRef] [PubMed] Kheder, G. A Two stage procedure for assessment of in situ concrete strength using combined non-destructive testing. Mater. Struct. 1999, 32, 410–417. [CrossRef] Nash’t, I.H.; A’bour, S.H.; Sadoon, A.A. Finding an unified relationship between crushing strength of concrete and non-destructive tests. In Proceedings of the Middle East Nondestructive Testing Conference & Exhibition, Bahrain, Manama, 27–30 November 2005. Turgut, P. Research into the correlation between concrete strength and UPV values. NDT Net 2004, 12, 1–9. Trtnik, G.; Kavˇciˇc, F.; Turk, G. Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks. Ultrasonics 2009, 49, 53–60. [CrossRef] [PubMed] Hola, J.; Schabowicz, K. New technique of nondestructive assessment of concrete strength using artificial intelligence. NDT E Int. 2005, 38, 251–259. [CrossRef] Anderberg, Y.; Thelandersson, S. Stress and Deformation Characteristics of Concrete at High Temperatures; Lund University: Lund, Sweden, 1976. Kodur, V. Properties of concrete at elevated temperatures. ISRN Civ. Eng. 2014, 2014. [CrossRef] Mohamedbhai, G. Effect of exposure time and rates of heating and cooling on residual strength of heated concrete. Mag. Concr. Res. 1986, 38, 151–158. [CrossRef] ASTM. Standard Test Method for Pulse Velocity through Concrete; Annual Book of ASTM Standards; American Society for Testing and Materials: West Conshohocken, PA, USA, 1999. Malhotra, V.M.; Carino, N.J. Handbook on Nondestructive Testing of Concrete, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2003. Nazarian, S.; Stokoe, K. Evaluation of Moduli and Thicknesses of Pavement Systems by Spectral-Analysis-of-Surface-Waves Method; Research Rep. 256-4; Center for Transportation Research, University of Texas: Austin, TX, USA, 1983; pp. 1–138. Chary, K.; Sarma, L.P.; Lakshmi, K.P.; Vijayakumar, N.A.; Lakshmi, V.N.; Rao, M. Evaluation of engineering properties of rock using ultrasonic pulse velocity and uniaxial compressive strength. In Proceedings of the National Seminar on Non-destructive Evaluation, Hyderabad, India, 7–9 December 2006. Soroush, H.; Qutob, H. Evaluation of rock properties using ultrasonic pulse technique and correlating static to dynamic elastic constants. In Proceedings of the 2nd South Asian Geoscience Conference and Exhibition, GEOIndia, New Delhi, India, 12–14 January 2011. Goodman, R.E. Introduction to Rock Mechanics; John Wiley & Sons: New York, NY, USA, 1989. Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witte, I.H. The WEKA data mining software: An update. ACM SIGKDD Explor. Newsl. 2009, 11, 10–18. [CrossRef] Witte, I.H.; Frank, E.; Hall, M.A. Data Mining: Practical Machine Learning Tools and Techniques, 3rd ed.; Morgan Kaufmann: Burlington, MA, USA, 2011. Naus, D.J. The Effect of Elevated Temperature on Concrete Materials and Structures—A Literature Review; Oak Ridge National Laboratory (ORNL): Oak Ridge, TN, USA, 2006. © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Suggest Documents