Why studying Astroparticles

15 downloads 2233 Views 6MB Size Report
F.Montanet Cours Astroparticules M2R PSA Grenoble. 4. Understand our Universe ..... Vacuum is not emptiness ! • Inter Galactic ..... log(R/km). Hillas diagram. Finite size of confinement magnetic field. Larmor radius .... componants. 1999-2000 ...
Plan of the course 2014

ASTROPARTICLES ESIPAP - 2014 François Montanet

• • •

F.Montanet Experimental Astroparticle Physics ESIPAP



Introduction & a very brief History Nature and properties of Astroparticles Propagation medium, IGM, ISM and atmosphere Astrophysical Sources



Propagation – CR propagation in the Galaxy: The Leaky box model – VHE J-rays propagation – UHECR propagation



Observables & Observations – Primary CR detection (on top of atmosphere) – Air Showers Development Models – Gamma-ray (EM) induced showers detection – Hadronic Showers Models and Detection – UHECR detection

– Astrophysical shocks – Fermi acceleration – Standard Model for the production of galactic CR, SNR – Gamma-ray sources, pulsars – AGN and other extragalactic sources – Neutrinos sources



Cosmological Sources – Cosmological implications – Dark Matter as a source of CR – "top-down" type of sources at UHE

• •

Dark matter search Neutrino Physics with astroparticules

2

2010-2011

Open questions

Why studying Astroparticles

Understand our Universe at extreme scales • The Higgs boson or the origin of mass

F.Montanet Cours Astroparticules M2R PSA Grenoble

• Nature and mass of Neutrinos • Fundamental symmetries: CP , supersymmetry • New dimensions in physical space ? • What is our Universe made of ? • Sources and propagation of cosmic rays ? • New Physics at E >> E(LHC) ?

4

2010-2011

2010-2011

Astroparticles & HEP Particles Physics

Astronomy

F.Montanet Cours Astroparticules M2R PSA Grenoble

ASTROPARTICLES

F.Montanet Cours Astroparticules M2R PSA Grenoble

Cosmology and Astroparticle physics

Accelerator Physics

Cosmology Astrophysics

Search for new physics, beyond the Standard Model of particle physics.

5

6

SM Cosmology

2010-2011

2010-2011

Matching "standard models" SM of Particle Phys.

"hot big bang"

Glashow-Weinberg-Salam

New Physics

Bahcall

F.Montanet Cours Astroparticules M2R PSA Grenoble

F.Montanet Cours Astroparticules M2R PSA Grenoble

Solar SM Examples of happy unions…

… as well as some disputes… BigBang GWS Dark Matter Dark Energy Inflation Matter Anti-Matter Asymmetry

Solar SM

This decade's grail: solve the puzzle of electroweak symmetry breaking

Solar Q deficit Atmospheric Q anomalies 7

8

2010-2011 F.Montanet Cours Astroparticules M2R PSA Grenoble

What are "Astroparticles" What we know

9

Let there be light ! 2014

2014

A multi-wavelength sky

– Nuclear reactions, galactic and extragalactic hydrodynamics, MHD, explosions, nucleosynthesis, past, future… EVERYTHING !

F.Montanet Experimental Astroparticle Physics ESIPAP

F.Montanet Experimental Astroparticle Physics ESIPAP

– Temperatures, stars masses, galaxies, magnetic fields, chemical composition, age of stars and structures…

Well, almost everything…

11

12

Our Galaxy

Our Galaxy

The optical Milky Way

The optical Milky Way

Lund Observatory

Our Galaxy

Our Galaxy

The Milky Way : Radio at 73cm

The Milky Way : Radio at 21 cm

408 MHz / 73.5 cm / 1.6 10–6 eV)

( ~1.42 GHz / 21.1 cm / 5.9 10–6 eV)

north polar spur Centaurus A

Crab nebula

Essentially from the movement of ultra relativistic electrons probably issue from supernovae remnants in the galactic magnetic field.

Hyperfine transition of hydrogen. Structures are due to the column density of atomic hydrogen clouds along the line of sight.

Our Galaxy

Our Galaxy The Milky Way : Radio at 2,6mm

Infra red

Millimetric waves (115 GHz / 2.6 mm / 4.7 10–4 eV)

Infrared (3 103 to 25 103 GHz / 100 to 12 ȝm / 0.01 to 0.1 eV)

Rotation mode ray of carbon monoxide. One assumes that CO abundance is proportional to that of cold molecular hydrogen (directly undetectable).

Thermal emission, due to interstellar dust heated by starlight.

Our Galaxy

Our Galaxy

It structure is clearly visible in IR (COBE satellite).

Optical

Near Infrared (86 103 à 240 103 GHz / 1.25 à 3.5 ȝm / 0.35 à 1 eV).

Visible (460 103 GHz / 0.65 ȝm / 2 eV – red)

Giant stars emission in the disk and in the bulb

Visible light is absorbed by interstellar dust clouds. Only stars close enough to the solar system (few parsec) are seen.

Our Galaxy

Our Galaxy X-rays

Gamma-rays

X -rays (60.106 to 360.10͸ GHz / 5 to 8.3 nm / 0.25 to 1.5 keV).

Gamma-rays ( > 2.4 1013 GHz / < 12.5 fm / >100 MeV).

Diffuse X-ray emission from overheated and shocked gas.

Photons (gammas) from the decay of neutral pions produced in the interaction of CR with interstellar matter, from the Bremsstrahlung of CR and from the inverse Compton of relativistic electrons with ambient photons.

Our Galaxy 2014 F.Montanet Experimental Astroparticle Physics ESIPAP

HE gamma-rays (>100MeV EGRET satellite) Resolved point-like sources: Binary systems, pulsars, SN remnants…

Andromeda (M31): Optical

24

Andromeda (M31): IR 2014 F.Montanet Experimental Astroparticle Physics ESIPAP

F.Montanet Experimental Astroparticle Physics ESIPAP

2014

Andromeda (M31): UV

Star forming regions in spiral arms

Young, hot stars in spiral arms

25

26

F.Montanet Experimental Astroparticle Physics ESIPAP

F.Montanet Experimental Astroparticle Physics ESIPAP

2014

Radio Galaxy

2014

Andromeda (M31): Xray

Xray binaries, supernova remnants, hot gas

3 000 000 A.L.

Centaurus A 27

28

The "all particles" spectrum • Regular spectrum over 12 decades in energy, and 32 decades in flux !!!

2014

– Temperatures, stars masses, galaxies, magnetic fields, chemical composition, age of stars and structures… – Nuclear reactions, galactic and extragalactic hydrodynamics, MHD, explosions, nucleosynthesis, past, future… EVERYTHING !

• Well, almost everything… – Non-luminous messengers : CR ! – Rare but precious : ~ 4 CR/cm²/s ~30 —g/s on entire earth ( 1kg per year !)

• Small break near 3u1015eV : the "knee"

F.Montanet Experimental Astroparticle Physics ESIPAP

F.Montanet Experimental Astroparticle Physics ESIPAP

2014

Let there be light !

• CR astronomy is impossible...

– Directions randomized by magnetic fields – What we would know if it was the same for photons !

• An other one near 1018eV : the "ankle" • Spectrum badly known at the two extremities – Geomagnetic "shield" + Solar modulation – Extreme rareness…

• …but not astrophysics !

– Energy spectra and chemical composition tells us a lot… 29

30

CR Spectrum above a TeV Knee

from Tom Gaisser

E-3.1 F.Montanet Experimental Astroparticle Physics ESIPAP

E-2.7 Knee

Ankle

LHC

F.Montanet Experimental Astroparticle Physics ESIPAP

2014

2014

Cosmic-rays spectrum

Origin ? Galactic ? Cosmologic ? Astrophysics ? New physics ? 31

32

Charge cosmic rays composition

Identified spectra 2014

2014

98% de nuclei

F.Montanet Experimental Astroparticle Physics ESIPAP

F.Montanet Experimental Astroparticle Physics ESIPAP

87% protons 2% electrons 12% Helium 1% heavier nuclei Flux : 4 RC/cm2/s Ÿ 1 kg/year  40 000 ton/year (meteorites) 33

34

Overview of CR data on composition

Nature of cosmic rays 2014

• Secondary atoms

F.Montanet Experimental Astroparticle Physics ESIPAP

F.Montanet Experimental Astroparticle Physics ESIPAP

2014

• Chemical composition

• Isotopic anomalies • Cosmic clocks

Abundances different in CR and local measurements (Li Be B and Sub-Fe) CR undergo spallations and produce secondary CR

35

36

Nature of primary cosmic rays

Data from AMS on ISS

Solar modulation

F.Montanet Experimental Astroparticle Physics ESIPAP

2014

Helium Flux

103 37

Nature of primary cosmic rays 2014

Antimatter ?

F.Montanet Experimental Astroparticle Physics ESIPAP

F.Montanet Experimental Astroparticle Physics ESIPAP

2014

Electron primary flux

Pure secondary (standard) propagation 39

40

2014

2014 F.Montanet Experimental Astroparticle Physics ESIPAP

Antimatter search (Dark Matter ?)

F.Montanet Experimental Astroparticle Physics ESIPAP

Positron fraction in primary flux

… or rather a boring "local" pulsar spoiling physicists hopes !

41

42

Gamma, diffuse emission 2014

• Gamma-rays observed o TeV • Spectrum ± understood un to MeV. • Above, the diffuse spectrum and that of sources are very "hard", in 1/E2 and of still unclear origin...

F.Montanet Experimental Astroparticle Physics ESIPAP

F.Montanet Experimental Astroparticle Physics ESIPAP

2014

Gamma rays

Emission due to: • the interactions of cosmic electrons with: – the magnetic fields (synchrotron radiation dominates the radio emission of the Galaxy up to a few GHz) – interstellar Matter (ISM); bremsstrahlung important bellow 100 MeV – Interstellar photon: Inverse Compton above GeV

• the decay of S0 produced when CR interact with protons and nuclei – S0  JJ above 100 MeV – Concomitant emission of Q in the decay of S±

Why all this non thermal equilibrium radiation? 43

44

2014

Galactic or Extragalactic CR ?

2014

Gamma, diffuse emission

Definite answer from EGRET in 1993 !

F.Montanet Experimental Astroparticle Physics ESIPAP

F.Montanet Experimental Astroparticle Physics ESIPAP

Hypothesis: if CR are extra or metagalactic, the density of CR is identical in our Galaxy and in its satellites

Cosmic rays are indeed Galactic ! 45

46

F.Montanet Experimental Astroparticle Physics ESIPAP

2014

The general problematic • Thermal speeds  RCUHE (few 1020 eV) Produce them

• From top to bottom (decay...) • From bottom to top (acceleration)

Preserve them

• Energy losses (Synch., IC, S, pairs...) • Destruction (photo-dissociation…) • Escape probabilities

Propagate them

Detect them

Propagation medium, IGM, ISM and atmosphere

• Propagation in ISM and IGM (mag fields: deflection, confinement...) • Re-acceleration • Balloons, satellites… • Air showers… – Cherenkov telescopes – Surface & Fluorescence Detectors

47

Dimensions of the Milky Way 2014

2014

Halo 0.1-0.01p cm-3 8 kpc 4-12 kpc

Disk 300 pc gas, sources, ~1p cm-3

F.Montanet Experimental Astroparticle Physics ESIPAP

F.Montanet Experimental Astroparticle Physics ESIPAP

Milky Way, a spiral galaxy

1 pc ~ 3 l.y. ~ 3 £ 1016 m

sun

bulge

B ~3—G

15 kpc

50 kpc

49

50

Milky Way, a spiral galaxy 2014

Local spur and neighboring arms local matter and B field inhomogeneity.

F.Montanet Experimental Astroparticle Physics ESIPAP

F.Montanet Experimental Astroparticle Physics ESIPAP

2014

Milky Way, a spiral galaxy

Mean "regular" B field ~ 3—G roughly parallel to spiral arms, more intense in between arms.

Local spur and neighboring arms local matter and B field inhomogeneity. Mean "regular" B field ~ 3—G roughly parallel to spiral arms, more intense in between arms.

52

51

A thick target… 2014

• Diffuse gamma-ray emission from galactic CR interaction with matter (mostly molecular H clouds).

F.Montanet Experimental Astroparticle Physics ESIPAP

F.Montanet Experimental Astroparticle Physics ESIPAP

2014

A thick target

53

54

Our local group is at the periphery of the large Virgo supercluster (~2000 galaxies) at ~20Mpc

F.Montanet Experimental Astroparticle Physics ESIPAP

F.Montanet Experimental Astroparticle Physics ESIPAP

2014

The local group and the Virgo cluster

2014

The nearby islands…

Andromeda (M31) A twin of our Milky Way slightly larger and (only) distant by 780kpc. Many small (dwarf) galaxies are orbiting around these twins. 55

56

Another super cluster: Abel 1689 2014

2014

F.Montanet Experimental Astroparticle Physics ESIPAP

F.Montanet Experimental Astroparticle Physics ESIPAP

A 300Mpc horizon

The "GZK" sphere

57

58

F.Montanet Experimental Astroparticle Physics ESIPAP

F.Montanet Experimental Astroparticle Physics ESIPAP

2014

Vacuum is not emptiness !

2014

Large scale filamentary structures

• Inter Galactic Medium contains: – Magnetic fields (regular + random) are highly speculative and range from 2· 10-6 nT (20pG) to 10-4 nT (1nG). – Very little matter (p, He, and a few electrons): y 1 proton / m3 – Electromagnetic radiations: • 413 CMB photons per cm3 • Also IR, radio photons…

– Neutrinos:

• Mostly CzB neutrinos (decoupled when universe was only 2" old!) • Today 1.95 K i.e. 1.7· 10-3 eV • 336 z (all species) per cm3

+ Many mysterious dark matter WIMPs … 59

60

The earth atmosphere 2014

• An evident characteristic of the atmospheric medium is that of being inhomogeneous. – Its density, diminishes six orders of magnitude when the altitude above sea level passes from zero to 100km, and another additional six orders for the range 100km to 300km. – Although up to ~100km, the composition is nearly constant: 78.47% N, 21.05% O, 0.47% Ar and 0.03% other elements. – It follows a quasi exponential profile

F.Montanet Experimental Astroparticle Physics ESIPAP

F.Montanet Experimental Astroparticle Physics ESIPAP

2014

The earth atmosphere

("quasi" because T is not quite constant!)

61

62

F.Montanet Experimental Astroparticle Physics ESIPAP

F.Montanet Experimental Astroparticle Physics ESIPAP

2014

The earth atmosphere

2014

The earth atmosphere

63

• In terms of particle/radiation interaction with matter, the atmosphere is: – – – – – –

A total of ~ 1000 g/cm2 at see level So 1 atm ~ 12 interaction lengths (xN ~ 85 g/cm2) A vertical proton first interacts at h ~ 15 km One radiation length (at 1 atm) X0 = 36.6 g/cm2 ~ 300 m One Moliere radius (at 1 atm) is }M ~ 78 m The Lorentz factor for a muon produced at h = 10 km to reach ground before decaying is c > 15 (> 1.6 GeV)

– Critical energy (EM) Ec = 84,2 MeV

64

2010-2011

Physics well out of reach of colliders ! "Hadronique" shower

"Electro-Magnétique" shower

F.Montanet, "La grande aventure des RC"

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

At each step energy is shared by more numerous particles

Maximum of développement

No more multiplication, decrease by decay and energy loss

65

At ground, essentially P± J e±

66

Structure en temps

Astrophysical Sources Cosmic Accelerators

F.Montanet, "La grande aventure des RC"

Marseille, janvier 2012

Shower development

Marseille, janvier 2012

Interaction and radiation lengths in atmosphere

67

2009-2010 F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2009-2010

General ideas on acceleration • Take the necessary energy somewhere… – Kinetic energy: • Translation: shock waves, moving clouds... o Fermi acceleration • Rotation : pulsars, black holes, neutron stars

– Gravitational energy • via accretion (o jets…): accretion disks (divers)

– Electromagnetic (EM) • From turbulence, from compression, or from rotating magnets...

• In fine, charged particles interact with EM fields: f = q (E + vuB) • Remember: Astrophysical shocks are collisionless. o Energy transfert through EM fields !

69

70

Magnetic field production 2009-2010

2009-2010

E and B fields in Universe

• Large scale movements of ionized media o generating magnetic fields, magnetized clouds...

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

• Turbulence in interstellar medium

71

o Magnetic turbulence, inhomogeneous B fields, plasma waves...

• Hydro and MHD instabilities – e.g. Rayleigh-Taylor in supernova remnants

• "Streaming" instabilities – CR generates waves in a magneto-actif plasma o creating the conditions for their own diffusion

72

Magnetic fields and acceleration ! 2009-2010

2009-2010

Magnetic field production In many cases, equipartition can be reached

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

– for ex: behind a shock wave : thermal en. ~ kinetic en. ~ magnetic en.

Ÿ Energy exchange between macroscopic structures and individual particles Ÿ individual particles may reach very high energies!

o Acceleration by "change of reference frame" 73

74

Where to accelerate

The Ingredients :

2009-2010

2009-2010

Principle of Fermi acceleration • At creation :

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

– For example: e- extracted from the surface of a neutron star by an intense E field.

Fermi 1949 :

• Within the source neighborhood : – For example: Fermi acceleration in plasma shocks in a SNR.

• During transport: – "reacceleration" by shock waves and excitation of Alfven waves during diffusive transport in the Galaxy.

76

75

2009-2010

Power laws and stochastic processes

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

• The power laws observed in differential energy spectra follow naturally from cyclic acceleration mechanisms with constant energy gain and constant escape probabilities:

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2009-2010

Power laws and stochastic processes

Power laws are natural !

77

78

– neither gain nor loss of energy... F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2009-2010

• A tennis ball bouncing on a wall

bounce = speed unchanged v

– Neither gain nor loss of energy… in the racquet reference frame !

V v

v

• Moving racquet

v F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2009-2010

A small analogy…

Same thing with a motionless racquet...

Then how does one accelerate a tennis ball ?! 79

v

v + 2V

Speed unchanged with respect to the racquet

o acceleration through a change of reference frame 80

2009-2010

2009-2010

Fermi Acceleration • A drop shot:

• Ball o charged particle • Racquet o "magnetic mirrors" Magnetized clouds (M À mp), with a typical speed wrt ISM ~10km/s

V F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

v

v - 2V

Particle deceleration !

B V

B

B

• Magnetic inhomogeneities or plasma waves also work...

81

1

When a particle bounces on an incoming magnetic mirror, in a head-on collision, it gains energy.

2

When a particle bounces on a receding magnetic mirror that it catches back, it loses energy.

3

Head-on collisions are more frequent than receding collisions.

2009-2010

Add a second player... • Converging flows...

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2009-2010

The essence of stochastic de Fermi acceleration

82

Ÿ Net energy gain in average (stochastic process )

V

V

83

84

2009-2010

Shocks hydrodynamics

• Shock waves (e.g. supernova explosion) : expending plasma flow with a speed VR much larger than the sound speed in the interstellar medium (ISM). Shocked medium

• Shock wave:

Shocked medium

Insterstellar medium

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2009-2010

Shocks hydrodynamics

Interstellar medium

• The shock moves at a speed VS which depends on VR and the specific heat of both media. • For an ionized ISM:

85

86

2009-2010

• Onde de choc :

Shocked medium F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

Shocks hydrodynamics

Interstellar medium

In the shock frame Shocked medium VS / R

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2009-2010

Shocks hydrodynamics

• The shock intensity is characterized by the compression factor:

87

Interstellar medium VS

• In the shock frame, the upstream (non-shocked) medium flows toward the shock at a speed VS and the downstream (shocked) medium flows away with a speed reduced by the compression factor (mass flow conservation) :

88

2009-2010

• Onde de choc (e.g. explosion de supernova)

Shocked medium F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

A win win process !

Interstellar medium VS

downstream

Shocked medium

Interstellar medium VS

VS / R F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2009-2010

Acceleration diffusive par onde de choc

upstream

• Magnetic wave generation: – Downstream : by the shock (compression, turbulence, hydro and MHD instabilities, shear, etc.) – Upstream : by the accelareted cosmic rays themselves ! o ‘isotropization’ of the distribution (in the local frame)

In the shock frame • At each shock crossing, one way or the other, the particle hits a "magnetic wall" with a relative speed: o only head-on collisions…

89

90

The CR standard model

• Acceleration from interaction with fields – E field: e.g. induced by spinning magnets such as neutron

2009-2010

2009-2010

Summary on acceleration

• Supernovae and GCRs

– B field: inhomogeneous moving fields – MHD waves

– Estimated efficiency of shock acceleration :… F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

stars (pulsars) or black holes…

• Analytic calculations, simulations and observations show that diffusive shock acceleration works !

• Acceleration by reference frame transformation – Fermi stochastic acceleration (2nd order) – Diffusive shock acceleration diffusive (1st order)

• Power law are natural

– Fermi type process ('E v E, Pech) – Universal power law for non relativistic shocks (N(E) v E-2)

• Cosmic rays up to the knee

– CR power = power of SNe, Emax § 1014 eV hardly 1015 eV

– Power required to sustain CR energy density: ………… – Power injected by SN power in the Galaxy: ……………………

o Enough power for Galactic CR

91

92

The CR standard model 2009-2010

position

visible

6 cm (VLA)

Si K

IRAS

(XMM)

Fe K

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2009-2010

Tycho, 11 November 1572...

Km (VLA)

X (ROSAT)

• Proposed acceleration site, isolated SNR – Supernovæ : ejection of many solar masses of nuclear matter at supersonic speeds (~ 10 000 km/s) following massive star explosion. – Formation of a quasi spherical expending shock wave that wipes out the interstellar medium (ionized beforehand by the progenitor's radiation). – Total kinetic energy injected by the explosion: 1051 erg (= 1044 J). – Roughly 3 SNe per century witin our Galaxy, which corresponds to an averaged power of 1042 erg/s (1035W) – SNR are observed at all wavelength. – SNe explosion is essential to the Galaxy chemical content: heavy elements enrichment.

93

94

Finite size

– Source composition source ~ interstellar medium + modifications (ionizability, volatility, Z/A effects, 22Ne...) – Source spectrum: E-2 power law – Maximal energy reached: Emax ~ 1014 eV

• Energetics : – – – – –

Measured flux / speed = CR density CR density u mean energy = energy density Energy density u confinement volume = total energy Total energy / confinement time = necessary injected power PCR ~ 1.5u1041 erg/s

• Required efficiency ~ 10-30%...

95

Finite size of confinement magnetic field Larmor radius

Hillas diagram

log(|B|/Gauss)

2009-2010

• Shock waves in isolated SNe (SNR)

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2009-2010

The CR standard model

SNR

log(R/km)

96

The knee 2009-2010

Genou

Hard to explain a single power law above the knee. Need probably another component up to 1017eV See for ex : M. Hillas J. Phys.: Conf. Ser. 47 (2006 ) 168 (http://iopscience.iop.org/1742 6596/47/1/021)

Cheville

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2009-2010

CR SM with Emax  Z

• Is the knee simply the consequence of an energy cut-off of accelerators (SNR) or is it due to : - a propagation effect ? - different CR sources ? - a physics threshold at ~ELHC ?

B The CR SM implies a change in composition at the knee energy. cream

Data: • Proton4 sat • Akeno •Yakutsk • Haverah Pk

SNR energy limit : Emax ~ Z • 1015 eV 97

98

2009-2010

Explaining the ankle is much easier...

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

• Two components with two different slopes...

DIFFUSE GAMMA-RAY SOURCE

E (cheville)

• For exemple, galactic and extragalactic... 99

2009-2010

Hadronic production of gamma-rays

p-rays production processes:

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

– Electro-Magnetic processes : • Bremsstrahlung • Synchrotron radiation

J B†

e-

Source function

[TK Gaisser]

Fluxes on earth (neutrals)

J F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2009-2010

VHE gamma-rays sources

J

• Inverse Compton – Hadroniques processes:

[Gaisser,Halsen,Berezinsky,Stanev]

101

102

2009-2010

VHE Gamma sources

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

J

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2009-2010

Bremsstrahlung

103

• Productions of J > 10 MeV • Synchrotron radiation negligible.

J B†

eJ

• Inverse Compton

104

The target… 2009-2010 F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2009-2010

Tracking back the CR flux elsewhere in the Galaxy • Knowing the target column density from radio 21cm measurements and fitting the diffuse J flux, one can map the density, spectrum and composition of CR elsewhere in the galaxy. •

30-100 MeV

100-300 MeV

300-1000 MeV

S.D.Hunter et al, ApJ 481 (1997) 205



M.Pohl and J.A.Esposito



S.LeBohec et al,

ApJ, 507 (1998) 327 >1000 MeV

astro-ph/0003265 •

Strong, A.W., Moskalenko, I.V., ApJ 509:213-228, 1998

105

106

2009-2010

Tracking back the CR flux elsewhere in the Galaxy

• Other constrains

• Refined predictions based on detailed simulations

(magnetic model of the galaxy, CR diffusion equation, matter density maps…):

– Protons local spectrum and flux (altered > standard shocks) Confinement is easier

173

174

Top-Down 2009-2010

2009-2010

BOTTOM -UP Galactic pulsars Extragalactiques radio galaxy lobes

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

Gamma Ray Bursts Protons, Iron, Nuclei? Spectral index Explaining isotropy is not trivial Angular coincidences to be confirmed… 175

Topological defects, superheavy relics with M ~ GUT scale that is ~1016GeV • Energy À 1020 eV easy! (QCD fragmentation spectrum QCD with M~1024 eV!!) • Explaining the flux is not trivial !! (natural density scale is ~ H0-1) • Composition of UHECR is the clue (photons + neutrinos) !!

176

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2009-2010

Top-Down Signatures

2009-2010

Low energy gamma-rays constraint

Composition: Flux de Photons,Neutrinos À Protons The current (AUGER) limits on UHE neutrino and photon flux already kill most Top-Down models !! Spectrum: QCD-like fragmentation spectrum quite "hard" Cosmography: Halo distribution!! (SHRs & TDs locales ) or ~ Homogeneous

177

178

2014

2009-2010

and even more exotic stuff… Strongly interacting neutrinos

F.Montanet Experimental Astroparticle Physics ESIPAP

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

Lorentz Invariance Violation Special Relativity Violation etc…

NEUTRINOS SOURCES

The overall neutrino spectrum

180

M2R PSA -- 2008-2009

M2R PSA -- 2008-2009

179

Natural Neutrinos Sources Solar Neutrinos

soleil

Terre

p  p o D  e  Qe

Détecteur souterain ~108 km

François Montanet LPSC/UJF

François Montanet LPSC/UJF

Atmospheric Neutrinos

Also, Super Novae (SN1987A), Neutrinos de beam-dump cosmiques (AGN, GRB…), Neutrinos cosmogéniques, Neutrinos reliques du BigBang…

M2R PSA -- 2008-2009

182

François Montanet LPSC/UJF

François Montanet LPSC/UJF

M2R PSA -- 2008-2009

181

183

184

SNe neutrinos

M2R PSA -- 2008-2009

M2R PSA -- 2008-2009

Solar Standard Model

Normal stellar situation: the fusion thermal and radiation pressure compensate the gravitation pressure.

François Montanet LPSC/UJF

François Montanet LPSC/UJF

During the collapse, the gravitation binding energy (~ 3u1053 erg) cannot escape in an other form than neutrinoantineutrino pairs. 99% of the energy in the form of neutrinos 1% in the form of kinetic energy 0.01% of the energy in optical photons. The neutron star is opaque to neutrinos. The diffusion and escape time is of the order of 1 second.

 E Q e !| 11 MeV  E Q e !| 16 MeV

185

M2R PSA -- 2008-2009

M2R PSA -- 2008-2009

SN1987a

186

SuperNovae Remnants Crab Vela Crab Soleil

Vela

Tycho Cas A Cygnus Loop

Kepler

SN1006

François Montanet LPSC/UJF

François Montanet LPSC/UJF

Tycho Cas A

Cygnus

SN1006

SN1006 SN1680 (CasA)

SN1054 (Crab)

Crab Pulsar

Cosmic Accelerators: ( Hillas Plot) B

M87

EaZBL*

188

M2R PSA -- 2008-2009

M2R PSA -- 2008-2009

187

Z: Charge of particle B: Magnetic field L: Size of object AGN *: LorentzM87, factor of shock wave

« Accelerator »

Centurus A François Montanet LPSC/UJF

François Montanet LPSC/UJF

3C47

Target p

J Q

p,er

GRB (artist)

Photons absorbés par les poussières et le rayonnement Nonperturbed !!! Neutrinos directs

Vela SNR

L M2R PSA -- 2008-2009

Cosmic Neutrino Beam

189

Charged CR smeared by B fields

Fermi acceleration and UHE neutrino production Shock wave proton of nuclei acceleration:

François Montanet LPSC/UJF

p/N interact with the ISM and produce pionic cascades

p/A + p/J o SSr  p p JJ QP P p QPQe e

COSMOLOGICAL SOURCES

191

190

• Produced by the propagation of UHECR in the IGM. • Main assumptions: – – – –

III Ͳ Interactionpɶ

Ͳ Backgrounds(CMB,CIB…)

Ͳ CrossSection

Ͳ Spectralindex+Emax

Ͳ Photonspectrum evol vsz

ͲSecondaries energy distribution

Ͳ Sourcedensity +cosmological evol.

CMB ʆ ȴ+

II Ͳ Fondsdiffus

Ͳ Composition atthesource

François Montanet LPSC/UJF

François Montanet LPSC/UJF

• This flux can be predicted in a relatively robust manner.

p +ɶCMB

Fluxattendus I Ͳ Sources

UHECR are protons or nuclei (makes a big difference!) The sources distribution is following a given redshift distribution Spectra are known and flux are generic The target density is well known (CMB photons)

p

Cosmogenic or "GZK" Neutrinos

M2R PSA -- 2008-2009

M2R PSA -- 2008-2009

"Cosmogenic" or "GZK" Neutrinos

ͲEnergy Distribution

Many uncertainties

CMBvery well known. CIBandother bg less known

Very well known

I + II + III Î Ȟ—:Ȟe:ȞIJ = 2:1:0 (source)

n+ʋ+

oscillations

ђ+ +ʆђ e+ +ʆђ +ʆe

1:1:1 (earth)

194

Flux of "GZK" neutrinos

M2R PSA -- 2008-2009

M2R PSA -- 2008-2009

193

Influence of • Composition of UHECR,

Dark Matter as a source of neutrinos Annihilation in Halo, Earth, Sun or Galactic Centre Signature Halo

• Sources distribution and evolution.

Positron, Antiproton Gamma rays

BESS, CAPRICE, AMS, .. HESS, GLAST, MILAGRO,….

F F o Z J JJ

Compositionmixte François Montanet LPSC/UJF

François Montanet LPSC/UJF

Pur proton

Experiment

Earth, Sun, GC Neutrino

SuperK, Baksan,IMB, MACRO AMANDA, ANTARES, Baikal, …

F F o WW, ff W, f o QX Gravitational capture of F in earth, sun galactic centre

WIMP looses energy by elastic interaction Ÿ if v < vescape, capture capture + annihilation balance

F

Ÿ constant density in core 196 50

M2R PSA -- 2008-2009

195

Dark Matter as a source of neutrinos F DM halo

François Montanet LPSC/UJF

Propagation

FF F F F FF

UF ~ 0.3 Gev/ cm3, vF~300 km/sec

Collisions o vF< vesc Gravitational capture in the center gravitational wells Ÿ Indirect search for Neutralinos by neutrino telescopes 197

Dimensions of the Milky Way

Produce them

• From top to bottom (decay...) • From bottom to top (acceleration)

Preserve them

• Energy losses (Synch., IC, S, pairs...) • Destruction (photo-dissociation…) • Escape probabilities

Propagate them

Detect them

• Propagation in ISM and IGM (mag fields: deflection, confinement...) • Re-acceleration • Balloons, satellites… • Air showers… – Cherenkov telescopes – Surface & Fluorescence Detectors

1 pc ~ 3 l.y. ~ 3 £ 1016 m

2014

• Thermal speeds  RCUHE (few 1020 eV)

F.Montanet Experimental Astroparticle Physics ESIPAP

F.Montanet Experimental Astroparticle Physics ESIPAP

2014

The general problematic

Halo 0.1-0.01p cm-3 8 kpc 4-12 kpc

Disk 300 pc gas, sources, ~1p cm-3

sun

bulge

B ~3—G

15 kpc

50 kpc

199

200

Propagation des RC dans la Galaxie : Leaky box model 2014

• Diffuse gamma-ray emission from galactic CR interaction with matter (mostly molecular H clouds).

F.Montanet Experimental Astroparticle Physics ESIPAP

F.Montanet Experimental Astroparticle Physics ESIPAP

2014

A thick target

201

202

2010-2011

Grammage

• Propagation in the interstellar medium

Energy loss: ionization, Coulombian interactions

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2010-2011

Cosmic rays transport

Propagated spectra ionization losses only (thick target)

• Column density or quantity of matter traversed by the CR from is production site to earth (in kg ·mí2 or g ·cm-2) • Given the diffusion time (known from cosmic clocks see below) the measurement of grammage allows the understanding of the diffusion extension zone. • The ratio secondary/primary allows estimating the grammage traversed:

203

204

Secondary / Primary ratio 2010-2011

The grammage depend on the parent nucleus: • (Li+Be+B) / (C+N+O) Ÿ mean grammage of 50 kg.mí2 • (Sc+Ti+V)/Fe Ÿ mean grammage of 20 kg.mí2 and Primary/Secondary ratio (thus grammage) depends on the energy as well:

• A complete CR transport model – The secondary to primary ratio can be expressed by:

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2010-2011

Secondary / Primary ratio

205

206

Cosmic clocks and halo size 2010-2011

Measure isotopic ratio

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2010-2011

Cosmic clocks

Estimate escape time. 207

• Radioactive decay:

Measure isotopic ratios

Estimate escape time

+ H o 9Be (stable secondary nucleus) + H o 10Be (unstable secondary nucleus: ~ 4u108 years) • The ratio 10Be / 9Be depends on secondaries history (and on cross sections).



12C 12C

– Link between quantity of matter traversed and diffusion time.

208

Confinement and escape 2010-2011

+Ho (stable secondary nucleus) + H o 10Be (unstable secondary nucleus: ~ 4u108 years) • The ratio 10Be / 9Be depends on secondaries history (and on cross sections).



12C

9Be

12C

– Link between quantity of matter traversed and diffusion time.

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2010-2011

Cosmic clocks and halo size

• Diffusion parameters adjustments (excursion in the less dense galactic halo) Ÿ determination of the CR confinement zone 54Mn/Mn 36Cl/Cl 26Al/27Al 10Be/9Be

0

5

10

15

20

kpc 209

210

2010-2011

The « leaky box » model

• CR can wander out of the disk in a magnetized halo of hot ionized matter

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2010-2011

Disk & Halo

• NGC 4631 galaxy and its halo of hot ionized matter emitting X-rays as seen by Chandra

• Diffusive approximation...

flux in enegy space (losses + acceleration)

injection, "in flight" production

diffusion

destruction, decay, escape

• Re-acceleration...

211

212

CR confinement 2010-2011

• Escape out of the confinement zone – Confinement (escape probability) decrease with E

Without escape (thick target)

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2010-2011

Slope of the propagated spectrum

Wconf v E-0.7 o E-2.7 spectrum

• Escape depends on E – Diffusion on magnetic inhomogeneities – When E N, rg N thus interaction with inhomogeneities with larger wavelengths.

• D(E) is an increasing function

• Kolmogorov spectrum – … clearly not enough but… – ISM perturbations ? Diffusion-convection, MHD ?

• Determination of

a posteriori :

213

214

CR anisotropy 2010-2011

Secondary/Primary ratio

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2010-2011

The CREAM results

Compatible with propagation models with escape terms in E0.6 215

• Very weak observed anisotropy (first angular harmonic)

– Constraints on D(E) – In the diffusive approximation, one can compute G taking into account the position of the solar system wrt the Galaxy.

• Observed anisotropy incompatible with sources distributed like SNR and a diffusion term D(E)v E0.6 below 10 GeV... … but compatible with D(E) v E1/3 !

216

Full transport equation 2010-2011

2010-2011

Sources Distribution

sources (SNR, nuclear reactions…)

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

diffusion

convection

diffusive reacceleration E-loss

convection Radioactive decay

fragmentation

ȥ(r,p,t) – momentum density o Source distribution is more uniforme...

2010-2011

ISM X,ǁ e

Chandra

B

P diffusion He energy losses CNO reacceleration + convection e etc. +› _ P

Halo disk

BESS

gas ›0

gas p

IC

ISRF

LiBeB

He solar CNO modulation ACE

GLAST Flux

Particle acceleration Photon emission

+-

20 GeV/n

AMS

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

Sources: SNRs, Shocks, Superbubbles

218

Summary for galactic CR

Propagation in the ISM et observational contrains

2010-2011 F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

217

Everything works fairly well… – Propagation in the ISM:

• Complete theory with energy losses, diffusion, in flight nuclear reactions, CR escape, reacceleration, … impressive results.

– – – –

(see for example GLAPROP model, A. Strong et I Moskalenko)

Secondaries / Primaries Cosmic clock Anisotropies Theoretical expectations (~ Kolmogorov spectrum : D(E) v E0.36)

...except naïve acceleration models!

– Observation + models require source spectra  E-2.35 (high energy spectral shape and IIaires/Iaires ratio "best fit) – "Softer" (steeper) than standard spectra for strong shocks f (E-2)

It is possible to find an agreement between diffusive propagation models and standard SNR models, – Cut off energy, knee, non-linearities, p-ray emission by SNR, source distribution...

Many parameters need many observational constrains.

220

219

2010-2011

A conciliation exemple CR SM & diffusion M.Hillas J. Phys.,

Conf. Ser. 47 (2006) 168 (http://iopscience.iop.org/1742-6596/47/1/021)

Based on former work by Bell et Lucek on amplification and selfproduction of Bfield perturbations by CR.

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

SN 1a SN II

GAMMA-RAY PROPAGATION

A A He p

Fe

EG

B B

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2010-2011

221

Photon atténuation at VHE by intergalactic photon backgrounds

Effective J horizon 100Mpc at 1TeV 1Mpc at 10 TeV and above

UHECR PROPAGATION

223

The CR spectrum 2010-2011

2010-2011

UHECR propagation

Galactic CR :

Galactic ? SuperNovae? Superbubles? reacceleration? Heavier nuclei o protons ?

E-3 E-2.7

3 essential effects : • Energy losses: modify the spectral shape

Supernovae, MIS, but no source pointing!

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

E-2.7

Extragalactic ? source ?, composition ?

• Particle confinement (escape depending on energy) • Spatial and angular diffusion due to magnetic fields. (regular or fluctuating, inhomogeneities, waves)

UHECR, terra incognita

AUGER

226

225

Energy losses 2010-2011

2010-2011

An extrem case of relativistic kinematics !!!

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

p+Jcmbo '+ o p + S0 on+S+

' resonance

multi-pions

• • •

GZK "cutoff" Greisen ‘66, Zatsepin & Kuzmin ‘66 227

228

2010-2011

UHE Extragalactic Particles

2010-2011

Consequences on spectral shape Protons:

p+Jcmbo ' op/n+S

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

Photo Pion production on CMB photons

Fe: photo-dissociation on IR bg and CMB Photons: paires e+e on radio bg Protons energy vs. distance (J. Cronin) Energy loss on CMB

Fluctuation dues to multiple scattering

Protons energy vs. distance (J. Cronin) Energy loss on CMB

229

230

Coupure GZK

2010-2011

2010-2011

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

UHE Extragalactic Particles

231

• Greisen-Zatsepin-Kuz’min

• Distance to the source limited to 100 Mpc for 1020 eV protons, and 15 Mpc for 3u1020 ! • Actually even worse if particles are deflected (Deffectif > Dlinear) 232

GZK like suppression (Auger) 2014

2010-2011

Spectrum above GZK cutoff Depends among other things: ) From the injection spectrum ) From the sources cosmological distribution (evolution) F.Montanet Experimental Astroparticle Physics ESIPAP

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

) From IG magnetic fields n E3 Flux

Eo

Blasi, Olinto. ‘01 233

234

2014

2014

F.Montanet Experimental Astroparticle Physics ESIPAP

F.Montanet Experimental Astroparticle Physics ESIPAP

GZK like suppression (Auger)

MAGNETIC DEFLECTIONS

235

236

Propagation the Galaxy 2010-2011

• 1018 eV proton in a B = 3 —G field Ÿ rg ~ 370 pc

disk

halo

300 pc halo RC : 3 to 7 kpc •

2u1019

eV proton in B = 3 —G Ÿ rg ~ 7 kpc

• 5u1020 eV Fe in B = 3 —G

• Galactic magnetic field model

§ R Larmor ¨ ¨ kpc © F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2010-2011

Galactic magnetic deflection

Ÿ rg ~ 7 kpc

· ¸ ¸ ¹

§ 1 · § E · § ZB · ¸¸ ¨ ¸˜¨ ¸ ˜ ¨¨ © Z ¹ © 1EeV ¹ © PG ¹ p

100 EeV O Fe

3PG

8kpc



Possible galactic confinement of 1020eV nuclei



1018eV

neutrons decay length EJcW | 10kpc Ÿ galactic distances

Tracking back direction of proton events >4 1019 out of the Galaxy, two different field hypothesis [Stanev97]

237

238

Pointing at UHECR sources? 2010-2011

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2010-2011

Pointing at UHECR sources?

O’Neil, Olinto, Blasi ‘01

O’Neil, Olinto, Blasi ‘01 239

240

Diffusion in the Universe 2010-2011

2010-2011

Mapping IG fields with UHECR?

• If they are protons, arrival direction § source direction

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

o Proton astronomy !

• Correlations between arrival directions and sources: UHECR distribution is NOT ISOTROPIC!!! (AUGER 2007) – Confirmation of a GZK limited horizon – Few sources in the GZK sphere o anisotropie – Astrophysical origine is confirmed!

• Arrival time delay – – If eruptive or transient sources (GRBs, TDs), the must overlap in time (otherwise E(t)!) – Multiplets of events from same direction observed but no significant ordering in E or deviation. o Correlation must be confirmed! (statistics...)

242

243

2010-2011

Matter distribution in the GZK sphere

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

Observables & Observations

244

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Experimental Astroparticle Physics ESIPAP

2014

2010-2011

How to characterize the primary particle?

PRIMARY RC DETECTION (ON TOP OF ATMOSPHERE) 246

247

Two important radiations for particle identification

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2010-2011

2010-2011

How to characterize the primary particle?

248

249

Cherenkov imaging (RICH) and charge measurement 2010-2011

2010-2011

Cherenkov Radiation

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

RICH principle ĺ

AMS 2 Prototype ĺ

250

251

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2010-2011

Transition radiation (cont)

2010-2011

Transition radiation

252

253

AMS-2 On Board ISS

Satellite born experiment : AMS-1, PAMELA, AMS-2

2014

2010-2011

Charge particles and cosmic antimatter

• First satellite based magnetic spectrometer en satellite : AMS-1 on the space shuttle « Discovery » (1998)

F.Montanet Experimental Astroparticle Physics ESIPAP

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

• First satellite based experiments on cosmic rays : HEAO-C, Ariel-VI (1979) ĺ relatively low energy (up to a few 10 GeV/nucleon)

Mission Number: STS-134 Launch: May 19, 2011 Orbiter: Endeavour

• New generation of experiments: PAMELA (since Juin 2006) AMS-2 (since May 2011) on the International Space Station ĺ data up to ~TeV and precise measurements of flux of cosmic antiparticles 254

255

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

Spectrometer Acceptance

Spectrometer

AMS-1 (June 1998)

PAMELA (June 2006 - …)

AMS-2 (May 2011 - …)

0.82 m2 sr

20.5 cm2 sr

0.82 m2 sr

Aimant permanent Nd Fe B

Aimant permanent Nd Fe B

Aimant permanent Nd Fe B

0.48 T = 0,10 T m2 6 plans (Si)

0.15 T BL2 = 0,15 T m2 6 plans (Si)

0.15 T = 0,15 T m2 6 plans (Si)

BL2

BL2

Time of Flight

yes

yes

yes

Cherenkov

Aerogel (threshold)

-

Ring Imaging Ch.

Transition rad

-

yes

yes

Neutrons det.

-

3He

-

Anticoincidence

-

yes

yes

-

16,3 X0 W+22 plans (Si)

16 X0 Pb+fibers sc.

Calorimeter

2010-2011

PAMELA

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2010-2011

Space spectrometers

256

257

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

Control of instrumental effects ?

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2010-2011

e+

background: mainly spallation of CR on IS gas.

2010-2011

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2010-2011

2010-2011

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

DM signal ?!?! F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2010-2011

2010-2011

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

Ionisation in the calorimeter o Z identification of nuclei F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2010-2011

2010-2011

PAMELA PAMELA

Antimatter ?

M.Cirelli, seminar @LPSC December 2009

262

264

Antimatter ?

258 259

PAMELA PAMELA

Antimatter ?

260 261

M.Cirelli, seminar @LPSC December 2009

263

Background "measurements"

Baltz, Edsjo 1999 Moskalenko, Strong 1998 Delahaye et al., 0809.5268 P.Salati, Cargese 2007

265

2010-2011

Moriond 2-9 March 2013

A nearby Pulsar ?

A precision, multipurpose spectrometer up to TeV TRD Identify e+, e-

TOF

Z, E

1

Magnet 㼼Z

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

Silicon Tracker

Z, P 2

B.Bertucci

5-6 7-8

Tracker

3-4

RICH

Z, E

ECAL

E of e+, e-, Ȗ

9

Z, P are measured independently by the Tracker, RICH, TOF and ECAL 267

266

Full coverage of anti-matter & CR physics

2014

AMS charge identification

e–

P

He,Li,Be,..Fe

J

e+







P, D



He, C

F.Montanet Experimental Astroparticle Physics ESIPAP

TRD TOF Tracker

RICH ECAL

268

Physics example

AMS Nuclei Measurement on ISS 2010-2011

H He

Be

B C

N

O F

Ne

Na

Mg Al

Si P

S Cl Ar K Ca Sc Ti

V

Cr

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

Li

Antimatter

Charged particles (1 TeV ĺ few 100 TeV)

Entries 108 107 106 105 104 103 102 10 1

Dark matter

Cosmic Ray Physics

Fe Ni

Balloon Experiments • Very high altitude flights: 40 km v 3,9 g cm-2 • Load: up to § 270 kg and 10 m3 • Many former flights: JACEE (USA + Japon) ; RUNJOB (Russie + Japon) etc. using emulsion chambers ! • Recently: Ultra Long Duration Balloon (ULDB) Flights

60-100 jours (NASA, Antarctic) ĺ the CREAM experiment (Cosmic Ray Energetics and Mass)

271

CREAM 2004 2010-2011

2010-2011

CREAM Ultra Long Duration Balloon NASA project to develop - Flight of < 100 days - Payload y 2 tons - Alt 33000 meter - CREAM n° 1 : 2006 (2005/LDB)

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

ULDB Proj., Adv.Sp.Res33,1633(2004) :

McMurdo (Antarctique) 272

CREAM I: 16/12/04 - **/01/05 >39 days flight World Record

21/01/05

16/12/04

24/01/05 ! 273

1 décembre 2009 au 8 janvier 2010

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2010-2011

CREAM 2009

2010-2011

CREAM 2008

274

275

CREAM experiment

CREAM

2010-2011

• Objectives : CR composition and spectrum of the different elements (from TeV to ~500 TeV) • Acceptance : 2,2 m2 sr • Energy measurement:

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2010-2011

Cosmic Ray Energetics and Mass

– Calorimeter 20 X0 (W + scint. fibres) – Transition Radiation Detector

• Identification :

– TRD – Cherenkov detector "CHERCAM" similar to AMS-2

• At TeV energies, the interaction of CR in the calorimeter induces many backscattered secondary particles that one have to veto. • The "CHERCAM" cherenkov solves this problem by measuring accurately the time of any through going particle as well as achieving a precise charge measurement (± 0,3 e)

276

277

Contexte expérimental 2010-2011

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2010-2011

CREAM experiment

Inclusive CR flux

AMS01 02

Ground experiments

KNEE

Kascade etc.. CREAM

HIRES AUGER TA Etc..

ACCESS ?

279

278

2010-2011

CR SM with Emax  Z

•Is the knee due to: - Acceleration mechanisms or to changes : - in propagation? - in CR sources? - in interaction properties (threshold) ?

cream

B A diffuse SNR shock acceleration with Emax implies a change in composition around ~1014 eV.

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2010-2011

The knee

Genou

Hint of change in composition ?

CREAM

Cheville

SNR energy limit: Emax ~ Z • 1014 eV 280

281

2014

Secondary/Primary ratio

F.Montanet Experimental Astroparticle Physics ESIPAP

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2010-2011

Galactic CR propagation with CREAM

AIR SHOWERS DEVELOPMENT MODELS

Compatible with propagation models with escape terme in E0.6 283

282

2010-2011

To measure the inclusive spectrum at the knee, one nees a 10m² exposed during 10 years ! The realistic experimental limits are: • For satellites ~ 1m² (sr) during ~few years • For balloons, ~ 10m²(sr) during nu30 jours o E < 1015 eV

It's time we face reality my friends, we should keep to ground detectors !

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2010-2011

A peek above the knee !

Extensive Air Showers: the phenomenon and the observables • The large shower of secondary particles induced by the interaction of a primary CR in the upper atmosphere can be detected on an extensive area ĺ large effective surfaces to fight against low flux at E • 1000 TeV • Atmosphere used as an calorimeter (~1000 g cm-2 at sea level for a vertical shower) • From the observables, one aims at measuring: – Incident direction; – Primary energy E0 ; and if possible, get access to the nature of the primary particle : – distinction ǁ-hadron ; – distinction light nuclei (p, He) - heavy nuclei(Fe)

Shower development

2010-2011

p or nucleus + N or O nucleus ĺ hadronic cascade

285

• Hadronic component: nuclear fragments, nucleons, mesons ›, K, etc. • Electromagnetic component: induced by ›0ĺǁǁ and other radiative decays • Muonic component: induced by decays of ›± and K± • Atmospheric Neutrinos issued from s ›± K± and ñ decays

« des giboulées d'électrons » Rayon cosmiques par Pierre Auger 1941 PUF

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2010-2011

284

Primary electrons and p induce an electromagnetic shower consisting mainly of secondary electrons, positrons and p (muon poor)

A 1019 eV shower 1011 particles at sea level Photons + electrons (99%), muons (1%)

286

287

Temporal aspects 2010-2011

2010-2011

Ground observables • Secondary particles reaching ground – – – –

Residual Hadrons (nuclear fragments): not numerous (>11 xint). e± : the more numerous at shower development maximum. ñ : most reach ground and may penetrate deep underground. p secondaries : may be detected at ground level via e+e- pair conversion (e.g. Cherenkov effect in water).

• This front is more or less curved depending on the shower development stage. F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

As a function of the primary energy and of the altitude:

• A light speed moving "pancake" of charged particles.

• Photons (visible, UV) emitted along the trajectories of charged particles (Cherenkov effect, N2 fluorescence) during the shower development ĺ Calorimetric 3D information ! • Radio emission by the shower particles in the geomagnetic field or by the induced plasma. 288

• The front thickness (~ 10 m) induce as signal time spread in each detector. • The arrival time differences at ground on the sampling detectors ĺ arrival direction (¨DŽ § 1°). • The Cherenkov light front (forward emission) is thinner (~m) than the charged particle front ĺ well defined timing. 289

2010-2011

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2010-2011

Time structure

EM shower Longitudinal development • Mean number of particles (e+,e- or p ) crossing a plan " to the shower axis after a slant depth t (in units of X0). • As long as the ionization losses are small wrt radiation losses (bremsstrahlung and pair prod) the number of particle increase exponentially. • When the mean energy per particle decreases below the critical energy (Ec ~ 84,2 MeV in air), the number of particle decreases (shower extinction phase). • At the transition between the two phases, (maximal development), the mean energy is equal to the critical energy.

291

290

EM cascades (Rossi & Greisen) 2010-2011

2010-2011

Radiative processes (E > Ec) J

Bremsstrahlung :

J

Pairs production :

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

Ec e-

e+

Ec

Critical energy: below this energy, ionization losses dominate.

292

293

2010-2011

Longitudinal development

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

• Cascade consisting of only one type of particles having an interaction length O. • At each interaction, 2 particles of same type are emitted sharing the energy exactly in 2.

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2010-2011

Simplified development model (Heitler)

O X=

1

2

3

4

5

N=

2

4

8

16

32

E=

1/2

1/4

1/8

1/16

1/32

Ec =E0/32 294

295

2010-2011

2010-2011

Simplified development model (Heitler) 35

Longitudinal development: Approximation "A" (B. Rossi, K. Greisen)

30

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

25

20

15

10

5

0

0

O

1

2

3

4

5

X=

1

2

3

4

5

N=

2

4

8

16

32

E=

1/2

1/4

1/8

1/16

1/32

10

Ec =E0/32 296

297

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2010-2011

Approximation A (suite)

2010-2011

Approximation A (cont)

299

EM showers : some orders of magnitude

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2010-2011

Taking into account ionisation energy losses: the "age" parameter

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2010-2011

298

Primary J energy E0

Thickness traverse tmax X0 (g cm-2)

Altitude (m)

Ne(tmax)

30 GeV

216

12000

50

1 TeV

345

8000

1200

1000 TeV

600

4400

0,9 × 106

1019 eV

936

1200

7,4 × 109

1020 eV

1021

0

7,0 × 1010

300

301

1020 eV log ( N e )

1019 eV F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

EM cascades (Rossi & Greisen) 2010-2011

2010-2011

EM shower average profiles

1000 TeV

1 TeV 30 GeV

Parametrisation (Greisen) and Monte Carlo (EGS4) photons 1TeV, Ec=10MeV

Épaisseur traversée (g cm-2)

Shower size i.e. number of electrons at ground level as an energy estimator

303

2010-2011

Cascades EM (Rossi & Greisen)

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2010-2011

302

304

Shower to shower fluctuations 10 showers at 1014eV compared to the average of 100 showers. 305

2010-2011 F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2014 F.Montanet Experimental Astroparticle Physics ESIPAP

GAMMA-RAY (EM) INDUCED SHOWERS

10 Ȗ 300 GeV

10 protons 300 GeV Simulations de M. de Naurois

Electromagnetic showers (e± or ǁ primary)

307

Ȗ induced shower 300 GeV

Dominating phenomena

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

• Multiple scattering (small angular deflexions) of e±

proton induced shower 300 GeV

km

Roughly symmetric around the axis

• Radiation processes:

– Bremsstrahlung of e± – Pair production (>MeV) pairs e+e-

km

2010-2011

2010-2011

306

In the coulombian field of nuclei

• Energy losses by e±

– par ionisation – excitation des atomes

Large transverse momentum

Small transverse dispersion (multiple scattering)

Muon component (from mesons decays)

(almost) no muons … (unless E0>1 PeV) Essentially e+ e- and Ȗ secondaries

m

m

A hadronic shower does contain EM sub-showers

308

309

2014

• Showers charged particles emit light: – Cherenkov light : very collimated along the shower axis (Cherenkov angle at 1 Atm. § 1°) threshold depending on the altitude : at ground 22 MeV for e± et 4.5 GeV for ñ (20 photons per m per ǀ§1 charged particle at 1 atm) Essentially used for gamma-ray astronomy

– Nitrogen fluorescence: isotropic emission (~ 4 photons per electron per m) Essentially used at UHE • 1018eV.

Lecture on Imaging & Cherenkov Detectors

• This light detected by ground telescopes gives us very rich information on the 3D development of the showers. It give a quasi calorimetric reliable measurement of the energy. • … but optical detectors can only work during moonless clear sky nights (§ 10% duty cycle).

F.Montanet Experimental Astroparticle Physics ESIPAP

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2010-2011

Optical photon emission by showers

HADRONIC SHOWERS MODELS AND DETECTION

310

311

2010-2011 F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2010-2011

Hadronic showers

312

"Hadronic" showers (proton ou noyau primaire) • Great complexity implying the use of numerical simulations: – Many length scales : nucleon interaction length, pion interaction length, EM radiation length, atmosphere density height scale… – Superposition of a nuclear cascade, a pionic cascade and an electromagnetic cascade (the later from ›0 decay ǁ). – Large fluctuations in the multiplicity of secondaries.

• Bur simulations are subject to many uncertainties: – p+N or N+N interactions: sensitivity to nuclear models. – Energy range unexplored by accelerators and colliders : sensitivity to nucleon structure functions (parton distributions) and fragmentation functions extrapolated far from the measured regions. – The inelasticity and in general the very forward diffractive physics is not well measured in fixe target experiment (even worse at colliders).

Still, the main behaviour observed on EM showers remains valid.

313

Hadronic showers 2010-2011

• The main observables are the same:

– Number of electrons, gamma but also muons at ground and their lateral distributions. – Longitudinal profil and maximal dev. altitude (optical detectors). – Number of muons at ground level and lateral distribution of muons.

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2010-2011

From EM to Hadronic showers

• Feynman scaling is rather well verified in the fragmentation: it plays an role analogue to that of Bethe-Bloch formulae for EM showers (absence of mass/energy scale). • Simulations have allowed to establish empirical formulae inspired by EM showers useful to to quite estimates (T.K. Gaisser, A.M. Hillas)

314

315

Development of Hadronic vs EM showers 2010-2011

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2010-2011

Interaction and radiation lengths in atmosphere

316

317

Longitudinal develpopment 2010-2011

Xmax and energie :

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

Gaiser Hillas formulae :

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2010-2011

Gaisser longitudinal Parametrisation

Nuclei :

318

319

Primary identification 2010-2011

Shower to shower fluctuations largely due to the depth of the first interaction.

Fe

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2010-2011

Structure in space

p

320

• Requires a good statistics and a good knowledge of the initial energy, the shower angle (+ systematic corrections because of atmospheric attenuation)

(CORSIKA)

321

2010-2011

e+ + e- lateral density

2010-2011

Radial extention

Molière radius (~1/4 of the radiation length) :

4

Nishimura, Kamata, Greisen : multiple scattering + transverse momentum

Depth [g/cm²] shower[km] age height

200 F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

5

100 0.2 20

0.4 300 15 400 0.6

3

500 0.8 10 600

1

2

0

1 700

-1

800 5 1.2

-2

900 1.4 1000 0

-3 0

200

400500600

800 1000 1200 1400 1500 1600 1800 2000 Radius [m]

326

327

Lateral evolution 2010-2011

Shower Density Lateral Distribution (simulation) Detector Signal Density

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

(equiv.muons/m2)

1

1020 eV

1015 eV 10-6

Core Distance (km)

3km

328

2010-2011

Time structure

E.Nerling (thesis) :

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2010-2011

Particle energy distribution Rossi Greisen :

Aires 1014eV Excess e at low energy (ionization)

e

e

330

331

UHECR detection

F.Montanet Experimental Astroparticle Physics ESIPAP

F.Montanet Cours Astroparticules M2R PSA & AMD Grenoble

2014

2010-2011

Time structure

Lecture on Imaging & Cherenkov Detectors

ns 332

333

F.Montanet Experimental Astroparticle Physics ESIPAP

2014

Neutrino Physics with astroparticules

Lecture on Imaging & Cherenkov Detectors

334

Suggest Documents