vbr v ideo source characterization and ap ractical ... - CiteSeerX

0 downloads 0 Views 336KB Size Report
IP datagram werencapsulated using IEEE 802.2 LLC/SNAP an d segmented into ATM ...... aforementioned two e xtreme sections in case of the SU25 and PL25 ...
VBRV IDEO SOURCE CHARACTERIZATION AND AP RACTICAL HIERARCHICAL MODEL István Cselényi a, SándorMolnár

a

DepartmentofNetwork Services,

Vitsandsgatan 9B,S-12386,

b

b

TeliaResearch AB

Farsta,Sweden,E-mail:

[email protected]

High Speed NetworksLaboratory,Dept.ofTelecommunicat

ionsand Telematics,

BudapestUniversity oTechnology f and Economics Pázmány Péter sétány 1/D,H-1117,Budapest,Hungary,E-mail: molnar@ttt-a

tm.ttt.bme.hu

Abstract TherearemanywaystobuilduptrafficmodelsforVBR istousemathematicalanalysisbasedonrealisticas accordingtoastochasticprocess.Inthiscase,the comparing statisticstroesultsobtained from measureme Inthispaper,wechooseadifferentandmorepractica source.Ourmodelbuildingphilosophyisthatwe

videosources.Afrequentlyappliedmethodology sumptionstosetupasourcemodelthatgeneratestraffi criticalissueisthevalidationofthesynthetict ntsotnhe real source. approach l tomodelthebehaviorotfherealtraffic analyzeandunderstand

whathappenswiththevideo

informationonitswayfromtheingresstothemulti

mediaterminaltotheegressofthenetworkcard.

Throughoutthisjourneytheinformationips rocessedby

severalmechanismsandwbeuildanempiricalmodel

stepbsytepbased oonurmeasurement-based observations.

c raceby

I. Cselényi,S.

Molnár VBR / Video SourceCharacterizationAndA Practical

Besidesunderstandingthetrafficgenerationprocedure

HierarchicalModel

statistical , analysisoV f BRtraffictracescaptured

from naumberofvideo sequenceswasalso carried outi

nseveralscenarios.Usingtheknowledgeof

encoding,

encapsulation and scheduling processesand resultsoth f

terace analysis,a

issetup

formodeling the multimediaterminal.Thereby ourmode

imitates l the generation ovideo f framesandthei

nner

tsroeproduce the complexbehavioroftherealsource.W

e

working oeach f level ofprotocol hierarchy and trie usethe

leakybucketanalysis

forverificationofthemodelinordertocapturedi

hierarchicalsourcemodel

rectlythebehaviorotfhe

trafficiqueue. an

Keywords: ATM traffic characterization,VBR

videosourcemodel,

hierarchical modeling, whitebox

modeling,IPoverATM

1. Introduction VariableBitRatevideohasanimportantroleinbroad forecasttrafficips roducedbymultimediasources(e.g. etc.).ThecharacteristicsofVBRvideotrafficbase problemshave been oincreasing f interestin the last

bandInternet,becauseasubstantialportionof teleconferencingterminals,video-on-demandserver donmeasurementstudiesandtherelatednetworking decade of

SourcemodelsoVBR f videoareneededtodimensionn

umberodf ifferentmodelshavebeenproposedfor

anoverviewsee[9,25]).Thelargevarietyom f odeling

intothefollowingthreecategories: models[18,28].However,all

Markovmodels[1,17],

blackboxapproach

alternativemethoditsheso-called

processicshosenandthe

atisticsotfherealsource.Thismethodologycanbe

w , hichisbasedmerelyonthecharacteristicsofme whiteboxapproach

approachescanbedivided

autoregressiveprocesses[10,23]andfractal

commontotheseapproachesthatsapecificstochastic

parametersaresetbyaspecificmethodtofitsomest regardedasa

teletrafficresearch [8,11,14,19,22].

etworksandcontrolmethodstoachieveacceptable

qualityandoptimalusageonf etworkresources[4,8].An VBRvideomodeling(for

s,

asuredtraffic.An

which , attemptstoreproducethedetailedbehaviorof

2

I. Cselényi,S.

Molnár VBR / Video SourceCharacterizationAndA Practical

thesourcebyimitatingitsinnerworking[12].Thisme modelingcommunitysofar.However,webelievethatt practice,becauseican t capturetheimpactofencodinga traffic.Therefore wceombine the white and black boxm

thodologyhasreceivedlittleattentionfromthevi

structureanalysis,silenceperiodanalysisonseveral blackboxanalysisifsollowedbyawhiteboxanalysisth multimediaterminal.Ontheotherhand,weintroduce

ndencapsulationproceduresonthegenerateddata odeling approachesitnhiswork. ndwegiveacomprehensive

sourceanalysis

byperformingtrafficintensityanalysis,correlation burstlevelsrangingfrompackettoscenelevel.This atisaimedadetecting t theinternal apractical,

builtupusingtheobservationsandparametersidentified describeasimpletechniquetomodeltheencodingand

deo

hismodelingconceptcanbeverysuccessfulin

Themaincontributionofourpaperistwofold.Ononeha study andrevealtheverynatureomeasured f videotraffic

HierarchicalModel

behaviorotfhe

hierarchical,videosourcemodel

which , is

duringtheblackandwhiteboxanalysis.We schedulingovf ideoframesandemulatetheimpactof

layersitnhe protocol stack otnhe ATMtraffic. Themainadvantagesofourproposedmodelbuildingtechn

iquecomparedtopreviousmodelsarethe

following: •



Wemaptheresultsoblack f boxtrafficanalysistourk

nowledgeothe f trafficgenerationprocedure.

Thiswhite boxapproach yields model a whose behavioris

very close ttohatofthe real source.

Wepresentarelativelysimplealgorithmfortraffic

generationwheretheparameterscanbeasilyset

based om n easurements. •

The model targetstcoapture directly the queuing

behavior(i.e.

lengthandcellloss)oftherealsource.Weavoid

leaky bucketor

burstinesscurve,queue

the complexityoffittingdifferentstatistical

characteristics and investigating rather a complexqueuing model. •

Themodelingconceptisverifiedbycomparingthequeuin traffictraces.Werestricttheuseofstatisticala

gperformanceothe f syntheticandcaptured ssumptionsaboutthetrafficandsetourmodel

parametersdirectly from measurements.

3

I. Cselényi,S.

Molnár VBR / Video SourceCharacterizationAndA Practical

Thispaperisorganizedasfollows.

HierarchicalModel

Themeasurementscenario,investigatedmultimediaplat

sequencesareintroducedinSection2We . exploretheVB itstrafficadt ifferenttimescalesinSection3.T

Rsourcefromoutsideaablack s boxbyanalyzing hanwelookinsidethebox(i.e.whiteboxapproach)and

identifytheunitswhichhavesignificantimpactont hierarchicaltrafficgenerationmodelfrom theblack

formandvideo

heresultanttrafficinSection4.Weconstructa andwhiteboxanalysisinSection5The . verification

application othis f model are given iS n ection 6Fina .

and

lly,conclusionsare summarized iS n ection 7.

2. TrafficMeasurement 2.1 MeasurementScenario Avideocassetterecorderprovidedvideoandaudiosig procedure.Theopticalsignalfromthemultimediaserve testequipmentwithoutaffectingthebehavioroftheappl interestwasrecordedinreal-timebyamoduledevelo instrumentdevelopedintheRACEPARASOLproject

nalsinordertohavearepeatablemeasurement was r copiedbymeansoan f opticalsplittertoATM icationinuse.The pedby

interarrivaltimeoATM f cellsof

TeliaAB,Sweden.ItresidesinanATMtest

[3].Thetrafficrecordswerepost-processedwith

software developed btyhe authors. SunSPARC10workstationsequippedwithvideo,audiohardw endstations.Permanentvirtualconnectionswereest protocolstack.

areandATMinterfacecardswereusedas ablishedamongthemwithclassicalIPoverATM

IPdatagramwereencapsulatedusingIEEE802.2LLC/SNAPan

usingAAL5.NoshapingwasappliedtotheATMcellstrea layer.Thevideoandaudioinformationweremultiplexed platform,desktopmultimediaapplication,videocardand frequentlyusedasamultimediaterminalofreasonable characterization omultimedia f sourcesicnase odis f movie teleswitching ovideo r odnemand.Evaluation omeas f

dsegmentedintoATMcells

mwhichwascarriedoverSTM-1SDHphysical onasingleVirtualChannel.Theworkstation codingschemeweusedinourinvestigationsare price.Thisscenarioisadequatetotraffic tributed multimediaapplicationssuchavsideoconference, urementsfordifferentplatformsiispnrogress.

4

I. Cselényi,S.

Molnár VBR / Video SourceCharacterizationAndA Practical

HierarchicalModel

2.2 VideoSequences Several standard CCIRvideo sequencesrecorded iV nH

Squality wereusedavsideosource[5,6].Threeof

them were selected forthispaper: • GirlWithToys

A sequence oalmost f still pictures–no motion dynamic

• Sussie

Head and shoulderscene,no cameramovements

• Popple

Zoom ofmoving object

Thevideosequenceswerecodedusing

s – low motion dynamics

– high motion dynamics

CellBcompressionandsegmentedbythedesktopmultimed

application stohat caonstantrate oframes f ovary f

ingsizeswasgenerated.The

is low-cost a video compression scheme used mostlyon

Sunplatform

compressionalgorithmssuchaM s PEGorH.261,ithasthe variableoutputvideorate.Theaudioinformationwasco bitrate.The casesexamined itnhispaperare given in

ia

CellBcompressionalgorithm

[26].Incomparisonwithstandardvideo

advantageocf heaphardwaresupportandless dedandtransferredinastreamof64

Kbpsconstant

Table 1The . lastcolumn othis f tablepresentsthelon

term average rate,which idsenoted by

g-

R.

Notation

NameoVideo f Sequence

GT10

Girl with Toys

SU10

Sussie

10

384x288

37.17

582.75

PL10

Popple

10

384x288

24.04

1500.01

GT25

Girl with Toys

SU25

Sussie

25

384x288

34.55

1026.76

PL25

Popple

25

384x288

35.19

2251.11

Table 1

FrameRate [frame/sec] 10

Resolution [pixels] 384x288

25

384x288

Length of Trace[sec] 21.41

35.89

AverageRate[Kbps] 452.93

922.26

Parametersothe f Measured VideoSequences

5

I. Cselényi,S.

Molnár VBR / Video SourceCharacterizationAndA Practical

HierarchicalModel

2.3 Traditional Analysisof VideoSequences TheSquaredCoefficientoV f ariation(SCV)oC f ell

InterarrivalTimes(CITs)isusedasthe

measure.Thisdescriptorand othertraditional traffi

scource statisticsare listed in

burstiness

Table 2.Thevaluesconfirm

that the burstinessothe f trafficids eterminedbythevideocontentandiis t

independentoftheframerate

ThustheGT10-GT25andSU10-SU25sequenceshavealmostthesa

me burstiness.However,the

ofPL25icsonsiderablylessthanPL10’s;probablyduetoth

burstiness

seaturationotferminalperformance.Itcanbe

seen from the peak cell rate valuesthatno shaping wa

aspplied.

Nameof Stream

CITmean [cell time]

CITvariance

GT10

342.89

9077900

77.21

366792

22871

SU10

266.59

6997300

98.52

366792

51089

PL10

103.54

2309000

215.38

366792

85060

GT25

168.40

235300

78.82

366792

78066

SU25

151.20

2115300

92.53

366792

83696

PL25

68.99

Table 2

.

818380

Burstiness

171.93

Peak Cell Rate [cell/sec]

366792

TrafficCharacteristicsothe f Captured Cell Stream

Numberof captured cells

186827

s

3. SourceAnalysis InthissectionwceonsidertheVBRsourceaablack s anunknownmechanism.Differentmethodsareappliedon fromcellleveltoscenelevel.Asaresultofthed generation procedure inside othe f black boxand obtain s

boxandanalyzetheATMcellstreamproducedby themeasureddataadifferent t timescalesranging etailedanalysis,wemakesomehypothesisaboutthetr

affic

everal trafficparametersthatare used ionurmodel.

6

I. Cselényi,S.

Molnár VBR / Video SourceCharacterizationAndA Practical

HierarchicalModel

3.1 TrafficIntensityAnalysis The usual way otraffic f characterization itsm o easur

ietsintensity,i.e.the

giventimeslot.Thetrafficintensityorfecorded ordertoinvestigatetheburststructure.

ATMtraffictracesisanalyzedadt ifferenttimesc Figure1-4showtrafficintensityoasfhorttracefr

sequenceondifferentburstlevels.Eachcolumnrepresen

The complete PL25sequence ishown in

Figure 1The . two level shiftsare caused btywo

Figure 1

inthepicturefield.

a) ndshowsthearrivalpatternosfevenvideoframe

audio packetsibnetween.The internal structure ofafr we show saingle packetin

omthePL25video

.

periodswithanintermediateperiodopf artialmotion videoframelevel

ales,in

tsthenumberoafrrivalsinonetimeslotof58330,

750,38and one cell timesiF n igure 1,2,3and 4respectively ,

scale(i.e.

amountofcellarrivalswithina

ame (i.e.

Figure2magnifiesthenexttime osvf aryingsizewiththree

IPpacketlevel

Figure 4thatcontains172ATMcellsarriving apractic t

TheCell Arrival IntensityoThe f PL25Sequenceon Scene

Length oWindow: f 38sec,Mean Ratein TheWindow:2251

highspeedzoom

is )shownin

Figure3Finally, .

ally full link rate.

Level

Kbps,SizeoTime f Slot:58330cell times

7

I. Cselényi,S.

Molnár VBR / Video SourceCharacterizationAndA Practical

audio

Figure 2

TheCell Arrival IntensityoThe f

Length oWindow: f 490ms,Mean Ratein TheWindow:3.26

Figure 3

TheCell Arrival IntensityoThe f

Length oWindow: f 24.5ms,Mean Ratein TheWindow:9.45

audio

HierarchicalModel

audio

PL25Sequenceon VideoFrameLevel Mbps,SizeoTime f Slot:750cell times

PL25Sequenceon IP acketLevel Mbps,SizeoTime f Slot:38cell times

8

I. Cselényi,S.

Figure 4 Length oWindow: f 654

Molnár VBR / Video SourceCharacterizationAndA Practical

TheCell Arrival IntensityoThe f

pronounced,asiistshowninotherworks[5,14,24].Observ offrames,packetsandcellsadt ifferenttimescale illustratedin

PL25Sequenceon Cell Level

µs,Mean Ratein TheWindow:133.4

Basedonthetrafficintensityanalysisthemulti-le

Figure3By . plottingsimilarfiguresfortheothervid

ofvideoframesdependonthecontentofvideosequen

HierarchicalModel

Mbps,SizeoTime f Slot:1cell time

velburststructureotfheexaminedVBRtrafficiswell ingthesefiguresnoteworthyitsheregulararrival s.Audiopacketsalsoarriveinaregularmannerasit

is

eosequenceswceanconcludethatthesize cewhilethestructureoframeinternalpacketslooks

very much the same foreach frame. Basedontheseobservationsourhypothesisitshat

thegenerationoframes f andpacketsisindependent

thustheseburstlevelscanbdeistinguishedinourmodel

We . introducethefollowingnotationfordescribing

the multilevel burststructure:

9

I. Cselényi,S.

Molnár VBR / Video SourceCharacterizationAndA Practical

Nf

Tip

N

Tdp

HierarchicalModel

Np*

Np

p

Tsp

Tsc Tsf

Tif

Np Tip Tdp Tsp Npaudio

packetsize N packetinterarrivaltime T packetduration T packetsilence period T size oaudio f packet T

Figure 5 Figure5depictsthe

Tdf

f if df sf sc

frame size frame interarrivaltime frame duration frame silence period cellsilence period

Multilevel Burstsin theTrafficStream

interarrivaltimeanddurationoframes f (T

periodsbetween framesand between packets(T cellsiframe na andpacket, a respectively.

if,

Tdfand ) packets(T

and Tsp),respectively. sf

Nand f

ip,

Tdpand ) thesilence

Ndenote thenumberofATM p

* thesizeothe f lastpacketinaframe,whi Npdenotes

shorterthanotherpackets(itcontainsthelastfra containinganaudiotransferunit(whichim s uchsmall use the same notation foraudio traffic,although “fra Intherestofthischapter,wefurtheranalyzetheV

chius sually

gmentoftheframe),while

Npaudioreferstothepacket

erthanavideopacket).Forthesakeosfimplicityw

e

me”doesnotexistin thatcase. BRtrafficandtrytoquantifytheseparameters,whic

h

will contribute tourtrafficmodel.

3.2 SilencePeriodAnalysis Besidethetrafficintensityanalysis(i.e.analysi information aboutthe trafficitscoalculate the probabi (CIT).Thislattermethod can bceonsidered aasnaly

sofbusyperiods)theothernativewayofgaining lity massfunction(PMF)oftheCell sisothe f silence periods(T

Theprobabilitiesareestimatedbycountingtheoccurrenc trace.Thevaluesaresmoothedbyamovingaveragete depicted in Figure 6and the complementary probability density functi

eof

sf,

InterarrivalTimes Tsp and Tsc).

CITsodf ifferentlengthsinthecaptured

chniquebeforedrawingfigures.ThePMFofCITsis on (CPDF)ispresented in

Figure 7.

10

I. Cselényi,S.

Molnár VBR / Video SourceCharacterizationAndA Practical

Tsp

HierarchicalModel

Tsf

−6

GT25

6 3 0

SU25

6

6

PL25

0x 10−6

5000

10000

15000

20000

25000

0x 10−6

5000

10000

15000

20000

25000

0

5000

10000 15000 20000 Cell Interarrival Time [cell time]

25000

3 0

3 0

Figure 6

x 10

ProbabilityMassFunction oCell f Interarrival

Thesilenceperiodscanbdeividedintothreegroupsac

cordingto

SU25andPL25sequences.Thelongestinterarrivaltimes periods(T

silentperiodsinside the packets(T

Figure6which , characterizestheGT25,

(above8000celltimes)representtheframesilence

Themediumvalues(around4000celltimes)correspondto sf).

frames,i.e.between consecutive packets(T

Times(GT25,SU25,PL25)

thesilenceperiodswithinthevideo

) the smallestvalues(below 10celltimes)express spwhile

theshort

The evaluation oeach f groupigsiven below. sc).

11

I. Cselényi,S.

Molnár VBR / Video SourceCharacterizationAndA Practical

−2

GT25

−3

PL25

GT−PL25

10

10

HierarchicalModel

SU25 −4

10

0

5000

10000 15000 20000 25000 30000 35000 40000

−2

GT−PL10

10

GT10 SU10

−3

10

PL10 −4

10

0

Figure 7

5000

10000 15000 20000 25000 30000 35000 40000 Cell Interarrival Time [cell time]

ComplementaryDistribution Function oCell f Interarrival (GT10,SU10,PL10,GT25,SU25,and PL25)

Times

3.2.1 Frame Level IncaseoGT-PL10 f sequences,thevideoframerateis time(T

10frame/secthusthetheoreticalframeinterarrival

around3679celltime.FortheGT-PL25sequenceswit ifi)s

interarrivaltime(T

h25frame/sec,thetheoreticalframe

14672celltime.TwoarrowsinFigure8indicateth ifi)s

silenceperiodbetweenframescannotbelongerthant Figure5).However,itisclearlyshownin

esevalues.Theoretically,the

heframeinterarrivaltime(sinceT Figure7thatthere

=T

if

T - dffrom

areseveralsilenceperiodslongerthan3679

and14672celltimesfortheGT-PL10sequencesandGT-PL25s framerate,

sf

equences,respectively.Thatisinterms

theinvestigatedterminalplatformisnotabletoproduceframesathe t t

heoreticalrate

of (i.e.10

and 25fps). Moreover,themoderatedeclinationotfheCPDFcurve timeanddurationvaries.Anotherphenomenontobneot (i.e.T

)significantlyshorterforthePLsequencesthan sfmaxis

sin icedin

Figure7indicatesthattheframegeneration Figure7isthatthemaximumsilenceperiod

fortheothers,probablyduetothehighertraffic

intensity and largersize ovideo f frames.

12

I. Cselényi,S.

Molnár VBR / Video SourceCharacterizationAndA Practical

HierarchicalModel

3.2.2 PacketLevel IncaseoSU25 f sequence,theprobabilityonormal f packet lessthaninthecaseoPL25 f (see

silenceperiod(3000