Variational Approaches to Characterize Weak Solutions for Some ...

0 downloads 0 Views 2MB Size Report
Jan 3, 2016 - lower semicontinuous and GΓ’teaux differentiable function. These two theoretical .... the definition of the GΓ’teaux derivative and the above.
Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2016, Article ID 2071926, 10 pages http://dx.doi.org/10.1155/2016/2071926

Research Article Variational Approaches to Characterize Weak Solutions for Some Problems of Mathematical Physics Equations Irina Meghea Department of Mathematical Methods and Models, Faculty of Applied Sciences, University Politehnica of Bucharest, 060042 Bucharest, Romania Correspondence should be addressed to Irina Meghea; i [email protected] Received 10 November 2015; Accepted 3 January 2016 Academic Editor: Khalil Ezzinbi Copyright Β© 2016 Irina Meghea. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This paper is aimed at providing three versions to solve and characterize weak solutions for Dirichlet problems involving the 𝑝Laplacian and the 𝑝-pseudo-Laplacian. In this way generalized versions for some results which use Ekeland variational principle, critical points for nondifferentiable functionals, and Ghoussoub-Maurey linear principle have been proposed. Three sequences of generalized statements have been developed starting from the most abstract assertions until their applications in characterizing weak solutions for some mathematical physics problems involving the abovementioned operators.

1. Introduction Obtaining and/or characterization of weak solutions for problems of mathematical physics equations involving 𝑝Laplacian and 𝑝-pseudo-Laplacian is a subject matter previously discussed by the author through several approach methods in [1–6]. New similar results can be found by other authors, for instance, Amiri and Zivari-Rezapour in [7], El Khalil and Ouanan in [8], Rhouma and Sayeb in [9], Yoshida in [10]. The importance of these operators also devolves from their involvement in actual modelings of natural phenomena as thermal transfer by LanchonDucauquis, Tulita, and Meuris in [11] or glacier sliding or flow by Partridge in [12] and PΒ΄elissier in [13]. In this paper three methods are proposed following three sequences of results, starting from abstract statements and finishing with their application to find weak solutions of Dirichlet problems for 𝑝-Laplacian and for 𝑝-pseudo-Laplacian as well. In the first succession of assertions, two results of Ghoussoub from [14] have been generalized replacing the frame of Hilbert space by reflexive strictly convex Banach space and the condition imposed to the goal function to be of 𝐢1 -FrΒ΄echet class by the weaker condition to have a lower semicontinuous and GΛ†ateaux differentiable function. These two theoretical statements were used, together with other results concerning Dirichlet problems for both cited

generalized operators, in finding weak solutions for these problems. The second proposition sequence involves critical points for nondifferentiable functional. In this context, two results of Chang from [15] have been generalized changing 1,𝑝 the space 𝐻1 (Ξ©) in π‘Š0 (Ξ©) and introducing Ξ” 𝑝 and Δ𝑠𝑝 in some problems formulated for Ξ” by Costa and GoncΒΈalves in [16]. The last series of assertions starts from GhoussoubMaurey linear principle which is used here to characterize weak solutions for some mathematical physics equations. Moreover, the problems were discussed and solved using important findings for these operators obtained by the author in [5, 6] in connection with specific properties of the Sobolev spaces involved.

2. Critical Points and Weak Solutions for Elliptic Type Equations 2.1. Theoretical Support. In order to introduce the first result, a theoretical support will be given starting with the following. Ekeland Principle (see [1, 17, 18]). Let (𝑋, 𝑑) be a complete metric space and πœ‘ : 𝑋 β†’ (βˆ’βˆž, +∞] bounded from below, lower semicontinuous, and proper. For any πœ€ > 0 and 𝑒 of 𝑋 with πœ‘ (𝑒) ≀ inf πœ‘ (𝑋) + πœ€

(1)

2

Abstract and Applied Analysis

and for any πœ† > 0, there exists Vπœ€ in 𝑋 such that πœ‘ (Vπœ€ ) < πœ‘ (𝑀) +

πœ€ 𝑑 (Vπœ€ , 𝑀) πœ†

βˆ€π‘€ ∈ 𝑋 \ {Vπœ€ } ,

(2)

πœ‘ (Vπœ€ ) ≀ πœ‘ (𝑒) , and 𝑑 (Vπœ€ , 𝑒) ≀ πœ†. Definition 1. Let 𝑋 be a real normed space, 𝛽 be a bornology on 𝑋, and let πœ‘ : 𝑋 β†’ R. Let 𝑐 be in R and 𝐹 a nonempty subset of 𝑋. πœ‘ verifies the Palais-Smale condition on the level 𝑐 around 𝐹 (or relative to 𝐹), (PS)𝑐,𝐹 , with respect to 𝛽, when βˆ€(𝑒𝑛 )𝑛β‰₯1 a sequence of points in 𝑋 for which lim πœ‘ (𝑒𝑛 ) = 𝑐,

π‘›β†’βˆž

σ΅„©σ΅„©

σ΅„©σ΅„© = 0,

lim σ΅„©σ΅„©βˆ‡π›½ πœ‘ (𝑒𝑛 )σ΅„©σ΅„©σ΅„© π‘›β†’βˆž σ΅„©

(3)

σ΅„©2 σ΅„© βŸ¨π‘“π‘€σΈ€  (π‘₯) , βˆ‡π‘“ (π‘₯)⟩ = 󡄩󡄩󡄩󡄩𝑓𝑀󸀠 (π‘₯)σ΅„©σ΅„©σ΅„©σ΅„© ,

lim dist (𝑒𝑛 , 𝐹) = 0,

π‘›β†’βˆž

this sequence has a convergent subsequence. To clarify the above notation, let 𝛽 be a bornology on 𝑋 and let 𝑓 : 𝑋 β†’ R locally finite in the point π‘Ž. By definition 𝑓 is 𝛽-differentiable in π‘Ž, if there exists πœ‘ in the dual π‘‹βˆ— such that for every 𝑆 in 𝛽 we have lim𝑑→0,β„Žβˆˆπ‘† 𝑒((𝑓(π‘Ž + π‘‘β„Ž) βˆ’ 𝑓(π‘Ž))/𝑑) = πœ‘(β„Ž) (uniform limit on 𝑆 for 𝑑 β†’ 0). πœ‘ is the 𝛽derivative of 𝑓 in π‘Ž, and it is denoted by βˆ‡π›½ 𝑓(π‘Ž). Through the minimization on 𝐹 of a functional (minimization with constraints) global critical points of this may be obtained. As a preliminary, we generalize some results from [14] introducing Banach space instead of Hilbert space and the GΛ†ateaux differentiability instead of 𝐢1 -class FrΒ΄echet. Proposition 2. Let 𝑋 be a real reflexive strictly convex Banach space, let πœ‘ : 𝑋 β†’ R be lower semicontinuous and GΛ†ateaux differentiable and let 𝐹 be a closed subset of 𝑋 such that for every 𝑒 from 𝐹 with the metric gradient βˆ‡πœ‘(𝑒) =ΜΈ 0, for sufficiently small π‘Ÿ > 0, βˆ‡πœ‘ (𝑒) (𝑒 βˆ’ 𝛿 σ΅„©σ΅„© σ΅„© ) ∈ 𝐹, βˆ€π›Ώ ∈ [0, π‘Ÿ] . σ΅„©σ΅„©βˆ‡πœ‘ (𝑒)σ΅„©σ΅„©σ΅„©

(4)

Then, if πœ‘ is lower bounded on 𝐹, for every (V𝑛 )𝑛β‰₯1 a minimizing sequence for πœ‘ on 𝐹, there exists a sequence (𝑒𝑛 )𝑛β‰₯1 in 𝐹 such that σ΅„©σ΅„© σΈ€  σ΅„© σ΅„©σ΅„©πœ‘ (𝑒𝑛 )σ΅„©σ΅„©σ΅„© ≀ βˆšπœ€π‘› , σ΅„© σ΅„© πœ‘ (𝑒𝑛 ) ≀ πœ‘ (V𝑛 ) σ΅„©σ΅„©

lim 󡄩𝑒 π‘›β†’βˆž σ΅„© 𝑛

σ΅„© βˆ’ V𝑛 σ΅„©σ΅„©σ΅„© = 0,

Explanations. Let us introduce the definition of the metric gradient in order to provide other observations relative to this central notion for this statement. In a real normed space 𝑋, consider the GΛ†ateaux differentiable functional 𝑓 : 𝑋 β†’ R. The metric gradient of 𝑓 is the multiple-valued mapping βˆ‡π‘“ : 𝑋 β†’ P(𝑋), βˆ‡π‘“(π‘₯) = π‘–βˆ’1 π½βˆ— 𝑓𝑀󸀠 (π‘₯), where π½βˆ— : π‘‹βˆ— β†’ P(π‘‹βˆ—βˆ— ) is the duality mapping on π‘‹βˆ— corresponding to the identity and 𝑖 the canonical injection of 𝑋 into π‘‹βˆ—βˆ— : 𝑖(π‘₯) = π‘₯βˆ—βˆ— , ⟨π‘₯βˆ—βˆ— , π‘₯βˆ— ⟩ = ⟨π‘₯βˆ— , π‘₯⟩, βˆ€π‘₯βˆ— ∈ π‘‹βˆ— . Consequently, for any π‘₯ ∈ 𝑋 : βˆ‡π‘“(π‘₯) = {𝑦 ∈ 𝑋 : 𝑖(𝑦) ∈ π½βˆ— 𝑓𝑀󸀠 (π‘₯)} = {𝑦 ∈ 𝑋 : βŸ¨π‘–(𝑦), 𝑓𝑀󸀠 (π‘₯)⟩ = βŸ¨π‘“π‘€σΈ€  (π‘₯), π‘¦βŸ© = ‖𝑓𝑀󸀠 (π‘₯)β€–2 , ‖𝑖(𝑦)β€– = ‖𝑦‖ = ‖𝑓𝑀󸀠 (π‘₯)β€–}. If 𝑋 is reflexive, for any π‘₯ ∈ 𝑋, βˆ‡π‘“(π‘₯) is nonempty. π‘‹βˆ—βˆ— being strictly convex, π½βˆ— is single-valued. So, if 𝑋 is reflexive and strictly convex, then βˆ‡π‘“ : 𝑋 β†’ 𝑋, βˆ‡π‘“(π‘₯) = π‘–βˆ’1 π½βˆ— 𝑓𝑀󸀠 (π‘₯), and the following equalities hold:

(5) βˆ€π‘›,

(6) (7)

where πœ€π‘› > 0 and πœ€π‘› β†’ 0. Remark 3. This result is reported in [14] as Lemma 9 in the frame of the Hilbert spaces having the function πœ‘ of 𝐢1 -class FrΒ΄echet, but condition (5) is more complicated due to another condition imposed to the set 𝐹.

σ΅„© σ΅„© σ΅„© σΈ€  σ΅„©σ΅„© σ΅„©σ΅„©βˆ‡π‘“ (π‘₯)σ΅„©σ΅„©σ΅„© = 󡄩󡄩󡄩󡄩𝑓𝑀 (π‘₯)σ΅„©σ΅„©σ΅„©σ΅„© .

(8)

Go now to the proof of Proposition 2. Proof. Denote 𝑐 fl inf πœ‘(𝐹) and let 𝑛 be from N. For πœ€π‘› fl πœ‘(V𝑛 ) βˆ’ 𝑐 + 1/𝑛, hence πœ€π‘› > 0, we have πœ‘(V𝑛 ) < 𝑐 + πœ€π‘› . Apply the enunciated Ekeland principle with πœ† = βˆšπœ€π‘› , βˆƒπ‘’π‘› in 𝐹 with known properties. Thus we obtain the sequence (𝑒𝑛 )𝑛β‰₯1 satisfying (6), (7) (‖𝑒𝑛 βˆ’ V𝑛 β€– ≀ βˆšπœ€π‘› , πœ€π‘› β†’ 0), and σ΅„© σ΅„© πœ‘ (V) β‰₯ πœ‘ (𝑒𝑛 ) βˆ’ βˆšπœ€π‘› σ΅„©σ΅„©σ΅„©V βˆ’ 𝑒𝑛 σ΅„©σ΅„©σ΅„© βˆ€V ∈ 𝐹. (9) Verify (5). It is sufficient to work under the assumption β€–πœ‘π‘€σΈ€  (𝑒𝑛 )β€– > 0 βˆ€π‘›. Thus apply the hypothesis made in the statement with respect to 𝐹 with 𝑒 = 𝑒𝑛 and denoting, for 𝛿 ∈ (0, π‘Ÿ], V𝛿 fl 𝑒𝑛 βˆ’ 𝛿(βˆ‡πœ‘(𝑒𝑛 )/β€–βˆ‡πœ‘(𝑒𝑛 )β€–) (∈ 𝐹), replace V𝛿 in (9) and find, σ΅„© σ΅„© (10) βˆšπœ€π‘› σ΅„©σ΅„©σ΅„©V𝛿 βˆ’ 𝑒𝑛 σ΅„©σ΅„©σ΅„© β‰₯ πœ‘ (𝑒𝑛 ) βˆ’ πœ‘ (V𝛿 ) , multiply this inequality by 1/𝛿, 𝛿 > 0, and take the limit for 𝛿 β†’ 0+ in order to keep the sense of the inequality. Remark that lim𝛿→0 V𝛿 = 𝑒𝑛 ; lim𝛿→0 (β€–V𝛿 βˆ’ 𝑒𝑛 β€–/𝛿) = = 1. Consider lim𝛿→0 ((π›Ώβ€–βˆ‡πœ‘(𝑒𝑛 )β€–/β€–βˆ‡πœ‘(𝑒𝑛 )β€–)/𝛿) that the existence of the limit for 𝛿 β†’ 0 implies the existence of the limit for 𝛿 β†’ 0Β± together = with their equality, lim𝛿→0+ ((πœ‘(𝑒𝑛 ) βˆ’ πœ‘(V𝛿 ))/𝛿) lim𝛿→0+ ((πœ‘(𝑒𝑛 βˆ’ π›Ώβˆ‡πœ‘(𝑒𝑛 )/β€–βˆ‡πœ‘(𝑒𝑛 )β€–) βˆ’ πœ‘(𝑒𝑛 ))/ βˆ’ 𝛿) = πœ‘π‘€σΈ€  (𝑒𝑛 )(βˆ‡πœ‘(𝑒𝑛 )/β€–βˆ‡πœ‘(𝑒𝑛 )β€–) = (1/β€–βˆ‡πœ‘(𝑒𝑛 )β€–)βŸ¨πœ‘π‘€σΈ€  (𝑒𝑛 ), βˆ‡πœ‘(𝑒𝑛 )⟩ = (1/β€–βˆ‡πœ‘(𝑒𝑛 )β€–)β€–πœ‘π‘€σΈ€  (𝑒𝑛 )β€–2 = β€–πœ‘π‘€σΈ€  (𝑒𝑛 )β€–, taking into account the definition of the GΛ†ateaux derivative and the above considerations on the metric gradient, and (5) is also fulfilled. Remark 4. The GΛ†ateaux derivative from the above statement can be replaced by any 𝛽-derivative and the result remains the same. In the case of the FrΒ΄echet derivative, it must remove the condition β€œπœ‘ lower semicontinuous” from the statement. Notation 1. πœ‘ : 𝑋 β†’ R 𝛽-differentiable; 𝑐 ∈ R β‡’ 𝐾𝑐 (πœ‘) fl {π‘₯ ∈ 𝑋 : πœ‘ (π‘₯) = 𝑐, βˆ‡π›½ πœ‘ (π‘₯) = 0} .

(11)

Abstract and Applied Analysis

3

Proposition 5. Let 𝑋 be a real reflexive strictly convex Banach space and πœ‘ : 𝑋 β†’ R lower semicontinuous and GΛ†ateaux differentiable and 𝐹 is a nonempty convex closed subset such that (𝐼 βˆ’ βˆ‡πœ‘)(𝐹) βŠ‚ 𝐹, 𝐼 the identity map. If πœ‘ is lower bounded on 𝐹, then for every (V𝑛 )𝑛β‰₯1 a minimizing sequence for πœ‘ on 𝐹, there is a sequence (𝑒𝑛 )𝑛β‰₯1 in 𝐹 such that πœ‘ (𝑒𝑛 ) ≀ πœ‘ (V𝑛 ) lim 󡄩𝑒 π‘›β†’βˆž σ΅„© 𝑛

σ΅„©σ΅„©

σ΅„© βˆ’ V𝑛 σ΅„©σ΅„©σ΅„© = 0,

σ΅„© lim σ΅„©σ΅„©σ΅„©πœ‘π‘€σΈ€  π‘›β†’βˆž σ΅„©

σ΅„© (𝑒𝑛 )σ΅„©σ΅„©σ΅„©σ΅„© = 0.

1,𝑝

𝑒 | πœ•Ξ©. 𝑒 from 𝑋 = π‘Š0 (Ξ©) is by definition a weak solution for (βˆ—) and (βˆ—βˆ—), respectively, if 𝑒 = 0 on πœ•Ξ© and ∫ |βˆ‡π‘’|π‘βˆ’2 βˆ‡π‘’ β‹… βˆ‡V 𝑑π‘₯ βˆ’ ∫ 𝑓 (π‘₯, 𝑒 (π‘₯)) V 𝑑π‘₯ = 0 Ξ©

Ξ©

(15) βˆ€V ∈

βˆ€π‘›, (12)

Moreover, if πœ‘ satisfies (PS)𝑐,𝐹 , where 𝑐 = inf πœ‘(𝐹), then 𝐹 ∩ 𝐾𝑐 (πœ‘) =ΜΈ βŒ€.

(13)

Proof. Applying Proposition 2, (4) is satisfied indeed: if 𝑒 ∈ 𝐹 and πœ‘π‘€σΈ€  (𝑒) =ΜΈ 0, then, 𝐹 being convex, βˆ‡πœ‘ (𝑒) 𝛿 𝑒 βˆ’ 𝛿 σ΅„©σ΅„© σ΅„©σ΅„© = (1 βˆ’ σ΅„©σ΅„© σΈ€  σ΅„©) 𝑒 σ΅„©σ΅„©βˆ‡πœ‘ (𝑒)σ΅„©σ΅„© σ΅„©σ΅„©πœ‘π‘€ (𝑒)σ΅„©σ΅„©σ΅„©

𝑁 󡄨󡄨 πœ•π‘’ σ΅„¨σ΅„¨π‘βˆ’2 πœ•π‘’ πœ•V 󡄨 󡄨󡄨 respectively βˆ‘ ∫ 󡄨󡄨󡄨 𝑑π‘₯ 󡄨󡄨 󡄨 󡄨 πœ•π‘₯ πœ•π‘₯𝑖 πœ•π‘₯𝑖 𝑖󡄨 𝑖=1 Ξ© 󡄨

βˆ’ ∫ 𝑓 (π‘₯, 𝑒 (π‘₯)) V 𝑑π‘₯ = 0 Ξ©

(14)

Let (𝑒𝑛 )𝑛β‰₯1 be the sequence given by the statement. 𝑐 ≀ (5)

πœ‘(𝑒𝑛 ) ≀ πœ‘(V𝑛 ) βˆ€π‘›, hence πœ‘(𝑒𝑛 ) β†’ 𝑐. β€–πœ‘π‘€σΈ€  (𝑒𝑛 )β€– ≀ βˆšπœ€π‘› , hence β€–πœ‘π‘€σΈ€  (𝑒𝑛 )β€– β†’ 0, clearly dist (𝑒𝑛 , 𝐹) = 0, and consequently (𝑒𝑛 )𝑛β‰₯1 has a convergent subsequence (π‘’π‘˜π‘› )𝑛β‰₯1 , π‘’π‘˜π‘› β†’ 𝑒0 ∈ 𝐹. This implies β€–πœ‘π‘€σΈ€  (π‘’π‘˜π‘› )β€– β†’ β€–πœ‘π‘€σΈ€  (𝑒0 )β€– = 0, and 𝑒0 is a global critical point of πœ‘ contained in 𝐹.

(Ξ©)

(16)

1,𝑝

βˆ€V ∈ π‘Š0 (Ξ©) .

Remark 6. Here βˆ‡π‘€ is the weak gradient, and it is equal to (πœ•π‘€/πœ•π‘₯1 , . . . , πœ•π‘€/πœ•π‘₯𝑁), πœ•π‘€/πœ•π‘₯𝑖 the weak derivatives; 1,𝑝 2 |βˆ‡π‘€|2 = βˆ‘π‘ 𝑖=1 |πœ•π‘€/πœ•π‘₯𝑖 | . 𝑋 fl π‘Š0 (Ξ©) is endowed in the first case (βˆ—) with the norm β€– β‹… β€–1,𝑝 ; that is, ‖𝑒‖1,𝑝 = β€–π‘’β€–π‘Š1,𝑝 (Ξ©) = ‖𝑒‖L𝑝 (Ξ©) +βˆ‘π‘ 𝑖=1 β€–πœ•π‘’/πœ•π‘₯𝑖 β€–L𝑝 (Ξ©) , which is equivalent 0

𝛿 + σ΅„©σ΅„© σΈ€  σ΅„© (𝐼 βˆ’ βˆ‡πœ‘) (𝑒) ∈ 𝐹. σ΅„©σ΅„©πœ‘π‘€ (𝑒)σ΅„©σ΅„©σ΅„©

1,𝑝 π‘Š0

𝑝

𝑝

1/𝑝 to the norm 𝑒 β†’ (‖𝑒‖L𝑝 (Ξ©) + βˆ‘π‘ . For the 𝑖=1 β€–πœ•π‘’/πœ•π‘₯𝑖 β€–L𝑝 (Ξ©) ) second case (βˆ—βˆ—), equip the same vector space with the norm 𝑝 1/𝑝 𝑒 β†’ 𝑒1,𝑝 = (βˆ‘π‘ , which is equivalent 𝑖=1 β€–πœ•π‘’/πœ•π‘₯𝑖 β€–L𝑝 (Ξ©) )

to 𝑒 β†’ |𝑒|1,𝑝 = βˆ‘π‘ 𝑖=1 β€–πœ•π‘’/πœ•π‘₯𝑖 ‖𝐿𝑝 (Ξ©) . Nemytskii Operator. Let be R𝑁, 𝑁 β‰₯ 1, πœ‡ the Lebesgue measure in R𝑁, Ξ© open nonempty Lebesgue measurable and M(Ξ©) fl {𝑒 : Ξ© β†’ R | 𝑒 Lebesgue measurable}. By definition 𝑓 : Ξ© Γ— R β†’ R is a CarathΒ΄eodory function if 𝑓(β‹…, 𝑠) is Lebesgue measurable βˆ€π‘  ∈ R and 𝑓(π‘₯, β‹…) is continuous βˆ€π‘₯ ∈ Ξ© \ 𝐴, πœ‡(𝐴) = 0. In this case, for every 𝑒 from M(Ξ©) one may consider the function 𝑁𝑓 : M(Ξ©) β†’ M(Ξ©), 𝑁𝑓 𝑒 : 𝑁𝑓 𝑒(π‘₯) = 𝑓(π‘₯, 𝑒(π‘₯)), πœ‡

1

𝑁

2.2. Weak Solutions. Open set of 𝐢 class in R . Use the notations (the norm is that Euclidean from Rπ‘βˆ’1 ): R+𝑁 = {π‘₯ = (π‘₯σΈ€  , π‘₯𝑁) : π‘₯𝑁 > 0}, 𝑄 = {π‘₯ = (π‘₯σΈ€  , π‘₯𝑁) : β€–π‘₯σΈ€  β€– < 1, |π‘₯𝑁| < 1}, 𝑄+ = 𝑄 ∩ R+𝑁, 𝑄0 = {π‘₯ = (π‘₯σΈ€  , π‘₯𝑁) : β€–π‘₯σΈ€  β€– < 1, π‘₯𝑁 = 0}. Let Ξ© be an open nonempty set in R𝑁, Ξ© =ΜΈ R𝑁, and πœ•Ξ© its boundary. By definition, Ξ© is of 𝐢1 class if βˆ€π‘₯ from πœ•Ξ© βˆƒπ‘ˆ a neighbourhood of π‘₯ in R𝑁 and 𝑓 : 𝑄 β†’ π‘ˆ bijective such that 𝑓 ∈ 𝐢1 (𝑄), π‘“βˆ’1 ∈ 𝐢1 (π‘ˆ), 𝑓(𝑄+ ) = π‘ˆ ∩ Ξ©, and 𝑓(𝑄0 ) = π‘ˆ ∩ πœ•Ξ©. Weak solution. Let Ξ© be an open bounded nonempty 1,𝑝 set in R𝑁, 𝑁 > 1, 𝑓 : Ξ© Γ— R𝑁 β†’ R, and 𝑒0 ∈ π‘Š0 (Ξ©). Consider the problems βˆ’Ξ” 𝑝 𝑒 = 𝑓 (π‘₯, 𝑒) , π‘₯ ∈ Ξ© 𝑒 = 0 on πœ•Ξ©, βˆ’Ξ”π‘ π‘ 𝑒

= 𝑓 (π‘₯, 𝑒) , π‘₯ ∈ Ξ©

𝑒 = 0 on πœ•Ξ©.

1,𝑝

π‘Š1,𝑝 (Ξ©)

πœ‡

π‘₯∈Ω

𝑒0 (π‘₯) β‡’ 𝑁𝑓 𝑒𝑛 (π‘₯) 󳨀󳨀󳨀→ 𝑁𝑓 𝑒0 (π‘₯). Assume that 𝑓 satisfies the π‘₯∈Ω

growth condition: |𝑓(π‘₯, 𝑠)| ≀ 𝑐|𝑠|π‘βˆ’1 + 𝑏(π‘₯), βˆ€π‘₯ ∈ Ξ© \ 𝐴 with πœ‡(𝐴) = 0, βˆ€π‘  ∈ R, where 𝑐 β‰₯ 0, 𝑝 > 1, and 𝑏 ∈ Lπ‘ž (Ξ©), π‘ž ∈ [1, +∞].

(βˆ—)

Then 𝑁𝑓 (L(π‘βˆ’1)π‘ž (Ξ©)) βŠ‚ Lπ‘ž (Ξ©); 𝑁𝑓 is continuous (π‘ž < +∞) and bounded on L(π‘βˆ’1)π‘ž (Ξ©). If Ξ© is bounded and 1/𝑝 + 1/π‘ž = 1, then 𝑁𝑓 (L𝑝 (Ξ©)) βŠ‚ Lπ‘ž (Ξ©) with 𝑁𝑓 continuous; moreover, 𝑁𝐹 (L𝑝 (Ξ©)) βŠ‚ L1 (Ξ©) with 𝑁𝐹 continuous (see, e.g., 𝑠 [2]), where 𝐹(π‘₯, 𝑠) = ∫0 𝑓(π‘₯, 𝑑)𝑑𝑑, and Ξ¦ : L𝑝 (Ξ©) β†’ R, Ξ¦(𝑒) = ∫Ω 𝐹(π‘₯, 𝑒(π‘₯)) 𝑑π‘₯ is of FrΒ΄echet 𝐢1 class and Ξ¦σΈ€  = 𝑁𝑓 [14], so it is also GΛ†ateaux differentiable.

(βˆ—βˆ—)

Theorem 7. Let Ξ© be an open bounded nonempty set in R𝑁 and 𝑓 : Ξ© Γ— R β†’ R a CarathΒ΄eodory function with the growth condition:

Actually 𝑒 = 𝑒0 on πœ•Ξ© means 𝑒 | πœ•Ξ© = 𝑒0 , where 𝛾 : 𝑒 β†’ 𝑒 | πœ•Ξ© is the trace operator, a continuous linear mapping from π‘Š1,𝑝 (Ξ©) in L𝑝 (πœ•Ξ©), 𝑝 ∈ [1, +∞). We have π›Ύβˆ’1 (0) = π‘Š0 (Ξ©) (= 𝐢𝑐1 (Ξ©)

Nemytskii operator. Suppose πœ‡(Ξ©) < +∞. Then 𝑒𝑛 (π‘₯) 󳨀󳨀󳨀→

) and 𝑒 ∈ π‘Š1,𝑝 (Ξ©)∩𝐢(Ξ©) β‡’ 𝛾(𝑒) =

󡄨 󡄨󡄨 π‘βˆ’1 󡄨󡄨𝑓 (π‘₯, 𝑠)󡄨󡄨󡄨 ≀ 𝑐 |𝑠| + 𝑏 (π‘₯) ,

(17)

where 𝑐 > 0, 2 ≀ 𝑝 ≀ 2𝑁/(𝑁 βˆ’ 2) when 𝑁 β‰₯ 3, and 2 ≀ 𝑝 < +∞ when 𝑁 = 1, 2, and where 𝑏 ∈ Lπ‘ž (Ξ©), 1/𝑝 + 1/π‘ž = 1.

4

Abstract and Applied Analysis 1,𝑝

Then the energy functional πœ‘ : π‘Š0 (Ξ©) β†’ R, πœ‘ (𝑒) =

1 𝑝 ‖𝑒‖1,𝑝 βˆ’ ∫ 𝐹 (π‘₯, 𝑒 (π‘₯)) 𝑑π‘₯, 𝑝 Ξ©

(18)

π‘“π‘œπ‘Ÿ π‘‘β„Žπ‘’ π‘π‘Ÿπ‘œπ‘π‘™π‘’π‘š (βˆ—)

𝑒 ≀ 0 on πœ•Ξ© respectively 𝑒 β‰₯ 0 on πœ•Ξ©, and

π‘Ÿπ‘’π‘ π‘π‘’π‘π‘‘π‘–V𝑒𝑙𝑦 πœ‘ (𝑒) =

Weak Subsolutions and Weak Supersolutions of (βˆ—) and (βˆ—βˆ—). Let Ξ© be an open bounded set of 𝐢1 class in R𝑁, 𝑁 β‰₯ 3, let 𝑓 : 1,𝑝 Ξ© Γ— R β†’ R be a CarathΒ΄eodory function, and let 𝑒 ∈ π‘Š0 (Ξ©). 𝑒 is a weak subsolution and a weak supersolution, respectively, of (βˆ—) or (βˆ—βˆ—) if

1 𝑝 𝑒 βˆ’ ∫ 𝐹 (π‘₯, 𝑒 (π‘₯)) 𝑑π‘₯ 𝑝 1,𝑝 Ξ©

(19)

∫ |βˆ‡π‘’|π‘βˆ’2 βˆ‡π‘’ β‹… βˆ‡V 𝑑π‘₯ ≀ ∫ 𝑓 (π‘₯, 𝑒 (π‘₯)) V 𝑑π‘₯ Ξ©

Ξ©

1,𝑝

on π‘Š0 (Ξ©) \ {0} and

∫0 𝑓(π‘₯, 𝑑)𝑑𝑑 is GΛ†ateaux differentiable

Ξ©

Ξ©

1,𝑝

(20)

βˆ’ ∫ 𝑓 (π‘₯, 𝑒 (π‘₯)) V 𝑑π‘₯ Ξ©

1,𝑝

βˆ€π‘’, V ∈ π‘Š0 (Ξ©) π‘Ÿπ‘’π‘ π‘π‘’π‘π‘‘π‘–V𝑒𝑙𝑦

or 𝑁 󡄨󡄨 πœ•π‘’ σ΅„¨σ΅„¨π‘βˆ’2 πœ•π‘’ πœ•V 󡄨 󡄨󡄨 𝑑π‘₯ ≀ ∫ 𝑓 (π‘₯, 𝑒 (π‘₯)) V 𝑑π‘₯ βˆ‘ ∫ 󡄨󡄨󡄨 󡄨󡄨 󡄨 󡄨󡄨 πœ•π‘₯ πœ•π‘₯𝑖 πœ•π‘₯𝑖 Ξ© Ξ© 󡄨 𝑖 𝑖=1

βˆ€V ∈ π‘Š0 (Ξ©) , V β‰₯ 0 respectively

(21)

βˆ’ ∫ 𝑓 (π‘₯, 𝑒 (π‘₯)) V 𝑑π‘₯ = 0 Ξ©

βˆ€π‘’, V ∈

1,𝑝 π‘Š0

(Ξ©) .

1,𝑝

(1/𝑝)𝑒1,𝑝 are GΛ†ateaux differentiable on π‘Š0 (Ξ©)\{0} [2, 19] 1,𝑝

and then πœ‘ is GΛ†ateaux differentiable on π‘Š0 (Ξ©) \ {0}. Corollary 8. Let Ξ© and f be as in Theorem 7. Then the weak solutions of (βˆ—) and (βˆ—βˆ—), respectively, are precisely the critical 1,𝑝 points of the functional πœ‘ : π‘Š0 (Ξ©) β†’ R: 1 𝑝 ‖𝑒‖1,𝑝 βˆ’ ∫ 𝐹 (π‘₯, 𝑒 (π‘₯)) 𝑑π‘₯, 𝑝 Ξ© 𝑠

βˆ€V ∈ π‘Š0 (Ξ©) , V β‰₯ 0.

Proposition 9. Let Ξ© be an open bounded of 𝐢1 class set in R𝑁, 𝑁 β‰₯ 3 and 𝑓 : Ξ© Γ— R β†’ R a CarathΒ΄eodory function 1,𝑝 and 𝑒1 , 𝑒2 from π‘Š0 (Ξ©) bounded weak subsolution and weak supersolution of (βˆ—), respectively, with 𝑒1 (π‘₯) ≀ 𝑒2 (π‘₯) a.e. on Ξ©. Suppose that 𝑓 verifies (17) and there is 𝜌 > 0 such that the function 𝑔 : 𝑔(π‘₯, 𝑠) = 𝑓(π‘₯, 𝑠) + πœŒπ‘  is strictly increasing in s on [inf 𝑒1 (Ξ©), sup 𝑒2 (Ξ©)]. Then there is a weak solution 𝑒 of (βˆ—) 1,𝑝 in π‘Š0 (Ξ©) with the property 𝑒1 (π‘₯) ≀ 𝑒 (π‘₯) ≀ 𝑒2 (π‘₯)

π‘Ž.𝑒. π‘œπ‘› Ξ©.

(27)

1,𝑝

(22) ‖𝑒‖ =

0

𝑠

(26b)

Proof. Take the equivalent norm on 𝑋 = π‘Š0 (Ξ©):

𝐹 (π‘₯, 𝑠) fl ∫ 𝑓 (π‘₯, 𝑑) 𝑑𝑑 1 𝑝 𝑒 βˆ’ ∫ 𝐹 (π‘₯, 𝑒 (π‘₯)) 𝑑π‘₯, 𝑝 1,𝑝 Ξ©

𝑁 󡄨󡄨 πœ•π‘’ σ΅„¨σ΅„¨π‘βˆ’2 πœ•π‘’ πœ•V 󡄨 󡄨󡄨 𝑑π‘₯ β‰₯ ∫ 𝑓 (π‘₯, 𝑒 (π‘₯)) V 𝑑π‘₯ βˆ‘ ∫ 󡄨󡄨󡄨 󡄨󡄨 󡄨 󡄨 πœ•π‘₯ πœ•π‘₯𝑖 πœ•π‘₯𝑖 Ξ© 𝑖󡄨 𝑖=1 Ξ© 󡄨 1,𝑝

Proof. One may consider πœ‘, in both cases, as the sum of two other functions. The second of these functions being GΛ†ateaux differentiable (see the above consideration), it is sufficient 𝑝 to remark that also the maps 𝑒 β†’ (1/𝑝)‖𝑒‖1,𝑝 and 𝑒 β†’ 𝑝

(26a)

1,𝑝

󡄨󡄨 πœ•π‘’ σ΅„¨σ΅„¨π‘βˆ’2 πœ•π‘’ πœ•V 󡄨 󡄨󡄨 𝑑π‘₯ (𝑒) (V) = βˆ‘ ∫ 󡄨󡄨󡄨 󡄨󡄨 󡄨 󡄨 πœ•π‘₯ πœ•π‘₯𝑖 πœ•π‘₯𝑖 𝑖󡄨 𝑖=1 Ξ© 󡄨 𝑁

π‘Ÿπ‘’π‘ π‘π‘’π‘π‘‘π‘–V𝑒𝑙𝑦 πœ‘ (𝑒) =

(25b)

βˆ€V ∈ π‘Š0 (Ξ©) , V β‰₯ 0,

Ξ©

πœ‘ (𝑒) =

(Ξ©) , V β‰₯ 0,

∫ |βˆ‡π‘’|π‘βˆ’2 βˆ‡π‘’ β‹… βˆ‡V 𝑑π‘₯ β‰₯ ∫ 𝑓 (π‘₯, 𝑒 (π‘₯)) V 𝑑π‘₯

πœ‘π‘€σΈ€  (𝑒) (V) = ∫ |βˆ‡π‘’|π‘βˆ’2 βˆ‡π‘’ β‹… βˆ‡V 𝑑π‘₯

πœ‘π‘€σΈ€ 

1,𝑝 π‘Š0

respectively,

𝑠

=

(25a) βˆ€V ∈

fπ‘œπ‘Ÿ π‘‘β„Žπ‘’ π‘π‘Ÿπ‘œπ‘π‘™π‘’π‘š (βˆ—βˆ—) ,

where 𝐹(π‘₯, 𝑠)

(24)

𝑝 (𝜌 ‖𝑒‖L𝑝 (Ξ©)

1/𝑝 σ΅„©σ΅„© πœ•π‘’ 󡄩󡄩𝑝 σ΅„©σ΅„© σ΅„©σ΅„© + βˆ‘ σ΅„©σ΅„© ) . σ΅„©σ΅„© σ΅„© σ΅„© 𝑖=1 σ΅„© πœ•π‘₯𝑖 σ΅„©L𝑝 (Ξ©) 𝑁

(28)

1,𝑝

Consider the functional πœ‘ : π‘Š0 (Ξ©) β†’ R: (23)

𝐹 (π‘₯, 𝑠) fl ∫ 𝑓 (π‘₯, 𝑑) 𝑑𝑑. 0

Proof. Indeed, if 𝑒 is a weak solution of (βˆ—) and (βˆ—βˆ—), 1,𝑝 respectively, then πœ‘π‘€σΈ€  (𝑒)(V) = 0 βˆ€V ∈ π‘Š0 (Ξ©) ((15) and (16), resp., Theorem 7); hence πœ‘π‘€σΈ€  (𝑒) = 0. The inverse assertion is obvious.

πœ‘ (𝑒) =

1 ‖𝑒‖𝑝 βˆ’ ∫ 𝐺 (π‘₯, 𝑒 (π‘₯)) 𝑑π‘₯, 𝑝 Ξ© 𝑠

(29)

𝐺 (π‘₯, 𝑠) fl ∫ 𝑔 (π‘₯, 𝑑) 𝑑𝑑. 0

πœ‘ is GΛ†ateaux differentiable and its critical points are the weak solutions of (βˆ—) (see Corollary 8). πœ‘ is also lower bounded,

Abstract and Applied Analysis

5

the norm on L𝑝 (Ξ©) actually being of FrΒ΄echet 𝐢1 class (see, e.g., [20] or [21]). Use Proposition 5, (𝑋, β€– β‹… β€–) being a reflexive strictly convex Banach space (see, e.g., [2]). Let be 1,𝑝

F fl {𝑒 ∈ π‘Š0 (Ξ©) : 𝑒1 (π‘₯) ≀ 𝑒 (π‘₯) ≀ 𝑒2 (π‘₯) a.e. on Ξ©} .

(30)

F is closed convex. We also get (𝐼 βˆ’ βˆ‡πœ‘) F βŠ‚ F.

(31)

Here βˆ‡πœ‘ denotes the metric gradient of πœ‘. Since (𝑋, β€– β‹… β€–) is reflexive and strictly convex (see, e.g., [2]), thus βˆ‡πœ‘ is univaluated and it has the above described properties. Indeed, let 𝑒 be in F and V fl (𝐼 βˆ’ βˆ‡πœ‘)(𝑒). We should prove that 1,𝑝 V ∈ F. V = 𝑒 βˆ’ βˆ‡πœ‘(𝑒) ∈ π‘Š0 (Ξ©) and 𝑒1 (π‘₯) ≀ V(π‘₯) ≀ 𝑒2 (π‘₯). Since the definition relation of the subsolution for 𝑒1 1,𝑝 actually means πœ‘π‘€σΈ€  (𝑒1 )(𝑀) ≀ 0 βˆ€π‘€ in π‘Š0 (Ξ©) with 𝑀(π‘₯) β‰₯ 0 almost everywhere (a.e.) on Ξ© and that of supersolution for 1,𝑝 𝑒2 is πœ‘π‘€σΈ€  (𝑒2 )(𝑀) β‰₯ 0 βˆ€π‘€ in π‘Š0 (Ξ©) verifying 𝑀(π‘₯) β‰₯ 0 a.e. on Ξ©, we will prove that V(π‘₯) βˆ’ 𝑒1 (π‘₯) β‰₯ 0 a.e. on Ξ© and 𝑒2 (π‘₯) βˆ’ V(π‘₯) β‰₯ 0 a.e. on Ξ© using the GΛ†ateaux derivatives of πœ‘ in 𝑒1 and 𝑒2 , respectively. πœ‘π‘€σΈ€  (𝑒1 )(V βˆ’ 𝑒1 ) = πœ‘π‘€σΈ€  (𝑒1 )(𝑒1 βˆ’ 𝑒) βˆ’ πœ‘π‘€σΈ€  (𝑒1 )(βˆ‡πœ‘(𝑒)) ≀ βˆ’πœ‘π‘€σΈ€  (𝑒1 )(βˆ‡πœ‘(𝑒)) ≀ βˆ’πœ‘π‘€σΈ€  (𝑒)(βˆ‡πœ‘(𝑒)) = βˆ’β€–πœ‘π‘€σΈ€  (𝑒)β€–2 ≀ 0 (take into account that 𝑒1 ≀ 𝑒, πœ‘π‘€σΈ€  (𝑒1 ) is a linear map and some properties of the metric gradient). Also πœ‘π‘€σΈ€  (𝑒2 )(𝑒2 βˆ’ V) = πœ‘π‘€σΈ€  (𝑒2 )(𝑒2 βˆ’ V) + πœ‘π‘€σΈ€  (𝑒2 )(βˆ‡πœ‘(𝑒)) β‰₯ πœ‘π‘€σΈ€  (𝑒2 )(βˆ‡πœ‘(𝑒)) β‰₯ πœ‘π‘€σΈ€  (𝑒)(βˆ‡πœ‘(𝑒)) = β€–πœ‘π‘€σΈ€  (𝑒)β€–2 β‰₯ 0. πœ‘ is lower bounded on F, πœ‘ being actually continuous (for this see, for instance, [2]). Until now, applying Proposition 5, for every (V𝑛 )𝑛β‰₯1 a minimizing sequence for πœ‘ on F, there is a sequence (𝑒𝑛 )𝑛β‰₯1 in F such that πœ‘(𝑒𝑛 ) ≀ πœ‘(V𝑛 ) βˆ€π‘›, limπ‘›β†’βˆž ‖𝑒𝑛 βˆ’ V𝑛 β€– = 0, limπ‘›β†’βˆž β€–πœ‘π‘€σΈ€  (𝑒𝑛 )β€– = 0. So limπ‘›β†’βˆž πœ‘(𝑒𝑛 ) = 𝑐 since 𝑐 fl inf πœ‘(F), we have limπ‘›β†’βˆž β€–πœ‘π‘€σΈ€  (𝑒𝑛 )β€– = 0 already, also the last property from (PS)𝑐,F condition is verified. Finish the proof applying once again Proposition 5. Example 10. Consider the problem (Ξ© open bounded of 𝐢1 class in R𝑁, 𝑁 β‰₯ 3) βˆ’Ξ” 𝑝 𝑒 = 𝛼 (π‘₯) 𝑒 |𝑒|π‘βˆ’2 , 𝑒 = 0 on πœ•Ξ©,

(32)

where 𝑝 = 2𝑁/(𝑁 βˆ’ 2); 𝛼 is continuous with 1 ≀ 𝛼(π‘₯) ≀ π‘Ž < +∞ on Ξ©. Then 𝑒1 fl 1 is a weak subsolution, 𝑒2 fl 𝑀, 𝑀 > 1 sufficiently big, is a weak supersolution, |𝑓(π‘₯, 𝑠)| ≀ π‘Ž|𝑠|π‘βˆ’1 (condition (17)), and 𝑠 β†’ 𝛼(π‘₯)𝑠|𝑠|π‘βˆ’2 + 𝑠 is increasing in 𝑠 on [1, 𝑀]; consequently, according to Proposition 9, (32) has a weak solution 𝑒 with 1 ≀ 𝑒(π‘₯) ≀ 𝑀 a.e. on Ξ©. Proposition 11. Let Ξ© be an open bounded of 𝐢1 class set in R𝑁, 𝑁 β‰₯ 3 and 𝑓 : Ξ© Γ— R β†’ R a CarathΒ΄eodory function 1,𝑝 and 𝑒1 , 𝑒2 from π‘Š0 (Ξ©) bounded weak subsolution and weak supersolution, respectively, of (βˆ—βˆ—) with 𝑒1 (π‘₯) ≀ 𝑒2 (π‘₯) a.e. on Ξ©. Suppose that f verifies (17) and there is 𝜌 > 0 such that the function 𝑔 : 𝑔(π‘₯, 𝑠) = 𝑓(π‘₯, 𝑠) + πœŒπ‘  is strictly increasing in

s on [inf 𝑒1 (Ξ©), sup 𝑒2 (Ξ©)]. Then there is a weak solution 𝑒 of 1,𝑝 (βˆ—βˆ—) in π‘Š0 (Ξ©) with the property 𝑒1 (π‘₯) ≀ 𝑒 (π‘₯) ≀ 𝑒2 (π‘₯)

π‘Ž.𝑒. π‘œπ‘› Ξ©.

(33)

Proof. Follow step by step the above proof for Proposition 9 considering the real reflexive strictly convex Banach space 1,𝑝 𝑋 = π‘Š0 (Ξ©) endowed with the norm 𝑒 β†’ 𝑒 = 𝑝 𝑁 (βˆ‘π‘–=1 β€–πœ•π‘’/πœ•π‘₯𝑖 β€–L𝑝 (Ξ©) )1/𝑝 or the equivalent norm 𝑒 β†’ |𝑒|1,𝑝 =

βˆ‘π‘ 𝑖=1 β€–πœ•π‘’/πœ•π‘₯𝑖 β€–L𝑝 (Ξ©) which both are also equivalent to the other two norms used at Proposition 9. The function πœ‘ is from (19) having the weak derivative given in Theorem 7. Using similar calculus, obtain similar conclusion.

Example 12. Consider the problem (Ξ© open bounded of 𝐢1 class in R𝑁, 𝑁 β‰₯ 3): βˆ’Ξ”π‘ π‘ 𝑒 = 𝛼 (π‘₯) 𝑒 |𝑒|π‘βˆ’2 𝑒 = 0 on πœ•Ξ©,

(34)

where 𝑝 = 2𝑁/(𝑁 βˆ’ 2) and 𝛼 is continuous with 1 ≀ 𝛼(π‘₯) ≀ π‘Ž < +∞ on Ξ©. Then 𝑒1 fl 1 is a weak subsolution, 𝑒2 fl 𝑀, 𝑀 > 1 sufficiently big, is a weak supersolution, |𝑓(π‘₯, 𝑠)| ≀ π‘Ž|𝑠|π‘βˆ’1 (condition (17)), and 𝑠 β†’ 𝛼(π‘₯)𝑠|𝑠|π‘βˆ’2 + 𝑠 is increasing in 𝑠 on [1, 𝑀]; consequently, according to Proposition 11, (34) has a weak solution 𝑒 with 1 ≀ 𝑒(π‘₯) ≀ 𝑀 a.e. on Ξ©.

3. Critical Points for Nondifferentiable Functionals The sense of the title actually is β€œnot compulsory differentiable.” Start this section with the following. Definition 13. π‘₯0 is a critical point (in the sense of Clarke subderivative) for the real function 𝑓 if 0 ∈ πœ•π‘“(π‘₯0 ). In this case 𝑓(π‘₯0 ) is a critical value (in the sense of Clarke subderivative) for 𝑓. To clarify this notion, the Clarke subderivative should be introduced. Let 𝑋 be a real normed space, 𝐸 βŠ‚ 𝑋, 𝑓 : 𝐸 β†’ R, ∘ π‘₯0 ∈ 𝐸, and V ∈ 𝑋. We set 𝑓0 (π‘₯0 ; V) fl limπ‘₯β†’π‘₯0 ,𝑑→0+ ((𝑓(π‘₯ + 𝑑V) βˆ’ 𝑓(π‘₯))/𝑑). 𝑓0 (π‘₯0 ; V) is by definition Clarke derivative (or the generalized directional derivative) of the function 𝑓 at π‘₯0 in the direction V. The functional πœ‰ from π‘‹βˆ— is by definition Clarke subderivative (or generalized gradient) of 𝑓 in π‘₯0 if 𝑓0 (π‘₯0 ; V) β‰₯ πœ‰(V) βˆ€V ∈ 𝑋. The set of these generalized gradients is designated by πœ•π‘“(π‘₯0 ). Here it is a generalization at 𝑝-Laplacian and 𝑝-pseudoLaplacian of an application from [16] of this concept. Let Ξ© be a bounded domain of R𝑁 with the smooth boundary πœ•Ξ© (topological boundary). Consider the nonlinear boundary value problems (βˆ—) and (βˆ—βˆ—) where 𝑓 : Ω×R β†’ R is a measurable function with subcritical growth; that is, 󡄨 󡄨󡄨 𝜎 βˆ€π‘  ∈ R, π‘₯ ∈ Ξ© a.e., (I) 󡄨󡄨𝑓 (π‘₯, 𝑠)󡄨󡄨󡄨 ≀ π‘Ž + 𝑏 |𝑠| where π‘Ž, 𝑏 > 0, 0 ≀ 𝜎 < (𝑁 + 2)/(𝑁 βˆ’ 2) for 𝑁 > 2 and 𝜎 ∈ [0, +∞) for 𝑁 = 1 or 𝑁 = 2.

6

Abstract and Applied Analysis 𝑠

where 𝐹(π‘₯, 𝑠) = ∫0 𝑓(π‘₯, 𝑑) 𝑑π‘₯. Set

Set as in [15] 𝑓 (π‘₯, 𝑑) = lim 𝑓 (π‘₯, 𝑠) ,

𝑄 (𝑒) fl

𝑠→𝑑

(35)

𝑓 (π‘₯, 𝑑) = lim 𝑓 (π‘₯, 𝑠) .

𝑒 ∈ 𝑋, (41)

Ξ¨1 (𝑒) fl ∫ 𝐹 (π‘₯, 𝑒) 𝑑π‘₯, 𝑒 ∈ 𝑋,

𝑠→𝑑

Ξ©

Suppose respectively 𝑄 (𝑒) fl

𝑓, 𝑓 : Ξ© Γ— R 󳨀→ R are measurable with respect to π‘₯. (II)

(i) 𝑓 is independent of π‘₯. (ii) 𝑓 is Baire measurable and 𝑠 β†’ 𝑓(π‘₯, 𝑠) is decreasing βˆ€π‘₯ ∈ Ξ©, in which case we have

𝑓 (π‘₯, 𝑑) = max {𝑓 (π‘₯, 𝑑+) , 𝑓 (π‘₯, π‘‘βˆ’)} ,

(36)

𝑓 (π‘₯, 𝑑) = min {𝑓 (π‘₯, 𝑑+) , 𝑓 (π‘₯, π‘‘βˆ’)} . 1,𝑝

Definition 14. 𝑒 from π‘Š0 (Ξ©), 𝑝 > 1 is solution of (βˆ—) and (βˆ—βˆ—), respectively, if 𝑒 = 0 on πœ•Ξ© in the sense of trace and βˆ’Ξ” 𝑝 𝑒 (π‘₯) ∈ [𝑓 (π‘₯, 𝑒 (π‘₯)) , 𝑓 (π‘₯, 𝑒 (π‘₯))]

in Ξ© a.e.

(37)

in Ξ© a.e.

(38)

Define π‘Š1,𝑝 (Ξ“) with 𝑝 ∈ (1, +∞), Ξ“ regular differential manifold, e.g., Ξ“ = πœ•Ξ©, Ξ© open of 𝐢1 class with πœ•Ξ© bounded. In this situation, there exists a unique linear continuous operator 𝛾 : π‘Š1,𝑝 (Ξ©) β†’ π‘Š1βˆ’1/𝑝,𝑝 (πœ•Ξ©), the trace, such that 𝛾 is surjective and 𝑒 ∈ π‘Š1,𝑝 (Ξ©) ∩ 𝐢(Ξ©) β‡’ 𝛾(𝑒) = 𝑒 | πœ•Ξ©. This gives a sense for 𝑒 | πœ•Ξ©, for any 𝑒 in π‘Š1,𝑝 (Ξ©). Moreover, 1,𝑝 π›Ύβˆ’1 (0) = π‘Š0 (Ξ©). 1,𝑝 Let be 𝑋 fl π‘Š0 (Ξ©), but in the first case (βˆ—), the norm endowing 𝑋 is β€– β‹… β€–1,𝑝 , that is, ‖𝑒‖1,𝑝 = β€–π‘’β€–π‘Š1,𝑝 (Ξ©) = 0

‖𝑒‖L𝑝 (Ξ©) +βˆ‘π‘ 𝑖=1 β€–πœ•π‘’/πœ•π‘₯𝑖 β€–L𝑝 (Ξ©) , which is equivalent to the norm 𝑝 𝑝 1/𝑝 𝑒 β†’ (‖𝑒‖L𝑝 (Ξ©) + βˆ‘π‘ . For the second case 𝑖=1 β€–πœ•π‘’/πœ•π‘₯𝑖 β€–L𝑝 (Ξ©) ) (βˆ—βˆ—), equip the same set 𝑋 by the norm 𝑒 β†’ 𝑒1,𝑝 = 𝑝 1/𝑝 , which is equivalent to 𝑒 β†’ |𝑒|1,𝑝 = (βˆ‘π‘ 𝑖=1 β€–πœ•π‘’/πœ•π‘₯𝑖 β€–L𝑝 (Ξ©) ) βˆ‘π‘ 𝑖=1 β€–πœ•π‘’/πœ•π‘₯𝑖 β€–L𝑝 (Ξ©) .

1 𝑝 ‖𝑒‖1,𝑝 βˆ’ ∫ 𝐹 (π‘₯, 𝑒) 𝑑π‘₯, 𝑒 ∈ 𝑋, 𝑝 Ξ©

1 𝑝 𝑒 βˆ’ ∫ 𝐹 (π‘₯, 𝑒) 𝑑π‘₯, 𝑝 1,𝑝 Ξ©

𝐹, a map defined on Ξ© Γ— R, taking values in R, is locally Lipschitz (use (I)). The functional Ξ¨ : L𝜎+1 (Ξ©) β†’ R, Ξ¨(𝑒) = ∫Ω 𝐹(π‘₯, 𝑒) 𝑑π‘₯, is also locally Lipschitz (again (I)). Using Sobolev embedding 𝑋 βŠ‚ L𝜎+1 (Ξ©), we obtain that Ξ¨1 fl Ξ¨ | 𝑋 is locally Lipschitz on 𝑋, which implies Ξ¦ locally Lipschitz on 𝑋, and consequently, according to a local extremum result for Lipschitz functions (if π‘₯0 is a point of local extremum for 𝑓, then 0 ∈ πœ•π‘“(π‘₯0 )), the critical points of Ξ¦ for Clarke subderivative can be taken into account. One may state the following. Proposition 15. Suppose (I) and (II) are satisfied. Then Ξ¨ is locally Lipschitz on L𝜎+1 (Ξ©) and (i) πœ•Ξ¨(𝑒) βŠ‚ [𝑓(π‘₯, 𝑒(π‘₯)), 𝑓(π‘₯, 𝑒(π‘₯))] in Ξ© a.e, (ii) if Ξ¨1 = Ξ¨ | 𝑋, where 𝑋 = π‘Š0 (Ξ©) endowed with the norm β€– β‹… β€–1,𝑝 for the problem (βˆ—) and  β‹… 1,𝑝 for the problem (βˆ—βˆ—), respectively, then πœ•Ξ¨1 (𝑒) βŠ‚ πœ•Ξ¨ (𝑒)

βˆ€π‘’ ∈ 𝑋.

𝑒 ∈ 𝑋,

(43)

Proof. The proof for (i) can be found in [15], Theorem 2.1, which remained here the same, while the problem was solved for the Laplacian with 𝑋 = 𝐻01 (Ξ©) only. In order to prove (ii), use Theorem 2.2 from [15] observing for both cases (𝑋 endowed with each one of those two norms) that 𝑋 is reflexive and dense in L𝜎+1 (Ξ©) as can be seen, for instance, summarized in [2]. Proposition 16. If (I) and (II) are verified, every critical point of Ξ¦ is solution for (βˆ—) and (βˆ—βˆ—), respectively. Proof. Problem (βˆ—). Let 𝑒0 be a critical point for Ξ¦. We have (44)

(39)

(39)

since Ξ¦ = 𝑄 βˆ’ Ξ¨1 , and apply some rules of subdifferential calculus concerning finite sums. πœ•π‘„(𝑒0 ) = {𝑄󸀠 (𝑒0 )}, where 𝑄󸀠 (𝑒0 )(V) = ∫Ω |βˆ‡π‘’0 |π‘βˆ’2 β‹… βˆ‡V 𝑑π‘₯ = βŸ¨βˆ’Ξ” 𝑝 𝑒0 , V⟩ [2]. Using (44) and a specific property of a function 𝑓 Lipschitz around π‘₯0 (𝑓0 (π‘₯0 ; V) = supπœ‰βˆˆπœ•π‘“(π‘₯0 ) πœ‰(V), βˆ€V ∈ 𝑋, 𝑓0 the Clarke derivative of 𝑓), we find

(40)

0 󡄨 σ΅„¨π‘βˆ’2 0 ≀ ∫ σ΅„¨σ΅„¨σ΅„¨βˆ‡π‘’0 󡄨󡄨󡄨 β‹… βˆ‡V 𝑑π‘₯ + (βˆ’Ξ¨1 ) (𝑒0 ; V) . Ξ©

and associate to (βˆ—βˆ—) Ξ¦ (𝑒) =

Ξ©

0 ∈ πœ•Ξ¦ (𝑒0 ) βŠ‚ πœ•π‘„ (𝑒0 ) + πœ• (βˆ’Ξ¨1 ) (𝑒0 ) ,

Associate to (βˆ—) the locally Lipschitz functional Ξ¦ : 𝑋 β†’ Ξ¦ (𝑒) =

(42)

1,𝑝

respectively βˆ’Ξ”π‘ π‘ 𝑒 (π‘₯) ∈ [𝑓 (π‘₯, 𝑒 (π‘₯)) , 𝑓 (π‘₯, 𝑒 (π‘₯))]

1 𝑝 𝑒 , 𝑒 ∈ 𝑋, 𝑝 1,𝑝

Ξ¨1 (𝑒) fl ∫ 𝐹 (π‘₯, 𝑒) 𝑑π‘₯, 𝑒 ∈ 𝑋,

We emphasize that (II) is verified in the following two cases:

R:

1 𝑝 ‖𝑒‖1,𝑝 , 𝑝

(45)

Abstract and Applied Analysis

7

But (βˆ’Ξ¨1 )0 (𝑒0 ; V) = Ξ¨10 (𝑒0 ; βˆ’V) (a property of the Clarke derivative, see [1]) and thus 󡄨 σ΅„¨π‘βˆ’2 ∫ σ΅„¨σ΅„¨σ΅„¨βˆ‡π‘’0 󡄨󡄨󡄨 β‹… βˆ‡ (βˆ’V) 𝑑π‘₯ ≀ Ξ¨0 (𝑒0 ; βˆ’ V) Ξ©

βˆ€V ∈ 𝑋;

(46)

that is, 󡄨 σ΅„¨π‘βˆ’2 πœ‡0 (V) fl ∫ σ΅„¨σ΅„¨σ΅„¨βˆ‡π‘’0 󡄨󡄨󡄨 β‹… βˆ‡V 𝑑π‘₯ ≀ Ξ¨10 (𝑒0 , V) Ξ©

βˆ€V ∈ 𝑋, (47)

πœ‡0 = βˆ’Ξ” 𝑝 𝑒0 ∈ πœ•Ξ¨1 (𝑒0 ) and, using Proposition 15, βˆ’Ξ” 𝑝 𝑒0 ∈ πœ•Ξ¨(𝑒0 ). Since πœ•Ξ¨(𝑒0 ) βŠ‚ (L𝜎+1 (Ξ©))βˆ— = L(𝜎+1)/𝜎 (Ξ©), it results 𝑒0 ∈ π‘Š2,(𝜎+1)/𝜎 (Ξ©) and (37): βˆ’ Ξ” 𝑝 𝑒0 (π‘₯) ∈ [𝑓 (π‘₯, 𝑒0 (π‘₯)) , 𝑓 (π‘₯, 𝑒0 (π‘₯))] in Ξ© a.e.

(48)

(49)

(40)

(50)

But (βˆ’Ξ¨1 )0 (𝑒0 ; V) = Ξ¨10 (𝑒0 ; βˆ’V) (a property of the Clarke derivative, see [1]) and thus 𝑁 󡄨󡄨 πœ•π‘’ σ΅„¨σ΅„¨π‘βˆ’2 πœ•π‘’ πœ• (βˆ’V) 󡄨 󡄨 0 𝑑π‘₯ ≀ Ξ¨0 (𝑒0 ; βˆ’ V) βˆ‘ ∫ 󡄨󡄨󡄨 0 󡄨󡄨󡄨 󡄨 󡄨 πœ•π‘₯ πœ•π‘₯ πœ•π‘₯ Ξ© 󡄨 󡄨 𝑖 𝑖 𝑖 𝑖=1

(51) βˆ€V ∈ 𝑋;

(52)

βˆ€V ∈ 𝑋, πœ‡0 = βˆ’Ξ”π‘ π‘ 𝑒0 ∈ πœ•Ξ¨1 (𝑒0 ) and, using Proposition 15, βˆ’Ξ”π‘ π‘ 𝑒0 ∈

πœ•Ξ¨(𝑒0 ). Since πœ•Ξ¨(𝑒0 ) βŠ‚ (L𝜎+1 (Ξ©))βˆ— = L(𝜎+1)/𝜎 (Ξ©), it results 𝑒0 ∈ π‘Š2,(𝜎+1)/𝜎 (Ξ©) and (38): βˆ’Ξ”π‘ π‘ 𝑒0 (π‘₯) ∈ [𝑓 (π‘₯, 𝑒0 (π‘₯)) , 𝑓 (π‘₯, 𝑒0 (π‘₯))]

(I) If πœ‘ is bounded from below on the closed bounded nonempty subset 𝐢, the set {πœ‰ ∈ π‘‹βˆ— : πœ‘ + πœ‰ strongly exposes 𝐢 from below}

(54)

is of 𝐺𝛿 type and everywhere dense.

in Ξ© a.e. (53)

(55)

is of 𝐺𝛿 type and everywhere dense. To clarify the involved notions, let 𝑋 be a real normed space, 𝑓 : 𝑋 β†’ (βˆ’βˆž, +∞], 𝐢 nonempty subset of 𝑋, and π‘₯0 ∈ 𝐢. 𝑓 strongly exposes 𝐢 from below in π‘₯0 , when 𝑓(π‘₯0 ) = inf 𝑓(𝐢) < +∞ and π‘₯𝑛 ∈ 𝐢 βˆ€π‘› β‰₯ 1, 𝑓(π‘₯𝑛 ) β†’ 𝑓(π‘₯0 ) β‡’ π‘₯𝑛 β†’ π‘₯0 . β€œπ‘“ strongly exposes 𝐢 from above in π‘₯0 ” has a similar definition. Remark that, taking 𝐢 = 𝑋 in the given definition, we fall on the definition of strongly minimum point. And also, a set of 𝐺𝛿 type means a set which is a countable intersection of open sets. A set of 𝐹𝜎 type means a set which is a countable union of closed sets. We imply this theorem in two generalizations of a minimization problem of the form [22] 𝑁 󡄨󡄨 󡄨𝑝 1 󡄨 πœ•π‘’ 󡄨󡄨󡄨 𝐢𝑓 fl min {∫ [ (|𝑒|𝑝 + βˆ‘ 󡄨󡄨󡄨 󡄨󡄨 ) βˆ’ 𝑓 (𝑒)] 𝑑π‘₯ : 󡄨 󡄨 Ξ© 𝑝 𝑖=1 󡄨 πœ•π‘₯𝑖 󡄨

π‘’βˆˆ

1,𝑝 π‘Š0

(56)

(Ξ©) , ‖𝑒‖2βˆ— = 1} ,

1 𝑁 󡄨󡄨󡄨 πœ•π‘’ 󡄨󡄨󡄨󡄨𝑝 𝐢𝑓 fl min {∫ ( βˆ‘ 󡄨󡄨󡄨 󡄨 βˆ’ 𝑓 (𝑒)) 𝑑π‘₯ : 𝑒 𝑝 𝑖=1 󡄨󡄨 πœ•π‘₯𝑖 󡄨󡄨󡄨 Ξ©

that is, 𝑁 󡄨󡄨 πœ•π‘’ σ΅„¨σ΅„¨π‘βˆ’2 πœ•π‘’ πœ•V 󡄨 󡄨 0 πœ‡0 (V) fl βˆ‘ ∫ 󡄨󡄨󡄨 0 󡄨󡄨󡄨 𝑑π‘₯ ≀ Ξ¨10 (𝑒0 , V) 󡄨 󡄨 πœ•π‘₯ πœ•π‘₯ πœ•π‘₯ 𝑖󡄨 𝑖 𝑖 𝑖=1 Ξ© 󡄨

Theorem 17 (Ghoussoub-Maurey linear principle). Let 𝑋 be reflexive separable space and πœ‘ : 𝑋 β†’ (βˆ’βˆž, +∞] lower semicontinuous and proper:

{πœ‰ ∈ π‘‹βˆ— : πœ‘ + πœ‰ strongly exposes 𝑋 from below}

since Ξ¦ = 𝑄 βˆ’ Ξ¨1 , and apply some rules of subdifferential calculus concerning finite sums. πœ•π‘„(𝑒0 ) = {𝑄󸀠 (𝑒0 )}, where π‘βˆ’2 (πœ•π‘’0 /πœ•π‘₯𝑖 )(πœ•V/πœ•π‘₯𝑖 ) 𝑑π‘₯ = 𝑄󸀠 (𝑒0 )(V) = βˆ‘π‘ 𝑖=1 ∫Ω |πœ•π‘’0 /πœ•π‘₯𝑖 | 𝑠 βŸ¨Ξ” 𝑝 𝑒0 , V⟩ [2]. Using (49) and a mentioned property of a function 𝑓 Lipschitz around π‘₯0 , we find 𝑁 󡄨󡄨 πœ•π‘’ σ΅„¨σ΅„¨π‘βˆ’2 πœ•π‘’ πœ•V 0 󡄨 󡄨 0 0 ≀ βˆ‘ ∫ 󡄨󡄨󡄨 0 󡄨󡄨󡄨 𝑑π‘₯ + (βˆ’Ξ¨1 ) (𝑒0 ; V) . 󡄨 󡄨 πœ•π‘₯ πœ•π‘₯ πœ•π‘₯ Ξ© 󡄨 𝑖󡄨 𝑖 𝑖 𝑖=1

Start with the statement of this generalized perturbed variational principle.

(II) If, for any πœ‰ from π‘‹βˆ— , πœ‘ + πœ‰ is bounded from below, the set

Problem (βˆ—βˆ—). Let 𝑒0 be a critical point for Ξ¦. We have 0 ∈ πœ•Ξ¦ (𝑒0 ) βŠ‚ πœ•π‘„ (𝑒0 ) + πœ• (βˆ’Ξ¨1 ) (𝑒0 ) ,

4. An Application of Ghoussoub-Maurey Linear Principle to 𝑝-Laplacian and to 𝑝Pseudo-Laplacian

(57)

1,𝑝

∈ π‘Š0 (Ξ©) , ‖𝑒‖2βˆ— = 1} ,

where Ξ© is open set of 𝐢1 class in R𝑁, 𝑁 β‰₯ 3, 𝑓 ∈ σΈ€  1,𝑝 π‘Šβˆ’1,𝑝 (Ξ©) (=(π‘Š0 (Ξ©))βˆ— ), 1/𝑝 + 1/𝑝󸀠 = 1, 2βˆ— = 2𝑁/(𝑁 βˆ’ 2), the critical exponent for the Sobolev embedding (for the necessary explanations, here and in the following, see [1, I, Β§4, last section]). Let Ξ© be an open bounded set of 𝐢1 class in R𝑁, 𝑁 β‰₯ 3. Consider the problems (βˆ—) and (βˆ—βˆ—), where 𝑓 : Ξ© Γ— R β†’ R is a CarathΒ΄eodory function with the growth condition

8

Abstract and Applied Analysis 󡄨 󡄨󡄨 π‘βˆ’1 󡄨󡄨𝑓 (π‘₯, 𝑠)󡄨󡄨󡄨 ≀ 𝑐 |𝑠| + 𝑏 (π‘₯) , 𝑐 > 0, 2 ≀ 𝑝 ≀

σΈ€  2𝑁 1 1 , 𝑏 ∈ L𝑝 (Ξ©) , + σΈ€  = 1. π‘βˆ’2 𝑝 𝑝

(58)

(iii) Moreover, if 𝑠 β†’ 𝑓(π‘₯, 𝑠) is increasing, then the set of σΈ€  functions β„Ž from π‘Šβˆ’1,𝑝 (Ξ©), having the property {βˆ’Ξ” 𝑝 𝑒 = 𝑓 (π‘₯, 𝑒) + β„Ž (𝑒) π‘‘β„Žπ‘’ π‘π‘Ÿπ‘œπ‘π‘™π‘’π‘š { 𝑒=0 {

1,𝑝

The functionals πœ‘ : π‘Š0 (Ξ©) β†’ R, πœ‘ (𝑒)

𝑖𝑛 Ξ© π‘œπ‘› πœ•Ξ©

(65)

β„Žπ‘Žπ‘  π‘Ž π‘’π‘›π‘–π‘žπ‘’π‘’ π‘ π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘›,

=∫ [ Ω

𝑁 󡄨󡄨 󡄨𝑝 1 󡄨 πœ•π‘’ 󡄨󡄨󡄨 (|𝑒|𝑝 + βˆ‘ 󡄨󡄨󡄨 󡄨󡄨 ) βˆ’ 𝐹 (π‘₯, 𝑒 (π‘₯))] 𝑑π‘₯, 󡄨 󡄨 𝑝 𝑖=1 󡄨 πœ•π‘₯𝑖 󡄨

(59)

󡄨󡄨 πœ•π‘’ 󡄨󡄨𝑝 1 󡄨 󡄨󡄨 πœ‘ (𝑒) = ∫ ( βˆ‘ 󡄨󡄨󡄨 󡄨 βˆ’ 𝐹 (π‘₯, 𝑒 (π‘₯))) 𝑑π‘₯, 𝑝 𝑖=1 󡄨󡄨 πœ•π‘₯𝑖 󡄨󡄨󡄨 Ξ© 𝑁

𝑠

(60)

1

with 𝐹(π‘₯, 𝑠) fl ∫0 𝑓(π‘₯, 𝑑)𝑑𝑑, are of 𝐢 -class FrΒ΄echet and their critical points are the weak solutions of the problems (βˆ—) and (βˆ—βˆ—), respectively. 1,𝑝

Problem (βˆ—). Let πœ† 1 be the first eigenvalue of βˆ’Ξ” 𝑝 in π‘Š0 (Ξ©) with homogeneous boundary condition. We have (see [2, 6.2]) 𝑝

πœ† 1 = inf {

‖𝑒‖1,𝑝 𝑝

|𝑖 (𝑒)|0,𝑝

1,𝑝

: 𝑒 ∈ π‘Š0 (Ξ©) \ {0}}

(61)

(the Rayleigh - Ritz quotient) .

includes a 𝐺𝛿 set everywhere dense. Remark 19. This is a generalization to p-Laplacian and at 1,𝑝 π‘Š0 (Ξ©) of Theorem 2.13 from [14]. Proof. It is sufficient to justify (i). Consider, for each β„Ž from σΈ€  σΈ€  π‘Šβˆ’1,𝑝 (Ξ©), the functional πœ‰β„Ž from π‘Šβˆ’1,𝑝 (Ξ©): πœ‰β„Ž (𝑒) = βˆ’ ∫ β„Ž (𝑒 (π‘₯)) 𝑑π‘₯. Ξ©

One may see that πœ‘β„Ž = πœ‘ + πœ‰β„Ž (see (59)). Consequently, according to Ghoussoub-Maurey linear principle, (II), if we show that πœ‘β„Ž is bounded from below for any β„Ž from σΈ€  π‘Šβˆ’1,𝑝 (Ξ©), then (i) is proven. But, taking into account the 1,𝑝 Sobolev embedding and (62), we have βˆ€π‘’ ∈ π‘Š0 (Ξ©): (πœ‘ + πœ‰β„Ž ) (𝑒) =

And now give an answer for (56). Use the norm β€– β‹… ‖𝑝 on 1,𝑝 1,𝑝 π‘Š0 (Ξ©) (see above). Denote the dual of (π‘Š0 (Ξ©), β€– β‹… β€–1,𝑝 ) by

Ξ©

σΈ€ 

β‰₯

Proposition 18. Under the above assumptions and in addition the growth condition

Ξ©

σΈ€ 

with 0 < 𝑐1 < πœ† 1 , 𝛼 ∈ Lπ‘ž (Ξ©) for some 2 ≀ π‘ž ≀ 2𝑁/(π‘βˆ’2) and 𝑓(π‘₯, βˆ’π‘ ) = βˆ’π‘“(π‘₯, 𝑠), βˆ€π‘₯ from Ξ©, the following assertions hold: β‰₯

σΈ€ 

βˆ’Ξ” 𝑝 𝑒 = 𝑓 (π‘₯, 𝑒) + β„Ž (𝑒) π‘‘β„Žπ‘’ π‘π‘Ÿπ‘œπ‘π‘™π‘’π‘š { 𝑒=0

𝑖𝑛 Ξ© π‘œπ‘› πœ•Ξ©

β„Žπ‘Žπ‘  π‘ π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘›π‘ , includes a 𝐺𝛿 set everywhere dense.

(64)

𝑐 1 𝑝 (1 βˆ’ 1 ) ‖𝑒‖1,𝑝 βˆ’ π‘Ÿ ‖𝑒‖1,𝑝 𝑝 πœ†1

𝑐 1 𝑝 = ‖𝑒‖1,𝑝 [ (1 βˆ’ 1 ) ‖𝑒‖1,𝑝 βˆ’ π‘Ÿ] , 𝑝 πœ†1

(63)

(ii) The set of functions β„Ž from π‘Šβˆ’1,𝑝 (Ξ©), having the property

(67)

βˆ’ β€–β„Žβ€–π‘Šβˆ’1,𝑝󸀠 ‖𝑒‖1,𝑝

(i) The set of functions β„Ž from π‘Šβˆ’1,𝑝 (Ξ©), having the 1,𝑝 property that the functional πœ‘β„Ž : π‘Š0 (Ξ©) β†’ R,

σΈ€ 

Ξ©

𝑐 1 𝑝 𝑝 β‰₯ ‖𝑒‖1,𝑝 βˆ’ 1 ‖𝑒‖1,𝑝 βˆ’ β€–π›Όβ€–π‘žσΈ€  β€–π‘’β€–π‘ž 𝑝 πœ†1𝑝

(62)

has in only one point an attained minimum includes a 𝐺𝛿 set everywhere dense.

1 |𝑒 (π‘₯)|𝑝 𝑝 𝑑π‘₯ ‖𝑒‖1,𝑝 βˆ’ 𝑐1 ∫ 𝑝 𝑝 Ξ© βˆ’ ∫ 𝛼 (π‘₯) 𝑒 (π‘₯) 𝑑π‘₯ βˆ’ ∫ β„Ž (𝑒 (π‘₯)) 𝑑π‘₯

𝑝

1 πœ‘β„Ž (𝑒) = ‖𝑒‖𝑝𝑝 βˆ’ ∫ (𝐹 (π‘₯, 𝑒 (π‘₯)) + β„Ž (𝑒 (π‘₯))) 𝑑π‘₯ 𝑝 Ξ©

1 𝑝 ‖𝑒‖1,𝑝 βˆ’ ∫ 𝐹 (π‘₯, 𝑒 (π‘₯)) 𝑑π‘₯ 𝑝 Ξ© βˆ’ ∫ β„Ž (𝑒 (π‘₯)) 𝑑π‘₯

π‘Šβˆ’1,𝑝 (Ξ©), where 𝑝󸀠 is the conjugate of 𝑝 (i.e., 1/𝑝+1/𝑝󸀠 = 1).

𝑠 𝐹 (π‘₯, 𝑠) ≀ 𝑐1 + 𝛼 (π‘₯) 𝑠, 𝑝

(66)

π‘Ÿ ∈ R, and hence the conclusion since 1 βˆ’ 𝑐1 /πœ† 1 > 0. To prove some of these inequalities, ∫ 𝐹 (π‘₯, 𝑒 (π‘₯)) 𝑑π‘₯ ≀ ∫ ( Ξ©

Ξ©

=

|𝑒 (π‘₯)|𝑝 + 𝛼 (π‘₯) 𝑒 (π‘₯)) 𝑑π‘₯ 𝑝

1 𝑝 ‖𝑖 (𝑒)β€–0,𝑝 + ∫ 𝛼 (π‘₯) 𝑒 (π‘₯) 𝑑π‘₯ 𝑝 Ξ©

1 𝑝 ≀ ‖𝑒‖1,𝑝 + ‖𝛼‖0,π‘žσΈ€  β€–π‘’β€–π‘ž π‘πœ† 1 ≀

1 𝑝 ‖𝑒‖1,𝑝 + 𝐾 ‖𝑒‖1,𝑝 π‘πœ† 1

(68)

Abstract and Applied Analysis

9

(see π‘ž and properties of Sobolev spaces, e.g., [2]) and ∫Ω β„Ž(𝑒(π‘₯)) 𝑑π‘₯ = βŸ¨β„Ž, π‘’βŸ© ≀ β€–β„Žβ€–π‘Šβˆ’1,𝑝󸀠 ‖𝑒‖1,𝑝 (the norm of the linear continuous map).

Remark 21. This is a generalization to 𝑝-pseudo-Laplacian 1,𝑝 and at π‘Š0 (Ξ©) of Theorem 2 .13 from [14].

Problem (βˆ—βˆ—). Let πœ† 1 be the first eigenvalue of βˆ’Ξ”π‘ π‘ in

Proof. The proof and the afferent calculus follow step by step those for Proposition 18. One replaces there the norm β€– β‹… ‖𝑝 1,𝑝 on π‘Š0 (Ξ©) by the norm  β‹… 𝑝 and the inequalities and the considerations remain the same.

1,𝑝

π‘Š0 (Ξ©) with homogeneous boundary condition. We have (see [2, 7.2]) 𝑝

πœ† 1 = inf {

𝑒1,𝑝

𝑝 |𝑖 (𝑒)|0,𝑝

5. Conclusions

1,𝑝

: 𝑒 ∈ π‘Š0 (Ξ©) \ {0}}

(69)

(the Rayleigh - Ritz quotient) .

And now give an answer for (57). Use the norm  β‹… 𝑝 on 1,𝑝 above). Denote also the dual of (π‘Š0 (Ξ©),  β‹… 𝑝 )

1,𝑝 π‘Š0 (Ξ©) (see βˆ’1,𝑝󸀠

by π‘Š 1).

(Ξ©), where 𝑝󸀠 is the conjugate of 𝑝 (i.e., 1/𝑝+1/𝑝󸀠 =

Proposition 20. Under the above assumptions and in addition the growth condition 𝐹 (π‘₯, 𝑠) ≀ 𝑐1

𝑠𝑝 + 𝛼 (π‘₯) 𝑠, 𝑝

(70)

σΈ€ 

with 0 < 𝑐1 < πœ† 1 , 𝛼 ∈ Lπ‘ž (Ξ©) for some 2 ≀ π‘ž ≀ 2𝑁/(𝑁 βˆ’ 2) and 𝑓(π‘₯, βˆ’π‘ ) = βˆ’π‘“(π‘₯, 𝑠), βˆ€π‘₯ from Ξ©, the following assertions hold. σΈ€ 

(i) The set of functions β„Ž from π‘Šβˆ’1,𝑝 (Ξ©), having the 1,𝑝 property that the functional πœ‘β„Ž : π‘Š0 (Ξ©) β†’ R, πœ‘β„Ž (𝑒) =

1 𝑝 𝑒 βˆ’ ∫ (𝐹 (π‘₯, 𝑒 (π‘₯)) + β„Ž (𝑒 (π‘₯))) 𝑑π‘₯ 𝑝 𝑝 Ξ©

(71)

has in only one point an attained minimum includes a 𝐺𝛿 set everywhere dense. σΈ€ 

(ii) The set of functions β„Ž from π‘Šβˆ’1,𝑝 (Ξ©), having the property 𝑠

{βˆ’Ξ” 𝑝 𝑒 = 𝑓 (π‘₯, 𝑒) + β„Ž (𝑒) π‘‘β„Žπ‘’ π‘π‘Ÿπ‘œπ‘π‘™π‘’π‘š { 𝑒=0 {

Competing Interests

𝑖𝑛 Ξ© π‘œπ‘› πœ•Ξ©

(72)

β„Žπ‘Žπ‘  π‘ π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘›π‘ ,

(iii) Moreover, if 𝑠 β†’ 𝑓(π‘₯, 𝑠) is increasing, then the set of σΈ€  functions β„Ž from π‘Šβˆ’1,𝑝 (Ξ©), having the property 𝑠

𝑖𝑛 Ξ© π‘œπ‘› πœ•Ξ©

β„Žπ‘Žπ‘  π‘Ž π‘’π‘›π‘–π‘žπ‘’π‘’ π‘ π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘›, includes a 𝐺𝛿 set everywhere dense.

The author declares that they have no competing interests.

References

includes a 𝐺𝛿 set everywhere dense.

{βˆ’Ξ” 𝑝 𝑒 = 𝑓 (π‘₯, 𝑒) + β„Ž (𝑒) π‘‘β„Žπ‘’ π‘π‘Ÿπ‘œπ‘π‘™π‘’π‘š { 𝑒=0 {

Three ways to obtain and/or characterize weak solutions for two problems of mathematical physics equations involving Dirichlet problems for the 𝑝-Laplacian and the 𝑝-pseudoLaplacian are developed. The first sequence of results used the Ekeland variational principle to obtain theoretical propositions which generalize two statements given by Ghoussoub in which the author replaced the real Hilbert space by real reflexive uniformly convex Banach space, and the FrΒ΄echet 𝐢1 -class of the goal function by the conditions imposed to this to be lower semicontinuous and GΛ†ateaux differentiable. It is also worthwhile to underline that the GΛ†ateaux differentiability can be replaced by the property of 𝛽-differentiability, 𝛽 being any bornology. These theoretical statements have been used to characterize weak solutions for the 𝑝-Laplacian and for the 𝑝-pseudoLaplacian. Some adequate examples were also given. The second succession of statements establishes results for nondifferentiable functionals using Clarke gradient and other specific notions until their insertion in characterization of weak solutions for Dirichlet problems with the 𝑝-Laplacian 1,𝑝 and the 𝑝-pseudo-Laplacian, respectively, in π‘Š0 (Ξ©). The last sequence of assertions starts from GhoussoubMaurey linear principle which is used in order to solve some minimization problems. Generalizations of a minimization problem for the Laplacian given by Brezis and Nirenberg have been obtained in conjunction with characterization of weak solutions of Dirichlet problems for the 𝑝-Laplacian and for the 𝑝-pseudo-Laplacian.

(73)

[1] I. Meghea, Ekeland Variational Principle with Generalizations and Variants, Old City Publishing, Philadelphia, Pa, USA; Β΄ Editions des Archives Contemporaines, Paris, France, 2009. [2] I. Meghea, β€œSurjectivitΒ΄e et thΒ΄eor`emes type alternative de Fredholm pour les opΒ΄erateurs de la forme 𝐽 βˆ’ 𝑆 et quelques Dirichlet problemes,” In press. [3] I. Meghea, β€œTwo solutions for a problem of partial differential equations,” UPB Scientific Bulletin, Series A, vol. 72, no. 3, pp. 41–58, 2010. [4] I. Meghea, β€œSome results of Fredholm alternative type for operators of πœ†Jπœ‘ βˆ’ S form with applications,” U.P.B. Scientific Bulletin, Series A, vol. 72, no. 4, pp. 21–32, 2010.

10 [5] I. Meghea, β€œWeak solutions for the pseudo-Laplacianusing Δ𝑠𝑝 a perturbed variational principle and via surjectivity results,” BSG Proceedings, vol. 17, pp. 140–150, 2010. [6] I. Meghea, β€œWeak solutions for p-Laplacian and for pseudoLaplacian using surjectivity theorems,” BSG Proceedings, vol. 18, pp. 67–76, 2011. [7] N. Amiri and M. Zivari-Rezapour, β€œMaximization and minimization problems related to p-Laplacian equation on a multiply connected domain,” Taiwanese Journal of Mathematics, vol. 19, no. 1, pp. 243–252, 2015. [8] A. El Khalil and M. Ouanan, β€œBoundary eigencurve problems involving the p-Laplacian operator,” Electronic Journal of Differential Equations, vol. 78, pp. 1–13, 2008. [9] N. B. Rhouma and W. Sayeb, β€œExistence of solutions for the p-Laplacian involving a radon measure,” Electronic Journal of Differential Equations, vol. 2012, no. 35, pp. 1–18, 2012. [10] N. Yoshida, β€œForced oscillation criteria for superlinearsublinear elliptic equations via Picone-type inequality,” Journal of Mathematical Analysis and Applications, vol. 363, no. 2, pp. 711–717, 2010. [11] H. Lanchon-Ducauquis, C. Tulita, and C. Meuris, β€œModelisation du transfert thermique dans I’He II,” in Congres Francais de Thermique (SFT ’00), pp. 15–17, Lyon, France, May 2000. [12] D. Partridge, Numerical modelling of glaciers: moving meshes and data assimilation [Ph.D. thesis], Department of Mathematics and Statistics, University of Reading, 2013. [13] M. C. PΒ΄elissier, Sur Quelques Probl`emes Non LinΒ΄eaires en Glaciologie, Publications Math`ematiques d’Orsay no. 1110, U.E.R. MathΒ΄ematique, UniversitΒ΄e Paris XI, 1975. [14] N. Ghoussoub, Duality and Perturbation Methods in Critical Point Theory, Cambridge University Press, 1993. [15] K. C. Chang, β€œVariational methods for non-differentiable functionals and their applications to partial differential equations,” Journal of Mathematical Analysis and Applications, vol. 80, no. 1, pp. 102–129, 1981. [16] D. G. Costa and J. V. GoncΒΈalves, β€œCritical point theory for nondifferentiable functionals and applications,” Journal of Mathematical Analysis and Applications, vol. 153, no. 2, pp. 470– 485, 1990. [17] I. Ekeland, β€œOn the variational principle,” Cahiers de MathΒ΄ematique de la DΒ΄ecision 7217, UniversitΒ΄e Paris, 1972. [18] I. Ekeland, β€œOn the variational principle,” Journal of Mathematical Analysis and Applications, vol. 47, pp. 324–353, 1974. [19] G. Dinc˘a, P. Jebelean, and J. Mawhin, Variational and Topological Methods for Dirichlet Problems with p-Laplacian, UniversitΒ΄e Catholique de Louvain, 1999. [20] M. M. Vainberg, Variational Methods in the Study of Nonlinear Operators, Holden Day, San Francisco, Calif, USA, 1964. [21] C. Meghea and I. Meghea, Treatise on Differential Calculus and Integral Calculus for Mathematicians, Physicists, Chemists Β΄ and Engineers in Ten Volumes, vol. 2 of Editions des Archives Contemporaines, Paris, Old City, Philadelphia, Pa, USA, 2013. [22] H. Brezis and L. Nirenberg, β€œA minimization problem with critical exponent and non-zero data,” in Symmetry in Nature, Scuola Norm. Sup. Pisa, pp. 129–140, 1989.

Abstract and Applied Analysis

Advances in

Operations Research Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Advances in

Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Applied Mathematics

Algebra

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Probability and Statistics Volume 2014

The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Differential Equations Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Submit your manuscripts at http://www.hindawi.com International Journal of

Advances in

Combinatorics Hindawi Publishing Corporation http://www.hindawi.com

Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Journal of

Mathematics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Discrete Mathematics

Journal of

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Discrete Dynamics in Nature and Society

Journal of

Function Spaces Hindawi Publishing Corporation http://www.hindawi.com

Abstract and Applied Analysis

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Journal of

Stochastic Analysis

Optimization

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014