Vector Calculus Formulas

486 downloads 238 Views 71KB Size Report
Vector Calculus Formulas. Fundamental theorems (main result) Here, F(x, y, z) = P(x, y, z)i + Q(x, y, z)j + R(x, y, z)k. FT of Line Integrals: If F = ∇f, and the curve C ...
Vector Calculus Formulas Fundamental theorems (main result) Here, F(x, y, z) = P(x, y, z)i + Q(x, y, z)j + R(x, y, z)k. FT of Line Integrals:

If F = ∇ f , and the curve C has endpoints A and B, then Z F · dr = f (B) − f (A). C

"

! , ∂Q ∂P − F · dr dA = ∂x ∂y C

Green’s Theorem: D

(circulation-curl form)

,

"

F · dr,

∇ × F · n dσ =

Stokes’ Theorem:

where C is the edge curve of S

C

S

"

, ∇ · F dA =

Green’s Theorem: D

F · n ds

(flux-divergence form)

C



$ ∇ · F dV =

Divergence Theorem: D

F · n dσ S

Differential elements Along a parametrized curve r(t), t ∈ [a, b], we have ds = dr dt dt. ∂r × Along a parametrized surface r(u, v), (u, v) ∈ D, we have dσ = ∂u

∂r ∂v



du dv.

Curl and divergence For a continuously differentiable 3D vector field F(x, y, z) = P(x, y, z)i + Q(x, y, z)j + R(x, y, z)k, ! ! ! ∂Q ∂P ∂R ∂Q ∂P ∂R curl F = ∇ × F := − i+ − j+ − k. ∂y ∂z ∂z ∂x ∂x ∂y ! ∂ ∂ ∂ ∂P ∂Q ∂R div F = ∇ · F := , , · (P, Q, R) = + + . ∂x ∂y ∂z ∂x ∂y ∂z Other 3D spatial coordinates r =

p x2 + y2 = ρ sin φ, p ρ = x2 + y2 + z2 ,

x = r cos θ = ρ sin φ cos θ, y = r sin θ = ρ sin φ sin θ, z = ρ cos φ , dV = dz dy dx = r dz dr dθ = ρ2 sin φ dρ dφ dθ .