F.Montanet Cours Astroparticules M2R PSA Grenoble. 4. Understand our
Universe ..... Vacuum is not emptiness ! • Inter Galactic ..... log(R/km). Hillas
diagram. Finite size of confinement magnetic field. Larmor radius .... componants.
1999-2000 ...
Plan of the course 2014
ASTROPARTICLES ESIPAP - 2014 François Montanet
• • •
F.Montanet Experimental Astroparticle Physics ESIPAP
•
Introduction & a very brief History Nature and properties of Astroparticles Propagation medium, IGM, ISM and atmosphere Astrophysical Sources
•
Propagation – CR propagation in the Galaxy: The Leaky box model – VHE J-rays propagation – UHECR propagation
•
Observables & Observations – Primary CR detection (on top of atmosphere) – Air Showers Development Models – Gamma-ray (EM) induced showers detection – Hadronic Showers Models and Detection – UHECR detection
– Astrophysical shocks – Fermi acceleration – Standard Model for the production of galactic CR, SNR – Gamma-ray sources, pulsars – AGN and other extragalactic sources – Neutrinos sources
•
Cosmological Sources – Cosmological implications – Dark Matter as a source of CR – "top-down" type of sources at UHE
• •
Dark matter search Neutrino Physics with astroparticules
2
2010-2011
Open questions
Why studying Astroparticles
Understand our Universe at extreme scales • The Higgs boson or the origin of mass
F.Montanet Cours Astroparticules M2R PSA Grenoble
• Nature and mass of Neutrinos • Fundamental symmetries: CP , supersymmetry • New dimensions in physical space ? • What is our Universe made of ? • Sources and propagation of cosmic rays ? • New Physics at E >> E(LHC) ?
4
2010-2011
2010-2011
Astroparticles & HEP Particles Physics
Astronomy
F.Montanet Cours Astroparticules M2R PSA Grenoble
ASTROPARTICLES
F.Montanet Cours Astroparticules M2R PSA Grenoble
Cosmology and Astroparticle physics
Accelerator Physics
Cosmology Astrophysics
Search for new physics, beyond the Standard Model of particle physics.
5
6
SM Cosmology
2010-2011
2010-2011
Matching "standard models" SM of Particle Phys.
"hot big bang"
Glashow-Weinberg-Salam
New Physics
Bahcall
F.Montanet Cours Astroparticules M2R PSA Grenoble
F.Montanet Cours Astroparticules M2R PSA Grenoble
Solar SM Examples of happy unions…
… as well as some disputes… BigBang GWS Dark Matter Dark Energy Inflation Matter Anti-Matter Asymmetry
Solar SM
This decade's grail: solve the puzzle of electroweak symmetry breaking
Solar Q deficit Atmospheric Q anomalies 7
8
2010-2011 F.Montanet Cours Astroparticules M2R PSA Grenoble
What are "Astroparticles" What we know
9
Let there be light ! 2014
2014
A multi-wavelength sky
– Nuclear reactions, galactic and extragalactic hydrodynamics, MHD, explosions, nucleosynthesis, past, future… EVERYTHING !
F.Montanet Experimental Astroparticle Physics ESIPAP
F.Montanet Experimental Astroparticle Physics ESIPAP
– Temperatures, stars masses, galaxies, magnetic fields, chemical composition, age of stars and structures…
Well, almost everything…
11
12
Our Galaxy
Our Galaxy
The optical Milky Way
The optical Milky Way
Lund Observatory
Our Galaxy
Our Galaxy
The Milky Way : Radio at 73cm
The Milky Way : Radio at 21 cm
408 MHz / 73.5 cm / 1.6 10–6 eV)
( ~1.42 GHz / 21.1 cm / 5.9 10–6 eV)
north polar spur Centaurus A
Crab nebula
Essentially from the movement of ultra relativistic electrons probably issue from supernovae remnants in the galactic magnetic field.
Hyperfine transition of hydrogen. Structures are due to the column density of atomic hydrogen clouds along the line of sight.
Our Galaxy
Our Galaxy The Milky Way : Radio at 2,6mm
Infra red
Millimetric waves (115 GHz / 2.6 mm / 4.7 10–4 eV)
Infrared (3 103 to 25 103 GHz / 100 to 12 ȝm / 0.01 to 0.1 eV)
Rotation mode ray of carbon monoxide. One assumes that CO abundance is proportional to that of cold molecular hydrogen (directly undetectable).
Thermal emission, due to interstellar dust heated by starlight.
Our Galaxy
Our Galaxy
It structure is clearly visible in IR (COBE satellite).
Optical
Near Infrared (86 103 à 240 103 GHz / 1.25 à 3.5 ȝm / 0.35 à 1 eV).
Visible (460 103 GHz / 0.65 ȝm / 2 eV – red)
Giant stars emission in the disk and in the bulb
Visible light is absorbed by interstellar dust clouds. Only stars close enough to the solar system (few parsec) are seen.
Our Galaxy
Our Galaxy X-rays
Gamma-rays
X -rays (60.106 to 360.10 GHz / 5 to 8.3 nm / 0.25 to 1.5 keV).
Gamma-rays ( > 2.4 1013 GHz / < 12.5 fm / >100 MeV).
Diffuse X-ray emission from overheated and shocked gas.
Photons (gammas) from the decay of neutral pions produced in the interaction of CR with interstellar matter, from the Bremsstrahlung of CR and from the inverse Compton of relativistic electrons with ambient photons.
Our Galaxy 2014 F.Montanet Experimental Astroparticle Physics ESIPAP
HE gamma-rays (>100MeV EGRET satellite) Resolved point-like sources: Binary systems, pulsars, SN remnants…
Andromeda (M31): Optical
24
Andromeda (M31): IR 2014 F.Montanet Experimental Astroparticle Physics ESIPAP
F.Montanet Experimental Astroparticle Physics ESIPAP
2014
Andromeda (M31): UV
Star forming regions in spiral arms
Young, hot stars in spiral arms
25
26
F.Montanet Experimental Astroparticle Physics ESIPAP
F.Montanet Experimental Astroparticle Physics ESIPAP
2014
Radio Galaxy
2014
Andromeda (M31): Xray
Xray binaries, supernova remnants, hot gas
3 000 000 A.L.
Centaurus A 27
28
The "all particles" spectrum • Regular spectrum over 12 decades in energy, and 32 decades in flux !!!
2014
– Temperatures, stars masses, galaxies, magnetic fields, chemical composition, age of stars and structures… – Nuclear reactions, galactic and extragalactic hydrodynamics, MHD, explosions, nucleosynthesis, past, future… EVERYTHING !
• Well, almost everything… – Non-luminous messengers : CR ! – Rare but precious : ~ 4 CR/cm²/s ~30 g/s on entire earth ( 1kg per year !)
• Small break near 3u1015eV : the "knee"
F.Montanet Experimental Astroparticle Physics ESIPAP
F.Montanet Experimental Astroparticle Physics ESIPAP
2014
Let there be light !
• CR astronomy is impossible...
– Directions randomized by magnetic fields – What we would know if it was the same for photons !
• An other one near 1018eV : the "ankle" • Spectrum badly known at the two extremities – Geomagnetic "shield" + Solar modulation – Extreme rareness…
• …but not astrophysics !
– Energy spectra and chemical composition tells us a lot… 29
30
CR Spectrum above a TeV Knee
from Tom Gaisser
E-3.1 F.Montanet Experimental Astroparticle Physics ESIPAP
E-2.7 Knee
Ankle
LHC
F.Montanet Experimental Astroparticle Physics ESIPAP
2014
2014
Cosmic-rays spectrum
Origin ? Galactic ? Cosmologic ? Astrophysics ? New physics ? 31
32
Charge cosmic rays composition
Identified spectra 2014
2014
98% de nuclei
F.Montanet Experimental Astroparticle Physics ESIPAP
F.Montanet Experimental Astroparticle Physics ESIPAP
87% protons 2% electrons 12% Helium 1% heavier nuclei Flux : 4 RC/cm2/s 1 kg/year 40 000 ton/year (meteorites) 33
34
Overview of CR data on composition
Nature of cosmic rays 2014
• Secondary atoms
F.Montanet Experimental Astroparticle Physics ESIPAP
F.Montanet Experimental Astroparticle Physics ESIPAP
2014
• Chemical composition
• Isotopic anomalies • Cosmic clocks
Abundances different in CR and local measurements (Li Be B and Sub-Fe) CR undergo spallations and produce secondary CR
35
36
Nature of primary cosmic rays
Data from AMS on ISS
Solar modulation
F.Montanet Experimental Astroparticle Physics ESIPAP
2014
Helium Flux
103 37
Nature of primary cosmic rays 2014
Antimatter ?
F.Montanet Experimental Astroparticle Physics ESIPAP
F.Montanet Experimental Astroparticle Physics ESIPAP
2014
Electron primary flux
Pure secondary (standard) propagation 39
40
2014
2014 F.Montanet Experimental Astroparticle Physics ESIPAP
Antimatter search (Dark Matter ?)
F.Montanet Experimental Astroparticle Physics ESIPAP
Positron fraction in primary flux
… or rather a boring "local" pulsar spoiling physicists hopes !
41
42
Gamma, diffuse emission 2014
• Gamma-rays observed o TeV • Spectrum ± understood un to MeV. • Above, the diffuse spectrum and that of sources are very "hard", in 1/E2 and of still unclear origin...
F.Montanet Experimental Astroparticle Physics ESIPAP
F.Montanet Experimental Astroparticle Physics ESIPAP
2014
Gamma rays
Emission due to: • the interactions of cosmic electrons with: – the magnetic fields (synchrotron radiation dominates the radio emission of the Galaxy up to a few GHz) – interstellar Matter (ISM); bremsstrahlung important bellow 100 MeV – Interstellar photon: Inverse Compton above GeV
• the decay of S0 produced when CR interact with protons and nuclei – S0 JJ above 100 MeV – Concomitant emission of Q in the decay of S±
Why all this non thermal equilibrium radiation? 43
44
2014
Galactic or Extragalactic CR ?
2014
Gamma, diffuse emission
Definite answer from EGRET in 1993 !
F.Montanet Experimental Astroparticle Physics ESIPAP
F.Montanet Experimental Astroparticle Physics ESIPAP
Hypothesis: if CR are extra or metagalactic, the density of CR is identical in our Galaxy and in its satellites
Cosmic rays are indeed Galactic ! 45
46
F.Montanet Experimental Astroparticle Physics ESIPAP
2014
The general problematic • Thermal speeds RCUHE (few 1020 eV) Produce them
• From top to bottom (decay...) • From bottom to top (acceleration)
Preserve them
• Energy losses (Synch., IC, S, pairs...) • Destruction (photo-dissociation…) • Escape probabilities
Propagate them
Detect them
Propagation medium, IGM, ISM and atmosphere
• Propagation in ISM and IGM (mag fields: deflection, confinement...) • Re-acceleration • Balloons, satellites… • Air showers… – Cherenkov telescopes – Surface & Fluorescence Detectors
47
Dimensions of the Milky Way 2014
2014
Halo 0.1-0.01p cm-3 8 kpc 4-12 kpc
Disk 300 pc gas, sources, ~1p cm-3
F.Montanet Experimental Astroparticle Physics ESIPAP
F.Montanet Experimental Astroparticle Physics ESIPAP
Milky Way, a spiral galaxy
1 pc ~ 3 l.y. ~ 3 £ 1016 m
sun
bulge
B ~3G
15 kpc
50 kpc
49
50
Milky Way, a spiral galaxy 2014
Local spur and neighboring arms local matter and B field inhomogeneity.
F.Montanet Experimental Astroparticle Physics ESIPAP
F.Montanet Experimental Astroparticle Physics ESIPAP
2014
Milky Way, a spiral galaxy
Mean "regular" B field ~ 3G roughly parallel to spiral arms, more intense in between arms.
Local spur and neighboring arms local matter and B field inhomogeneity. Mean "regular" B field ~ 3G roughly parallel to spiral arms, more intense in between arms.
52
51
A thick target… 2014
• Diffuse gamma-ray emission from galactic CR interaction with matter (mostly molecular H clouds).
F.Montanet Experimental Astroparticle Physics ESIPAP
F.Montanet Experimental Astroparticle Physics ESIPAP
2014
A thick target
53
54
Our local group is at the periphery of the large Virgo supercluster (~2000 galaxies) at ~20Mpc
F.Montanet Experimental Astroparticle Physics ESIPAP
F.Montanet Experimental Astroparticle Physics ESIPAP
2014
The local group and the Virgo cluster
2014
The nearby islands…
Andromeda (M31) A twin of our Milky Way slightly larger and (only) distant by 780kpc. Many small (dwarf) galaxies are orbiting around these twins. 55
56
Another super cluster: Abel 1689 2014
2014
F.Montanet Experimental Astroparticle Physics ESIPAP
F.Montanet Experimental Astroparticle Physics ESIPAP
A 300Mpc horizon
The "GZK" sphere
57
58
F.Montanet Experimental Astroparticle Physics ESIPAP
F.Montanet Experimental Astroparticle Physics ESIPAP
2014
Vacuum is not emptiness !
2014
Large scale filamentary structures
• Inter Galactic Medium contains: – Magnetic fields (regular + random) are highly speculative and range from 2· 10-6 nT (20pG) to 10-4 nT (1nG). – Very little matter (p, He, and a few electrons): y 1 proton / m3 – Electromagnetic radiations: • 413 CMB photons per cm3 • Also IR, radio photons…
– Neutrinos:
• Mostly CzB neutrinos (decoupled when universe was only 2" old!) • Today 1.95 K i.e. 1.7· 10-3 eV • 336 z (all species) per cm3
+ Many mysterious dark matter WIMPs … 59
60
The earth atmosphere 2014
• An evident characteristic of the atmospheric medium is that of being inhomogeneous. – Its density, diminishes six orders of magnitude when the altitude above sea level passes from zero to 100km, and another additional six orders for the range 100km to 300km. – Although up to ~100km, the composition is nearly constant: 78.47% N, 21.05% O, 0.47% Ar and 0.03% other elements. – It follows a quasi exponential profile
F.Montanet Experimental Astroparticle Physics ESIPAP
F.Montanet Experimental Astroparticle Physics ESIPAP
2014
The earth atmosphere
("quasi" because T is not quite constant!)
61
62
F.Montanet Experimental Astroparticle Physics ESIPAP
F.Montanet Experimental Astroparticle Physics ESIPAP
2014
The earth atmosphere
2014
The earth atmosphere
63
• In terms of particle/radiation interaction with matter, the atmosphere is: – – – – – –
A total of ~ 1000 g/cm2 at see level So 1 atm ~ 12 interaction lengths (xN ~ 85 g/cm2) A vertical proton first interacts at h ~ 15 km One radiation length (at 1 atm) X0 = 36.6 g/cm2 ~ 300 m One Moliere radius (at 1 atm) is }M ~ 78 m The Lorentz factor for a muon produced at h = 10 km to reach ground before decaying is c > 15 (> 1.6 GeV)
– Critical energy (EM) Ec = 84,2 MeV
64
2010-2011
Physics well out of reach of colliders ! "Hadronique" shower
"Electro-Magnétique" shower
F.Montanet, "La grande aventure des RC"
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
At each step energy is shared by more numerous particles
Maximum of développement
No more multiplication, decrease by decay and energy loss
65
At ground, essentially P± J e±
66
Structure en temps
Astrophysical Sources Cosmic Accelerators
F.Montanet, "La grande aventure des RC"
Marseille, janvier 2012
Shower development
Marseille, janvier 2012
Interaction and radiation lengths in atmosphere
67
2009-2010 F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2009-2010
General ideas on acceleration • Take the necessary energy somewhere… – Kinetic energy: • Translation: shock waves, moving clouds... o Fermi acceleration • Rotation : pulsars, black holes, neutron stars
– Gravitational energy • via accretion (o jets…): accretion disks (divers)
– Electromagnetic (EM) • From turbulence, from compression, or from rotating magnets...
• In fine, charged particles interact with EM fields: f = q (E + vuB) • Remember: Astrophysical shocks are collisionless. o Energy transfert through EM fields !
69
70
Magnetic field production 2009-2010
2009-2010
E and B fields in Universe
• Large scale movements of ionized media o generating magnetic fields, magnetized clouds...
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
• Turbulence in interstellar medium
71
o Magnetic turbulence, inhomogeneous B fields, plasma waves...
• Hydro and MHD instabilities – e.g. Rayleigh-Taylor in supernova remnants
• "Streaming" instabilities – CR generates waves in a magneto-actif plasma o creating the conditions for their own diffusion
72
Magnetic fields and acceleration ! 2009-2010
2009-2010
Magnetic field production In many cases, equipartition can be reached
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
– for ex: behind a shock wave : thermal en. ~ kinetic en. ~ magnetic en.
Energy exchange between macroscopic structures and individual particles individual particles may reach very high energies!
o Acceleration by "change of reference frame" 73
74
Where to accelerate
The Ingredients :
2009-2010
2009-2010
Principle of Fermi acceleration • At creation :
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
– For example: e- extracted from the surface of a neutron star by an intense E field.
Fermi 1949 :
• Within the source neighborhood : – For example: Fermi acceleration in plasma shocks in a SNR.
• During transport: – "reacceleration" by shock waves and excitation of Alfven waves during diffusive transport in the Galaxy.
76
75
2009-2010
Power laws and stochastic processes
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
• The power laws observed in differential energy spectra follow naturally from cyclic acceleration mechanisms with constant energy gain and constant escape probabilities:
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2009-2010
Power laws and stochastic processes
Power laws are natural !
77
78
– neither gain nor loss of energy... F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2009-2010
• A tennis ball bouncing on a wall
bounce = speed unchanged v
– Neither gain nor loss of energy… in the racquet reference frame !
V v
v
• Moving racquet
v F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2009-2010
A small analogy…
Same thing with a motionless racquet...
Then how does one accelerate a tennis ball ?! 79
v
v + 2V
Speed unchanged with respect to the racquet
o acceleration through a change of reference frame 80
2009-2010
2009-2010
Fermi Acceleration • A drop shot:
• Ball o charged particle • Racquet o "magnetic mirrors" Magnetized clouds (M À mp), with a typical speed wrt ISM ~10km/s
V F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
v
v - 2V
Particle deceleration !
B V
B
B
• Magnetic inhomogeneities or plasma waves also work...
81
1
When a particle bounces on an incoming magnetic mirror, in a head-on collision, it gains energy.
2
When a particle bounces on a receding magnetic mirror that it catches back, it loses energy.
3
Head-on collisions are more frequent than receding collisions.
2009-2010
Add a second player... • Converging flows...
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2009-2010
The essence of stochastic de Fermi acceleration
82
Net energy gain in average (stochastic process )
V
V
83
84
2009-2010
Shocks hydrodynamics
• Shock waves (e.g. supernova explosion) : expending plasma flow with a speed VR much larger than the sound speed in the interstellar medium (ISM). Shocked medium
• Shock wave:
Shocked medium
Insterstellar medium
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2009-2010
Shocks hydrodynamics
Interstellar medium
• The shock moves at a speed VS which depends on VR and the specific heat of both media. • For an ionized ISM:
85
86
2009-2010
• Onde de choc :
Shocked medium F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
Shocks hydrodynamics
Interstellar medium
In the shock frame Shocked medium VS / R
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2009-2010
Shocks hydrodynamics
• The shock intensity is characterized by the compression factor:
87
Interstellar medium VS
• In the shock frame, the upstream (non-shocked) medium flows toward the shock at a speed VS and the downstream (shocked) medium flows away with a speed reduced by the compression factor (mass flow conservation) :
88
2009-2010
• Onde de choc (e.g. explosion de supernova)
Shocked medium F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
A win win process !
Interstellar medium VS
downstream
Shocked medium
Interstellar medium VS
VS / R F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2009-2010
Acceleration diffusive par onde de choc
upstream
• Magnetic wave generation: – Downstream : by the shock (compression, turbulence, hydro and MHD instabilities, shear, etc.) – Upstream : by the accelareted cosmic rays themselves ! o ‘isotropization’ of the distribution (in the local frame)
In the shock frame • At each shock crossing, one way or the other, the particle hits a "magnetic wall" with a relative speed: o only head-on collisions…
89
90
The CR standard model
• Acceleration from interaction with fields – E field: e.g. induced by spinning magnets such as neutron
2009-2010
2009-2010
Summary on acceleration
• Supernovae and GCRs
– B field: inhomogeneous moving fields – MHD waves
– Estimated efficiency of shock acceleration :… F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
stars (pulsars) or black holes…
• Analytic calculations, simulations and observations show that diffusive shock acceleration works !
• Acceleration by reference frame transformation – Fermi stochastic acceleration (2nd order) – Diffusive shock acceleration diffusive (1st order)
• Power law are natural
– Fermi type process ('E v E, Pech) – Universal power law for non relativistic shocks (N(E) v E-2)
• Cosmic rays up to the knee
– CR power = power of SNe, Emax § 1014 eV hardly 1015 eV
– Power required to sustain CR energy density: ………… – Power injected by SN power in the Galaxy: ……………………
o Enough power for Galactic CR
91
92
The CR standard model 2009-2010
position
visible
6 cm (VLA)
Si K
IRAS
(XMM)
Fe K
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2009-2010
Tycho, 11 November 1572...
Km (VLA)
X (ROSAT)
• Proposed acceleration site, isolated SNR – Supernovæ : ejection of many solar masses of nuclear matter at supersonic speeds (~ 10 000 km/s) following massive star explosion. – Formation of a quasi spherical expending shock wave that wipes out the interstellar medium (ionized beforehand by the progenitor's radiation). – Total kinetic energy injected by the explosion: 1051 erg (= 1044 J). – Roughly 3 SNe per century witin our Galaxy, which corresponds to an averaged power of 1042 erg/s (1035W) – SNR are observed at all wavelength. – SNe explosion is essential to the Galaxy chemical content: heavy elements enrichment.
93
94
Finite size
– Source composition source ~ interstellar medium + modifications (ionizability, volatility, Z/A effects, 22Ne...) – Source spectrum: E-2 power law – Maximal energy reached: Emax ~ 1014 eV
• Energetics : – – – – –
Measured flux / speed = CR density CR density u mean energy = energy density Energy density u confinement volume = total energy Total energy / confinement time = necessary injected power PCR ~ 1.5u1041 erg/s
• Required efficiency ~ 10-30%...
95
Finite size of confinement magnetic field Larmor radius
Hillas diagram
log(|B|/Gauss)
2009-2010
• Shock waves in isolated SNe (SNR)
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2009-2010
The CR standard model
SNR
log(R/km)
96
The knee 2009-2010
Genou
Hard to explain a single power law above the knee. Need probably another component up to 1017eV See for ex : M. Hillas J. Phys.: Conf. Ser. 47 (2006 ) 168 (http://iopscience.iop.org/1742 6596/47/1/021)
Cheville
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2009-2010
CR SM with Emax Z
• Is the knee simply the consequence of an energy cut-off of accelerators (SNR) or is it due to : - a propagation effect ? - different CR sources ? - a physics threshold at ~ELHC ?
B The CR SM implies a change in composition at the knee energy. cream
Data: • Proton4 sat • Akeno •Yakutsk • Haverah Pk
SNR energy limit : Emax ~ Z • 1015 eV 97
98
2009-2010
Explaining the ankle is much easier...
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
• Two components with two different slopes...
DIFFUSE GAMMA-RAY SOURCE
E (cheville)
• For exemple, galactic and extragalactic... 99
2009-2010
Hadronic production of gamma-rays
p-rays production processes:
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
– Electro-Magnetic processes : • Bremsstrahlung • Synchrotron radiation
J B
e-
Source function
[TK Gaisser]
Fluxes on earth (neutrals)
J F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2009-2010
VHE gamma-rays sources
J
• Inverse Compton – Hadroniques processes:
[Gaisser,Halsen,Berezinsky,Stanev]
101
102
2009-2010
VHE Gamma sources
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
J
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2009-2010
Bremsstrahlung
103
• Productions of J > 10 MeV • Synchrotron radiation negligible.
J B
eJ
• Inverse Compton
104
The target… 2009-2010 F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2009-2010
Tracking back the CR flux elsewhere in the Galaxy • Knowing the target column density from radio 21cm measurements and fitting the diffuse J flux, one can map the density, spectrum and composition of CR elsewhere in the galaxy. •
30-100 MeV
100-300 MeV
300-1000 MeV
S.D.Hunter et al, ApJ 481 (1997) 205
•
M.Pohl and J.A.Esposito
•
S.LeBohec et al,
ApJ, 507 (1998) 327 >1000 MeV
astro-ph/0003265 •
Strong, A.W., Moskalenko, I.V., ApJ 509:213-228, 1998
105
106
2009-2010
Tracking back the CR flux elsewhere in the Galaxy
• Other constrains
• Refined predictions based on detailed simulations
(magnetic model of the galaxy, CR diffusion equation, matter density maps…):
– Protons local spectrum and flux (altered > standard shocks) Confinement is easier
173
174
Top-Down 2009-2010
2009-2010
BOTTOM -UP Galactic pulsars Extragalactiques radio galaxy lobes
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
Gamma Ray Bursts Protons, Iron, Nuclei? Spectral index Explaining isotropy is not trivial Angular coincidences to be confirmed… 175
Topological defects, superheavy relics with M ~ GUT scale that is ~1016GeV • Energy À 1020 eV easy! (QCD fragmentation spectrum QCD with M~1024 eV!!) • Explaining the flux is not trivial !! (natural density scale is ~ H0-1) • Composition of UHECR is the clue (photons + neutrinos) !!
176
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2009-2010
Top-Down Signatures
2009-2010
Low energy gamma-rays constraint
Composition: Flux de Photons,Neutrinos À Protons The current (AUGER) limits on UHE neutrino and photon flux already kill most Top-Down models !! Spectrum: QCD-like fragmentation spectrum quite "hard" Cosmography: Halo distribution!! (SHRs & TDs locales ) or ~ Homogeneous
177
178
2014
2009-2010
and even more exotic stuff… Strongly interacting neutrinos
F.Montanet Experimental Astroparticle Physics ESIPAP
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
Lorentz Invariance Violation Special Relativity Violation etc…
NEUTRINOS SOURCES
The overall neutrino spectrum
180
M2R PSA -- 2008-2009
M2R PSA -- 2008-2009
179
Natural Neutrinos Sources Solar Neutrinos
soleil
Terre
p p o D e Qe
Détecteur souterain ~108 km
François Montanet LPSC/UJF
François Montanet LPSC/UJF
Atmospheric Neutrinos
Also, Super Novae (SN1987A), Neutrinos de beam-dump cosmiques (AGN, GRB…), Neutrinos cosmogéniques, Neutrinos reliques du BigBang…
M2R PSA -- 2008-2009
182
François Montanet LPSC/UJF
François Montanet LPSC/UJF
M2R PSA -- 2008-2009
181
183
184
SNe neutrinos
M2R PSA -- 2008-2009
M2R PSA -- 2008-2009
Solar Standard Model
Normal stellar situation: the fusion thermal and radiation pressure compensate the gravitation pressure.
François Montanet LPSC/UJF
François Montanet LPSC/UJF
During the collapse, the gravitation binding energy (~ 3u1053 erg) cannot escape in an other form than neutrinoantineutrino pairs. 99% of the energy in the form of neutrinos 1% in the form of kinetic energy 0.01% of the energy in optical photons. The neutron star is opaque to neutrinos. The diffusion and escape time is of the order of 1 second.
E Q e !| 11 MeV E Q e !| 16 MeV
185
M2R PSA -- 2008-2009
M2R PSA -- 2008-2009
SN1987a
186
SuperNovae Remnants Crab Vela Crab Soleil
Vela
Tycho Cas A Cygnus Loop
Kepler
SN1006
François Montanet LPSC/UJF
François Montanet LPSC/UJF
Tycho Cas A
Cygnus
SN1006
SN1006 SN1680 (CasA)
SN1054 (Crab)
Crab Pulsar
Cosmic Accelerators: ( Hillas Plot) B
M87
EaZBL*
188
M2R PSA -- 2008-2009
M2R PSA -- 2008-2009
187
Z: Charge of particle B: Magnetic field L: Size of object AGN *: LorentzM87, factor of shock wave
« Accelerator »
Centurus A François Montanet LPSC/UJF
François Montanet LPSC/UJF
3C47
Target p
J Q
p,er
GRB (artist)
Photons absorbés par les poussières et le rayonnement Nonperturbed !!! Neutrinos directs
Vela SNR
L M2R PSA -- 2008-2009
Cosmic Neutrino Beam
189
Charged CR smeared by B fields
Fermi acceleration and UHE neutrino production Shock wave proton of nuclei acceleration:
François Montanet LPSC/UJF
p/N interact with the ISM and produce pionic cascades
p/A + p/J o SSr p p JJ QP P p QPQe e
COSMOLOGICAL SOURCES
191
190
• Produced by the propagation of UHECR in the IGM. • Main assumptions: – – – –
III Ͳ Interactionpɶ
Ͳ Backgrounds(CMB,CIB…)
Ͳ CrossSection
Ͳ Spectralindex+Emax
Ͳ Photonspectrum evol vsz
ͲSecondaries energy distribution
Ͳ Sourcedensity +cosmological evol.
CMB ʆ ȴ+
II Ͳ Fondsdiffus
Ͳ Composition atthesource
François Montanet LPSC/UJF
François Montanet LPSC/UJF
• This flux can be predicted in a relatively robust manner.
p +ɶCMB
Fluxattendus I Ͳ Sources
UHECR are protons or nuclei (makes a big difference!) The sources distribution is following a given redshift distribution Spectra are known and flux are generic The target density is well known (CMB photons)
p
Cosmogenic or "GZK" Neutrinos
M2R PSA -- 2008-2009
M2R PSA -- 2008-2009
"Cosmogenic" or "GZK" Neutrinos
ͲEnergy Distribution
Many uncertainties
CMBvery well known. CIBandother bg less known
Very well known
I + II + III Î Ȟ:Ȟe:ȞIJ = 2:1:0 (source)
n+ʋ+
oscillations
ђ+ +ʆђ e+ +ʆђ +ʆe
1:1:1 (earth)
194
Flux of "GZK" neutrinos
M2R PSA -- 2008-2009
M2R PSA -- 2008-2009
193
Influence of • Composition of UHECR,
Dark Matter as a source of neutrinos Annihilation in Halo, Earth, Sun or Galactic Centre Signature Halo
• Sources distribution and evolution.
Positron, Antiproton Gamma rays
BESS, CAPRICE, AMS, .. HESS, GLAST, MILAGRO,….
F F o Z J JJ
Compositionmixte François Montanet LPSC/UJF
François Montanet LPSC/UJF
Pur proton
Experiment
Earth, Sun, GC Neutrino
SuperK, Baksan,IMB, MACRO AMANDA, ANTARES, Baikal, …
F F o WW, ff W, f o QX Gravitational capture of F in earth, sun galactic centre
WIMP looses energy by elastic interaction if v < vescape, capture capture + annihilation balance
F
constant density in core 196 50
M2R PSA -- 2008-2009
195
Dark Matter as a source of neutrinos F DM halo
François Montanet LPSC/UJF
Propagation
FF F F F FF
UF ~ 0.3 Gev/ cm3, vF~300 km/sec
Collisions o vF< vesc Gravitational capture in the center gravitational wells Indirect search for Neutralinos by neutrino telescopes 197
Dimensions of the Milky Way
Produce them
• From top to bottom (decay...) • From bottom to top (acceleration)
Preserve them
• Energy losses (Synch., IC, S, pairs...) • Destruction (photo-dissociation…) • Escape probabilities
Propagate them
Detect them
• Propagation in ISM and IGM (mag fields: deflection, confinement...) • Re-acceleration • Balloons, satellites… • Air showers… – Cherenkov telescopes – Surface & Fluorescence Detectors
1 pc ~ 3 l.y. ~ 3 £ 1016 m
2014
• Thermal speeds RCUHE (few 1020 eV)
F.Montanet Experimental Astroparticle Physics ESIPAP
F.Montanet Experimental Astroparticle Physics ESIPAP
2014
The general problematic
Halo 0.1-0.01p cm-3 8 kpc 4-12 kpc
Disk 300 pc gas, sources, ~1p cm-3
sun
bulge
B ~3G
15 kpc
50 kpc
199
200
Propagation des RC dans la Galaxie : Leaky box model 2014
• Diffuse gamma-ray emission from galactic CR interaction with matter (mostly molecular H clouds).
F.Montanet Experimental Astroparticle Physics ESIPAP
F.Montanet Experimental Astroparticle Physics ESIPAP
2014
A thick target
201
202
2010-2011
Grammage
• Propagation in the interstellar medium
Energy loss: ionization, Coulombian interactions
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2010-2011
Cosmic rays transport
Propagated spectra ionization losses only (thick target)
• Column density or quantity of matter traversed by the CR from is production site to earth (in kg ·mí2 or g ·cm-2) • Given the diffusion time (known from cosmic clocks see below) the measurement of grammage allows the understanding of the diffusion extension zone. • The ratio secondary/primary allows estimating the grammage traversed:
203
204
Secondary / Primary ratio 2010-2011
The grammage depend on the parent nucleus: • (Li+Be+B) / (C+N+O) mean grammage of 50 kg.mí2 • (Sc+Ti+V)/Fe mean grammage of 20 kg.mí2 and Primary/Secondary ratio (thus grammage) depends on the energy as well:
• A complete CR transport model – The secondary to primary ratio can be expressed by:
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2010-2011
Secondary / Primary ratio
205
206
Cosmic clocks and halo size 2010-2011
Measure isotopic ratio
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2010-2011
Cosmic clocks
Estimate escape time. 207
• Radioactive decay:
Measure isotopic ratios
Estimate escape time
+ H o 9Be (stable secondary nucleus) + H o 10Be (unstable secondary nucleus: ~ 4u108 years) • The ratio 10Be / 9Be depends on secondaries history (and on cross sections).
•
12C 12C
– Link between quantity of matter traversed and diffusion time.
208
Confinement and escape 2010-2011
+Ho (stable secondary nucleus) + H o 10Be (unstable secondary nucleus: ~ 4u108 years) • The ratio 10Be / 9Be depends on secondaries history (and on cross sections).
•
12C
9Be
12C
– Link between quantity of matter traversed and diffusion time.
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2010-2011
Cosmic clocks and halo size
• Diffusion parameters adjustments (excursion in the less dense galactic halo) determination of the CR confinement zone 54Mn/Mn 36Cl/Cl 26Al/27Al 10Be/9Be
0
5
10
15
20
kpc 209
210
2010-2011
The « leaky box » model
• CR can wander out of the disk in a magnetized halo of hot ionized matter
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2010-2011
Disk & Halo
• NGC 4631 galaxy and its halo of hot ionized matter emitting X-rays as seen by Chandra
• Diffusive approximation...
flux in enegy space (losses + acceleration)
injection, "in flight" production
diffusion
destruction, decay, escape
• Re-acceleration...
211
212
CR confinement 2010-2011
• Escape out of the confinement zone – Confinement (escape probability) decrease with E
Without escape (thick target)
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2010-2011
Slope of the propagated spectrum
Wconf v E-0.7 o E-2.7 spectrum
• Escape depends on E – Diffusion on magnetic inhomogeneities – When E N, rg N thus interaction with inhomogeneities with larger wavelengths.
• D(E) is an increasing function
• Kolmogorov spectrum – … clearly not enough but… – ISM perturbations ? Diffusion-convection, MHD ?
• Determination of
a posteriori :
213
214
CR anisotropy 2010-2011
Secondary/Primary ratio
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2010-2011
The CREAM results
Compatible with propagation models with escape terms in E0.6 215
• Very weak observed anisotropy (first angular harmonic)
– Constraints on D(E) – In the diffusive approximation, one can compute G taking into account the position of the solar system wrt the Galaxy.
• Observed anisotropy incompatible with sources distributed like SNR and a diffusion term D(E)v E0.6 below 10 GeV... … but compatible with D(E) v E1/3 !
216
Full transport equation 2010-2011
2010-2011
Sources Distribution
sources (SNR, nuclear reactions…)
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
diffusion
convection
diffusive reacceleration E-loss
convection Radioactive decay
fragmentation
ȥ(r,p,t) – momentum density o Source distribution is more uniforme...
2010-2011
ISM X,ǁ e
Chandra
B
P diffusion He energy losses CNO reacceleration + convection e etc. + _ P
Halo disk
BESS
gas 0
gas p
IC
ISRF
LiBeB
He solar CNO modulation ACE
GLAST Flux
Particle acceleration Photon emission
+-
20 GeV/n
AMS
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
Sources: SNRs, Shocks, Superbubbles
218
Summary for galactic CR
Propagation in the ISM et observational contrains
2010-2011 F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
217
Everything works fairly well… – Propagation in the ISM:
• Complete theory with energy losses, diffusion, in flight nuclear reactions, CR escape, reacceleration, … impressive results.
– – – –
(see for example GLAPROP model, A. Strong et I Moskalenko)
Secondaries / Primaries Cosmic clock Anisotropies Theoretical expectations (~ Kolmogorov spectrum : D(E) v E0.36)
...except naïve acceleration models!
– Observation + models require source spectra E-2.35 (high energy spectral shape and IIaires/Iaires ratio "best fit) – "Softer" (steeper) than standard spectra for strong shocks f (E-2)
It is possible to find an agreement between diffusive propagation models and standard SNR models, – Cut off energy, knee, non-linearities, p-ray emission by SNR, source distribution...
Many parameters need many observational constrains.
220
219
2010-2011
A conciliation exemple CR SM & diffusion M.Hillas J. Phys.,
Conf. Ser. 47 (2006) 168 (http://iopscience.iop.org/1742-6596/47/1/021)
Based on former work by Bell et Lucek on amplification and selfproduction of Bfield perturbations by CR.
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
SN 1a SN II
GAMMA-RAY PROPAGATION
A A He p
Fe
EG
B B
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2010-2011
221
Photon atténuation at VHE by intergalactic photon backgrounds
Effective J horizon 100Mpc at 1TeV 1Mpc at 10 TeV and above
UHECR PROPAGATION
223
The CR spectrum 2010-2011
2010-2011
UHECR propagation
Galactic CR :
Galactic ? SuperNovae? Superbubles? reacceleration? Heavier nuclei o protons ?
E-3 E-2.7
3 essential effects : • Energy losses: modify the spectral shape
Supernovae, MIS, but no source pointing!
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
E-2.7
Extragalactic ? source ?, composition ?
• Particle confinement (escape depending on energy) • Spatial and angular diffusion due to magnetic fields. (regular or fluctuating, inhomogeneities, waves)
UHECR, terra incognita
AUGER
226
225
Energy losses 2010-2011
2010-2011
An extrem case of relativistic kinematics !!!
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
p+Jcmbo '+ o p + S0 on+S+
' resonance
multi-pions
• • •
GZK "cutoff" Greisen ‘66, Zatsepin & Kuzmin ‘66 227
228
2010-2011
UHE Extragalactic Particles
2010-2011
Consequences on spectral shape Protons:
p+Jcmbo ' op/n+S
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
Photo Pion production on CMB photons
Fe: photo-dissociation on IR bg and CMB Photons: paires e+e on radio bg Protons energy vs. distance (J. Cronin) Energy loss on CMB
Fluctuation dues to multiple scattering
Protons energy vs. distance (J. Cronin) Energy loss on CMB
229
230
Coupure GZK
2010-2011
2010-2011
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
UHE Extragalactic Particles
231
• Greisen-Zatsepin-Kuz’min
• Distance to the source limited to 100 Mpc for 1020 eV protons, and 15 Mpc for 3u1020 ! • Actually even worse if particles are deflected (Deffectif > Dlinear) 232
GZK like suppression (Auger) 2014
2010-2011
Spectrum above GZK cutoff Depends among other things: ) From the injection spectrum ) From the sources cosmological distribution (evolution) F.Montanet Experimental Astroparticle Physics ESIPAP
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
) From IG magnetic fields n E3 Flux
Eo
Blasi, Olinto. ‘01 233
234
2014
2014
F.Montanet Experimental Astroparticle Physics ESIPAP
F.Montanet Experimental Astroparticle Physics ESIPAP
GZK like suppression (Auger)
MAGNETIC DEFLECTIONS
235
236
Propagation the Galaxy 2010-2011
• 1018 eV proton in a B = 3 G field rg ~ 370 pc
disk
halo
300 pc halo RC : 3 to 7 kpc •
2u1019
eV proton in B = 3 G rg ~ 7 kpc
• 5u1020 eV Fe in B = 3 G
• Galactic magnetic field model
§ R Larmor ¨ ¨ kpc © F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2010-2011
Galactic magnetic deflection
rg ~ 7 kpc
· ¸ ¸ ¹
§ 1 · § E · § ZB · ¸¸ ¨ ¸¨ ¸ ¨¨ © Z ¹ © 1EeV ¹ © PG ¹ p
100 EeV O Fe
3PG
8kpc
•
Possible galactic confinement of 1020eV nuclei
•
1018eV
neutrons decay length EJcW | 10kpc galactic distances
Tracking back direction of proton events >4 1019 out of the Galaxy, two different field hypothesis [Stanev97]
237
238
Pointing at UHECR sources? 2010-2011
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2010-2011
Pointing at UHECR sources?
O’Neil, Olinto, Blasi ‘01
O’Neil, Olinto, Blasi ‘01 239
240
Diffusion in the Universe 2010-2011
2010-2011
Mapping IG fields with UHECR?
• If they are protons, arrival direction § source direction
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
o Proton astronomy !
• Correlations between arrival directions and sources: UHECR distribution is NOT ISOTROPIC!!! (AUGER 2007) – Confirmation of a GZK limited horizon – Few sources in the GZK sphere o anisotropie – Astrophysical origine is confirmed!
• Arrival time delay – – If eruptive or transient sources (GRBs, TDs), the must overlap in time (otherwise E(t)!) – Multiplets of events from same direction observed but no significant ordering in E or deviation. o Correlation must be confirmed! (statistics...)
242
243
2010-2011
Matter distribution in the GZK sphere
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
Observables & Observations
244
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Experimental Astroparticle Physics ESIPAP
2014
2010-2011
How to characterize the primary particle?
PRIMARY RC DETECTION (ON TOP OF ATMOSPHERE) 246
247
Two important radiations for particle identification
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2010-2011
2010-2011
How to characterize the primary particle?
248
249
Cherenkov imaging (RICH) and charge measurement 2010-2011
2010-2011
Cherenkov Radiation
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
RICH principle ĺ
AMS 2 Prototype ĺ
250
251
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2010-2011
Transition radiation (cont)
2010-2011
Transition radiation
252
253
AMS-2 On Board ISS
Satellite born experiment : AMS-1, PAMELA, AMS-2
2014
2010-2011
Charge particles and cosmic antimatter
• First satellite based magnetic spectrometer en satellite : AMS-1 on the space shuttle « Discovery » (1998)
F.Montanet Experimental Astroparticle Physics ESIPAP
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
• First satellite based experiments on cosmic rays : HEAO-C, Ariel-VI (1979) ĺ relatively low energy (up to a few 10 GeV/nucleon)
Mission Number: STS-134 Launch: May 19, 2011 Orbiter: Endeavour
• New generation of experiments: PAMELA (since Juin 2006) AMS-2 (since May 2011) on the International Space Station ĺ data up to ~TeV and precise measurements of flux of cosmic antiparticles 254
255
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
Spectrometer Acceptance
Spectrometer
AMS-1 (June 1998)
PAMELA (June 2006 - …)
AMS-2 (May 2011 - …)
0.82 m2 sr
20.5 cm2 sr
0.82 m2 sr
Aimant permanent Nd Fe B
Aimant permanent Nd Fe B
Aimant permanent Nd Fe B
0.48 T = 0,10 T m2 6 plans (Si)
0.15 T BL2 = 0,15 T m2 6 plans (Si)
0.15 T = 0,15 T m2 6 plans (Si)
BL2
BL2
Time of Flight
yes
yes
yes
Cherenkov
Aerogel (threshold)
-
Ring Imaging Ch.
Transition rad
-
yes
yes
Neutrons det.
-
3He
-
Anticoincidence
-
yes
yes
-
16,3 X0 W+22 plans (Si)
16 X0 Pb+fibers sc.
Calorimeter
2010-2011
PAMELA
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2010-2011
Space spectrometers
256
257
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
Control of instrumental effects ?
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2010-2011
e+
background: mainly spallation of CR on IS gas.
2010-2011
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2010-2011
2010-2011
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
DM signal ?!?! F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2010-2011
2010-2011
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
Ionisation in the calorimeter o Z identification of nuclei F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2010-2011
2010-2011
PAMELA PAMELA
Antimatter ?
M.Cirelli, seminar @LPSC December 2009
262
264
Antimatter ?
258 259
PAMELA PAMELA
Antimatter ?
260 261
M.Cirelli, seminar @LPSC December 2009
263
Background "measurements"
Baltz, Edsjo 1999 Moskalenko, Strong 1998 Delahaye et al., 0809.5268 P.Salati, Cargese 2007
265
2010-2011
Moriond 2-9 March 2013
A nearby Pulsar ?
A precision, multipurpose spectrometer up to TeV TRD Identify e+, e-
TOF
Z, E
1
Magnet 㼼Z
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
Silicon Tracker
Z, P 2
B.Bertucci
5-6 7-8
Tracker
3-4
RICH
Z, E
ECAL
E of e+, e-, Ȗ
9
Z, P are measured independently by the Tracker, RICH, TOF and ECAL 267
266
Full coverage of anti-matter & CR physics
2014
AMS charge identification
e–
P
He,Li,Be,..Fe
J
e+
–
–
–
P, D
–
He, C
F.Montanet Experimental Astroparticle Physics ESIPAP
TRD TOF Tracker
RICH ECAL
268
Physics example
AMS Nuclei Measurement on ISS 2010-2011
H He
Be
B C
N
O F
Ne
Na
Mg Al
Si P
S Cl Ar K Ca Sc Ti
V
Cr
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
Li
Antimatter
Charged particles (1 TeV ĺ few 100 TeV)
Entries 108 107 106 105 104 103 102 10 1
Dark matter
Cosmic Ray Physics
Fe Ni
Balloon Experiments • Very high altitude flights: 40 km v 3,9 g cm-2 • Load: up to § 270 kg and 10 m3 • Many former flights: JACEE (USA + Japon) ; RUNJOB (Russie + Japon) etc. using emulsion chambers ! • Recently: Ultra Long Duration Balloon (ULDB) Flights
60-100 jours (NASA, Antarctic) ĺ the CREAM experiment (Cosmic Ray Energetics and Mass)
271
CREAM 2004 2010-2011
2010-2011
CREAM Ultra Long Duration Balloon NASA project to develop - Flight of < 100 days - Payload y 2 tons - Alt 33000 meter - CREAM n° 1 : 2006 (2005/LDB)
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
ULDB Proj., Adv.Sp.Res33,1633(2004) :
McMurdo (Antarctique) 272
CREAM I: 16/12/04 - **/01/05 >39 days flight World Record
21/01/05
16/12/04
24/01/05 ! 273
1 décembre 2009 au 8 janvier 2010
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2010-2011
CREAM 2009
2010-2011
CREAM 2008
274
275
CREAM experiment
CREAM
2010-2011
• Objectives : CR composition and spectrum of the different elements (from TeV to ~500 TeV) • Acceptance : 2,2 m2 sr • Energy measurement:
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2010-2011
Cosmic Ray Energetics and Mass
– Calorimeter 20 X0 (W + scint. fibres) – Transition Radiation Detector
• Identification :
– TRD – Cherenkov detector "CHERCAM" similar to AMS-2
• At TeV energies, the interaction of CR in the calorimeter induces many backscattered secondary particles that one have to veto. • The "CHERCAM" cherenkov solves this problem by measuring accurately the time of any through going particle as well as achieving a precise charge measurement (± 0,3 e)
276
277
Contexte expérimental 2010-2011
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2010-2011
CREAM experiment
Inclusive CR flux
AMS01 02
Ground experiments
KNEE
Kascade etc.. CREAM
HIRES AUGER TA Etc..
ACCESS ?
279
278
2010-2011
CR SM with Emax Z
•Is the knee due to: - Acceleration mechanisms or to changes : - in propagation? - in CR sources? - in interaction properties (threshold) ?
cream
B A diffuse SNR shock acceleration with Emax implies a change in composition around ~1014 eV.
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2010-2011
The knee
Genou
Hint of change in composition ?
CREAM
Cheville
SNR energy limit: Emax ~ Z • 1014 eV 280
281
2014
Secondary/Primary ratio
F.Montanet Experimental Astroparticle Physics ESIPAP
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2010-2011
Galactic CR propagation with CREAM
AIR SHOWERS DEVELOPMENT MODELS
Compatible with propagation models with escape terme in E0.6 283
282
2010-2011
To measure the inclusive spectrum at the knee, one nees a 10m² exposed during 10 years ! The realistic experimental limits are: • For satellites ~ 1m² (sr) during ~few years • For balloons, ~ 10m²(sr) during nu30 jours o E < 1015 eV
It's time we face reality my friends, we should keep to ground detectors !
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2010-2011
A peek above the knee !
Extensive Air Showers: the phenomenon and the observables • The large shower of secondary particles induced by the interaction of a primary CR in the upper atmosphere can be detected on an extensive area ĺ large effective surfaces to fight against low flux at E 1000 TeV • Atmosphere used as an calorimeter (~1000 g cm-2 at sea level for a vertical shower) • From the observables, one aims at measuring: – Incident direction; – Primary energy E0 ; and if possible, get access to the nature of the primary particle : – distinction ǁ-hadron ; – distinction light nuclei (p, He) - heavy nuclei(Fe)
Shower development
2010-2011
p or nucleus + N or O nucleus ĺ hadronic cascade
285
• Hadronic component: nuclear fragments, nucleons, mesons , K, etc. • Electromagnetic component: induced by 0ĺǁǁ and other radiative decays • Muonic component: induced by decays of ± and K± • Atmospheric Neutrinos issued from s ± K± and ñ decays
« des giboulées d'électrons » Rayon cosmiques par Pierre Auger 1941 PUF
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2010-2011
284
Primary electrons and p induce an electromagnetic shower consisting mainly of secondary electrons, positrons and p (muon poor)
A 1019 eV shower 1011 particles at sea level Photons + electrons (99%), muons (1%)
286
287
Temporal aspects 2010-2011
2010-2011
Ground observables • Secondary particles reaching ground – – – –
Residual Hadrons (nuclear fragments): not numerous (>11 xint). e± : the more numerous at shower development maximum. ñ : most reach ground and may penetrate deep underground. p secondaries : may be detected at ground level via e+e- pair conversion (e.g. Cherenkov effect in water).
• This front is more or less curved depending on the shower development stage. F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
As a function of the primary energy and of the altitude:
• A light speed moving "pancake" of charged particles.
• Photons (visible, UV) emitted along the trajectories of charged particles (Cherenkov effect, N2 fluorescence) during the shower development ĺ Calorimetric 3D information ! • Radio emission by the shower particles in the geomagnetic field or by the induced plasma. 288
• The front thickness (~ 10 m) induce as signal time spread in each detector. • The arrival time differences at ground on the sampling detectors ĺ arrival direction (¨DŽ § 1°). • The Cherenkov light front (forward emission) is thinner (~m) than the charged particle front ĺ well defined timing. 289
2010-2011
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2010-2011
Time structure
EM shower Longitudinal development • Mean number of particles (e+,e- or p ) crossing a plan " to the shower axis after a slant depth t (in units of X0). • As long as the ionization losses are small wrt radiation losses (bremsstrahlung and pair prod) the number of particle increase exponentially. • When the mean energy per particle decreases below the critical energy (Ec ~ 84,2 MeV in air), the number of particle decreases (shower extinction phase). • At the transition between the two phases, (maximal development), the mean energy is equal to the critical energy.
291
290
EM cascades (Rossi & Greisen) 2010-2011
2010-2011
Radiative processes (E > Ec) J
Bremsstrahlung :
J
Pairs production :
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
Ec e-
e+
Ec
Critical energy: below this energy, ionization losses dominate.
292
293
2010-2011
Longitudinal development
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
• Cascade consisting of only one type of particles having an interaction length O. • At each interaction, 2 particles of same type are emitted sharing the energy exactly in 2.
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2010-2011
Simplified development model (Heitler)
O X=
1
2
3
4
5
N=
2
4
8
16
32
E=
1/2
1/4
1/8
1/16
1/32
Ec =E0/32 294
295
2010-2011
2010-2011
Simplified development model (Heitler) 35
Longitudinal development: Approximation "A" (B. Rossi, K. Greisen)
30
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
25
20
15
10
5
0
0
O
1
2
3
4
5
X=
1
2
3
4
5
N=
2
4
8
16
32
E=
1/2
1/4
1/8
1/16
1/32
10
Ec =E0/32 296
297
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2010-2011
Approximation A (suite)
2010-2011
Approximation A (cont)
299
EM showers : some orders of magnitude
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2010-2011
Taking into account ionisation energy losses: the "age" parameter
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2010-2011
298
Primary J energy E0
Thickness traverse tmax X0 (g cm-2)
Altitude (m)
Ne(tmax)
30 GeV
216
12000
50
1 TeV
345
8000
1200
1000 TeV
600
4400
0,9 × 106
1019 eV
936
1200
7,4 × 109
1020 eV
1021
0
7,0 × 1010
300
301
1020 eV log ( N e )
1019 eV F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
EM cascades (Rossi & Greisen) 2010-2011
2010-2011
EM shower average profiles
1000 TeV
1 TeV 30 GeV
Parametrisation (Greisen) and Monte Carlo (EGS4) photons 1TeV, Ec=10MeV
Épaisseur traversée (g cm-2)
Shower size i.e. number of electrons at ground level as an energy estimator
303
2010-2011
Cascades EM (Rossi & Greisen)
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2010-2011
302
304
Shower to shower fluctuations 10 showers at 1014eV compared to the average of 100 showers. 305
2010-2011 F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2014 F.Montanet Experimental Astroparticle Physics ESIPAP
GAMMA-RAY (EM) INDUCED SHOWERS
10 Ȗ 300 GeV
10 protons 300 GeV Simulations de M. de Naurois
Electromagnetic showers (e± or ǁ primary)
307
Ȗ induced shower 300 GeV
Dominating phenomena
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
• Multiple scattering (small angular deflexions) of e±
proton induced shower 300 GeV
km
Roughly symmetric around the axis
• Radiation processes:
– Bremsstrahlung of e± – Pair production (>MeV) pairs e+e-
km
2010-2011
2010-2011
306
In the coulombian field of nuclei
• Energy losses by e±
– par ionisation – excitation des atomes
Large transverse momentum
Small transverse dispersion (multiple scattering)
Muon component (from mesons decays)
(almost) no muons … (unless E0>1 PeV) Essentially e+ e- and Ȗ secondaries
m
m
A hadronic shower does contain EM sub-showers
308
309
2014
• Showers charged particles emit light: – Cherenkov light : very collimated along the shower axis (Cherenkov angle at 1 Atm. § 1°) threshold depending on the altitude : at ground 22 MeV for e± et 4.5 GeV for ñ (20 photons per m per ǀ§1 charged particle at 1 atm) Essentially used for gamma-ray astronomy
– Nitrogen fluorescence: isotropic emission (~ 4 photons per electron per m) Essentially used at UHE 1018eV.
Lecture on Imaging & Cherenkov Detectors
• This light detected by ground telescopes gives us very rich information on the 3D development of the showers. It give a quasi calorimetric reliable measurement of the energy. • … but optical detectors can only work during moonless clear sky nights (§ 10% duty cycle).
F.Montanet Experimental Astroparticle Physics ESIPAP
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2010-2011
Optical photon emission by showers
HADRONIC SHOWERS MODELS AND DETECTION
310
311
2010-2011 F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2010-2011
Hadronic showers
312
"Hadronic" showers (proton ou noyau primaire) • Great complexity implying the use of numerical simulations: – Many length scales : nucleon interaction length, pion interaction length, EM radiation length, atmosphere density height scale… – Superposition of a nuclear cascade, a pionic cascade and an electromagnetic cascade (the later from 0 decay ǁ). – Large fluctuations in the multiplicity of secondaries.
• Bur simulations are subject to many uncertainties: – p+N or N+N interactions: sensitivity to nuclear models. – Energy range unexplored by accelerators and colliders : sensitivity to nucleon structure functions (parton distributions) and fragmentation functions extrapolated far from the measured regions. – The inelasticity and in general the very forward diffractive physics is not well measured in fixe target experiment (even worse at colliders).
Still, the main behaviour observed on EM showers remains valid.
313
Hadronic showers 2010-2011
• The main observables are the same:
– Number of electrons, gamma but also muons at ground and their lateral distributions. – Longitudinal profil and maximal dev. altitude (optical detectors). – Number of muons at ground level and lateral distribution of muons.
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2010-2011
From EM to Hadronic showers
• Feynman scaling is rather well verified in the fragmentation: it plays an role analogue to that of Bethe-Bloch formulae for EM showers (absence of mass/energy scale). • Simulations have allowed to establish empirical formulae inspired by EM showers useful to to quite estimates (T.K. Gaisser, A.M. Hillas)
314
315
Development of Hadronic vs EM showers 2010-2011
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2010-2011
Interaction and radiation lengths in atmosphere
316
317
Longitudinal develpopment 2010-2011
Xmax and energie :
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
Gaiser Hillas formulae :
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2010-2011
Gaisser longitudinal Parametrisation
Nuclei :
318
319
Primary identification 2010-2011
Shower to shower fluctuations largely due to the depth of the first interaction.
Fe
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2010-2011
Structure in space
p
320
• Requires a good statistics and a good knowledge of the initial energy, the shower angle (+ systematic corrections because of atmospheric attenuation)
(CORSIKA)
321
2010-2011
e+ + e- lateral density
2010-2011
Radial extention
Molière radius (~1/4 of the radiation length) :
4
Nishimura, Kamata, Greisen : multiple scattering + transverse momentum
Depth [g/cm²] shower[km] age height
200 F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
5
100 0.2 20
0.4 300 15 400 0.6
3
500 0.8 10 600
1
2
0
1 700
-1
800 5 1.2
-2
900 1.4 1000 0
-3 0
200
400500600
800 1000 1200 1400 1500 1600 1800 2000 Radius [m]
326
327
Lateral evolution 2010-2011
Shower Density Lateral Distribution (simulation) Detector Signal Density
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
(equiv.muons/m2)
1
1020 eV
1015 eV 10-6
Core Distance (km)
3km
328
2010-2011
Time structure
E.Nerling (thesis) :
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2010-2011
Particle energy distribution Rossi Greisen :
Aires 1014eV Excess e at low energy (ionization)
e
e
330
331
UHECR detection
F.Montanet Experimental Astroparticle Physics ESIPAP
F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble
2014
2010-2011
Time structure
Lecture on Imaging & Cherenkov Detectors
ns 332
333
F.Montanet Experimental Astroparticle Physics ESIPAP
2014
Neutrino Physics with astroparticules
Lecture on Imaging & Cherenkov Detectors
334