Virtual Testing of Aircraft STructures, considering Postcritical ... - Core

16 downloads 0 Views 3MB Size Report
J. Teßmer, R. Degenhardt, A. Kling, R. Rolfes, T. Spröwitz, S. Waitz. (DLR – Institute of Structural Mechanics, Braunschweig, Germany),. COMPOSIT Thematic ...
Virtual Testing of Aircraft Structures, considering Postcritical & Thermal Behavior J. Teßmer, R. Degenhardt, A. Kling, R. Rolfes, T. Spröwitz, S. Waitz (DLR – Institute of Structural Mechanics, Braunschweig, Germany),

COMPOSIT Thematic Network, Workshop on Modeling and Prediction of Composite Transport Structures in Zaragoza, Spain, 30.06.2003

Institute of Structural Mechanics

1

Validation / Verification Model Qualification

Reality Experiment Model Validation

Analysis

Conceptual Model

Computer Simulation

Computer Model

Model Verification: „Solve the equations right“

Model Validation: „Solve the right equations“

Programming

Model Verification Institute of Structural Mechanics

2

Postcritical behavior of stiffened panels Panel in Buckling Test Facility

Deformation pattern (ARAMIS)

Top plate Clamping box

Specimen

Clamping Box Displacement pickup Load distributor Load cells Drive plate

Institute of Structural Mechanics

3

Non linear FEM using ABAQUS/Standard Real Structure CFRP-Panel

FE-Model

Linear Eigenvalue Analysis Buckling Modes

Buckling Load

scaled imperfektions

Measured Imperfections

rough estimate

Nonlinear Analysis Newton-Raphson-Method + automatic / adaptive damping to stabilize the analysis (*STATIC, STABILIZE)

Postprocessing (Load-Shortening-Curve, deformation of the structure, ...) Institute of Structural Mechanics

4

Numerical Pre-Test Analysis „Experimental Validatition of computational Analysis is expensive & time consuming“ „Pre-Test Analysis and Pre-Test Planing“ „Validation Experiments“ versus „Phenomenological Experiments“ Goal: Load – Deformation curve showing: - characterristic skin buckling, coupeled with axial stiffness reduction - large load bearing capacity during postbuckling without structural failure FEA investigation w.r.t.:

Institute of Structural Mechanics

panel geometrie discretisation experimental boundary conditions initial imperfections ... 5

Pre-Test Analysis 1. Influence of different STABILIZE parameters 2. Investigation of different failure criteria 80

Tsai Hill Azzi Tsai Hill

70

Maximum Stress

60

Load [kN]

50

Tsai Wu

40

30 STABILIZE = 2e-4 STABILIZE = 2e-5

Nominal data ABAQUS/Standard Mesh I (3024 elements)

20

STABILIZE = 2e-6 STABILIZE = 2e-7

10

0 0

0.5

1

1.5

2

2.5

3

3.5

4

Shortening [mm] Institute of Structural Mechanics

6

Pre-Test Analysis Convergence study 60

50

Load [kN]

40

Nominal data ABAQUS/Standard STABILIZE = 2.e-6

30

20

Mesh I: 3024 elements Mesh II: 2*3024 elements Mesh III: 16*3024 elements

10

0 0

0.5

Institute of Structural Mechanics

1

1.5

2

Shortening [mm]

2.5

3

3.5

4 7

Pre-Test Analysis Influence of lateral boundary conditions 100 Detail

90 80

Edge support Filler

Load [kN]

70

Gliding plane

60

Test panel

50 40 30

Nominal data ABAQUS/Standard STABILIZE = 2.e-6 Mesh I (3024 elements)

20 10

Covered width = 25.0 mm Covered width = 12.5 mm Only lateral nodes fixed

0 0

0.5

1

1.5

2

2.5

3

3.5

4

Shortening [mm] Institute of Structural Mechanics

8

Pre-Test Analysis Influence of imperfections 60

50

Load [kN]

40 Nominal data STABILIZE = 2.e-6 Mesh I (3024 elements) 30

20

No imperfections Mode 1, 2% skin thickness Mode 1, 10% skin thickness Mode 1, 100% skin thickness

10

0 0

0.5

1

1.5

2

2.5

3

3.5

4

Shortening [mm] Institute of Structural Mechanics

9

Pre-Test Analysis ABAQUS/Standard vs. ABAQUS/Explicit 60

50

Load [kN]

40 Nominal data Mesh I (3024 elements)

30

ABAQUS/Standard, STABILIZE = 2e-6

20

ABAQUS/Explicit, v=10mm/s, no damping ABAQUS/Explicit, v=10mm/s, with damping 10

0 0

0.5

1

1.5

2

2.5

3

3.5

4

Shortening [mm] Institute of Structural Mechanics

10

Measurement of geometrical Imperfections (1) Optical 3D - digitalization

ATOS – Sensor

strip sequenz

4 Measurment of real radius vs. nominal radius (ca. 6% deviation) 4 Measurement of initial imperfection Institute of Structural Mechanics

11

Measurement of geometrical Imperfections Data points (ASCII-Format): 1093.6441

211.5491

1.6805

1093.1718

211.1541

1.6764

1093.8102

210.6003

1.6764

1093.0879

210.3660

1.6910



Fringe – plot w.r.t. perfect shell

Institute of Structural Mechanics

Modification of „perfect“ FE – geometry Application of initial imperfection

12

Results of FEA using ABAQUS/Standard 2,5

Lokal skin buckling

Skalierte Last

2

1,5

Global „symmetric“ Buckle

1

0,5

ABAQUS/Standard ohne Imperfektionen

Global „unsymmetric“ Buckle

ABAQUS/Standard mit Imperfektionen

0 0

0,5

Institute of Structural Mechanics

1

1,5

2

Skalierte Verschiebung

2,5

3

3,5

4

13

Validation of FEA (Animation)

Institute of Structural Mechanics

14

Validation of computational results 2,5

„Globale“ Ebene

Skalierte Last

2

1,5

1

0,5

Experiment (1) Experiment (2)

ABAQUS/Standard mit Imperfektionen 0 0

0,5

1

1,5

2

2,5

3

3,5

4

Skalierte Verschiebung Institute of Structural Mechanics

15

Validation of computational results 25

Wegaufnehmer W88 Knoten 40696; entspricht W88 Position Wegaufnehmer W89

20

Knoten 46666; entspricht W89 Position Wegaufnehmer W90

Radialverschiebung [mm]

15

W91 W90 W89 W88

Knoten 52636; entspricht W90 Position Wegaufnehmer W91 Knoten 58606; entspricht W91 Position

10

5

0 0

0,5

1

1,5

2

2,5

3

-5

„Lokale“ Ebene -10 Institute of Structural Mechanics

Skalierte Verschiebung

16

Thermal Problem

Cross Section Fuselage

direct Sun Radiation

Temperature

FML’s in future aircraft structures

Taxiing

Reflected Sun Radiation thermal Radiation

Stop

Take Off

Outside Inside

Time

Institute of Structural Mechanics

17

Modeling (on panel level)

Institute of Structural Mechanics

18

Model Verification 4 Convergence study with 6 different discretisations (1 to 36 elements in thickness direction) 4 Homogenisation of smeared layers with:

kout _ plane = ∑ i ti / ∑ i (ti / ki , normal ) , kin _ plane = ∑ i (ki , plane ⋅ ti ) / ∑ i ti . 380 375

Temperatur (K)

370 365 360 355

layered skin

350 345

smeared homogenous skin 0

-2,7 Thickness-Coordinate of skin (mm)

Institute of Structural Mechanics

19

Experimental Test in THERMEX – B test site

Infrared Radiator Isolation (optional)

Fra me Skin Water

Institute of Structural Mechanics

Stringer

20

Validation 70

Experiment vs. Computation

Temperatur (°C)

60

MP43/TE43

MP43_RF1

50

MP34/TE04

MP34_RF1

MP24/TE09

MP24_RF1 40

30

20 0

2000

4000

6000

8000

10000

Ze it (se c)

Institute of Structural Mechanics

21

Modeling of large fuselage structure

Institute of Structural Mechanics

22

2D Finite Elements for Thermal Analysis of FML‘s Motivation 4 Reduction of modeling effort by using 2D geometrical models 4 Reduction of CPU-time 4 Compatible temperature field for thermo-mechanical calculations Scientific Challenge 4 3D temperature field description based on 2D geometry 4 Shape functions in z-direction 4 2D-3D-Coupling (Connection to local 3D meshes)

Institute of Structural Mechanics

23

Layerwise Thermal Lamination Theories Composite structures

•Linear Layered • Idealisation as layered structure Theory (LLT) • Homogenisation of layers including heat conduction, radiation, convection

Hybrid composite structures

• Quadratic Layered Theory (QLT) T

(z)

N Fiber/resin Aluminum sheet

z z=0

b

Sandwich structures Face sheet

z k +d k tk t1

Honeycomb core

Institute of Structural Mechanics

k 2 1

-z k

(k)

T0 (k)

z1

T 0,z

3D temperature distribution by 2D finite elements 24

Assumptions and Prerequisites convection

radiation

convection

conduction

homogenisation radiation

equivalent thermal conductivity

conduction

4 perfect thermal contact at interfaces

approximation by layered construction

4 monolithic conduction within layers

N

4 no internal heat sources 4 temperature independent material properties

z

zk tk t1

Institute of Structural Mechanics

z=0

b

k 2 1

+dk

-zk

z1

25

FE-Formulation FE-Formulation form for Weak form for(Weak heat conduction T ( ) grad v K ∫

grad T d Ω +



Boundary conditions

heat conduction )

T q ∫ n v dΓ + cρ ∫ T v d Ω =

Γ



qT n = qc + q

b

- Convection (Robin)

qc = a c TWand - T•

- Heat flux density (Neumann)

q

Institute of Structural Mechanics

0

g 26

FE-FormulationFE-Formulation (Weak form for heat conduction)

Weak form for heat conduction

z z h

A

T

z

T

T

T

S KS dz r dA + a c h R Rr dG + G

z

z z h

T

T c R R dz r dA

A

z

=

ba T - q gz h R T

c •

T

dG

G

Composite-heat-conduction-matrix

z

z

C = c RT R d z

 = S T KS dz K z

N



ze

zk +1

k =1 z k

Institute of Structural Mechanics

Composite-heat-capacity-matrix

z

j

Sb kg Kb k gSb k g dz T

z

N z k +1



k =1 zk

c h Rb g dz

ck r k R

(k ) T

k

27

Example: 3D vs. 2D FEA

GLARE skin with 3D finite elements (Nastran) 380 375 Temperatur (K)

370 365 360 355

layered skin

350

Number of 3D-elements: 2

smeared homogenous skin

345

Thermal Lamination Theory (QLT)

0

Number of 3D-elements: 36

-2,7

Number of 2D-elements: 1

Thickness-Coordinate of skin (mm)

Institute of Structural Mechanics

28

Summary 4 Experimental data basis for validation of non linear FEA w.r.t. postbuckling of stiffened shells under axial loading 4 Investigation of sensitivity w.r.t. to different modeling parameters 4 Excellent agreement between experimental and computational results deep into elastic postcritical regime (global & local)

4 Reliable thermal analysis of FML structures by verification of discretisation through fine 3D model on panel level 4 Validation of thermal panel model by experiments in THERMEX – B test site 4 Application of thermal model to large fuselage structures 4 Description of fast 2D Finite-Element-Formulation 4 Question: How many experiments are needed for validation of a specified parameter space? Institute of Structural Mechanics

29