x %, X

4 downloads 0 Views 6MB Size Report
Mission Research Corp. ..... Figure E.l: SKY4 - CBSKY4 comparison for 10.0 deg around the LMC 169 .... A separate reference manual provides detailed information .... are Usted as well as numbers like the total FOV size in square degrees.
AFRL-VS-TR-2001-1579

VALIDATION REPORT FOR THE CELESTIAL BACKGROUND SCENE DESCRIPTOR (CBSD) STELLAR POINT SOURCES MODEL CBSKY4 Dr. Paul V. Noah Ms. Meg Noah Mission Research Corporation 589 West HoOis Street, Suite 201 Nashua, NH 03062-1323 February 2001 Scientific Report No. 9

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AIR FORCE RESEARCH LABORATORY Space Vehicles Directorate 29 Randolph Rd AIR FORCE MATERIEL COMMAND Hanscom AFB, MA 01731-3010

20031216 111

This technical rqjort has been reviewed and is approved for publication

/Signed/ STEPHAN PRICE Contract Manager

/Signed/ ROBERT BELAND Branch Chief

This document has been reviewed by the ESC Public Affairs Office and has been approved for release to the National Technical Information Service (NTIS). Qualified requestors may obtain additional copies from the Defense Technical Information Center (DTIC) All others should apply to the NTIS If your address has changed, if you wish to be removed from the mailing list, or if the addressee is no longer employed by your organization, please notify AFRL/VSIM, 29 Randolph Rd., Hanscom AFB, MA 01731-3010. This will assist us in maintaining a current mailing list Do not return copies of this report unless contractual obligations or notices on a specific document require that it be returned

Form Approved OMB NO. 0704.0188

REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information ic estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing flie coliection of information. Send comments regarding this burden estimate or any other aspect of the collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 1. AGENCY USE ONLY (Leave Blank)

2. REPORT DATE February 2001

REPORT TYPE AND DATES COVERED Scientific Report No. 9 1 Apr 00 - 29 Dec 00

4. TITLE AND SUBTITLE

5. FUNDING NUMBERS

Validation Report for the Celestial Background Scene Descriptor (CBSD) Stellar Point Source Model CBSKY4

Contract- F19628-93-C-0028 PE: 63215C PR: S321 TA: GG WU: AA

6. AUTHOR(s) Paul Noah Meg Noah Mission Research Corp. - Nashua, NH 03062 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT NUMBER

Mission Research Corpotation 589 West HoUis Street, Suite 201 Nashua, NH 03062-1323 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air Force Research Laboratory 29 Randolph Road Hanscom AFB, MA 01731 Contract Manager Dr. Steven Price

10. SPONSORING/MONITORING AGENCY REPORT NUMBER AFRL/VS-TR-2001-1579

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

12b. DISTRIBUTION CODE

Approved for Public Release; distribution unlimited

ABSTRACT (Maximum 200 words) This report provides detailed infomiation on the evolving improvements and verification of the AFRL/HRS Celestial Background Scene Descriptor (CBSD)Stellar Point Sources code (CBSKY4). The CBSKY4 model produces infrared signatures of point sources, most of which are part of our galaxy. CBSKY4 is currently in use by the MDA as a component of the SSGM simulatton package and as part of the AFRL PLEXUS R3V2 atmospheric effects modeling suite.

15. NUMBER OF PAGES

14 SUBJECT TERMS

199

Celestial, Infrared, Visible, Modeling, Stars

16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPOFIT

UNCLASSIFIED

18. SECURITY CLASSIFICATION OF THIS PAGE

19. SECURITY CLASSIFICATION OF ABSTRACT

UNCLASSIFIED

UNCLASSIFIED

20. LIMITATION OF ABSTRACT None Standard Form 298 (Rev. 2-89) Prescribed t>y ANSI Std. 239-18 298-102

Table of Contents BACKGROUND MODEL DESCRIPTION 2.1 2.2 2.3 3.

1 2 2 2

OPERATIONAL OVERVIEW INTENDED USE LIMITATIONS OF CBSKY4

APPROACH TO MODEL VALIDATION. 3.1 3.2 3.3

4.

3 3 4

PHILOSOPHY VALIDATION BASIS SCOPE OF OUR EFFORT

MODEL VALIDATION RESULTS. 4.1

SKY4 DESCRIPTION 4.1.1 Cohen's Spectral Classes 4.7.2 Log(N) vs. Log(S) Plots 4.1.3 Magnitude Defined » 4.1.4 TheUseofLog(N)vs. Log(S) Plots 4.1.5 Validation Results For Select Regions. 4.1.6 Validation Results For Zoom-In On Selected Confused Regions 4.1.7 Galactic North and South Poles 4.1.8 LMC/SMC Con/used Region 4.1.9 Validation Results for Horizontal Slices 4.2 IMPLEMENTATION OF STAR CATALOGS 4.2.1 Validation of Catalog Use 4.2.2 Finding Stars From Other Catalog Listings 4.2.3 Catalog Synthesis with Statistical Stars. 4.3 PREDICTIVE POSITIONAL VALIDATION 4.3.1 Different Projections 4.3.2 Convolution Applied 4.4 PREDICTIVE FLUX VALIDATION 4.4.1 Flux ofArcturus In Different Bands 4.4.2 12 jum Flux of Arcturus In Different Units 4.4.3 User-Defined Flux at Magnitude Zero 4.4.4 Convolution Applied 4.4.5 Comparison To Measured Spectra 4.5 CODE OPERATION VALIDATION 4.6 ACCEPTANCE REGRESSION VALIDATION 4.7 DOCUMENTATION VALIDATION 9*

5 6 7 7 8 9 11 13 14 16 17 17 18 20 21 21 21 21 21 22 22 23 26 27 27 27

dL/JVliVLAJK M •••^•••••••••••••••••■•••■••••••••••••••••••••••••••■••••••••••••••••■•■•■•■•••••••••••••••••••••••••■••••••••••••••••••••••••••••••••••••■•••••••••••^ /

REFERENCES

28

J\MrMrM!di.^M^M.J^ £%, ••••••••••••«•••••••••••••••••••••••••••••••••••••••••••••••••••••••■••••••••••••••••••••••••••••••••*••*••••••••••••••••••••••••••••••■*••••••••■•••••••••• «7

APPENDIX C

87

APPENDIX C.l APPENDIX C.2

87 99

111

APPENDIX C.3 APPENDIX C.4 APPENDIX C.5 APPENDIX C.6

Ill 123 135 147

APPENDIXD

159

APPENDIX D.l APPENDIX D.2

159 164

APPENDIX E

167

APPENDIX E.1 APPENDIX E.2

167 176

APPENDIX F

184

APPENDIX G

185

IV

List of Figures Figure 1: SKY4 - CBSKY4 comparison for 1 = 10.42, b = 0.13

10

Figure 2: SKY4 - CBSKY4 comparison forl = 0.0, b = 0.0

12

Figure 3: SKY4 - CBSKY4 comparison for 1 = 28.0, b = 3.0

13

Figure 4: SKY4 - CBSKY4 comparison for 1 = 0.0, b = 90.0

14

Figure 5: SKY4 - CBSKY4 comparison for 1 = 303.0, b = -44.0 Figure 6: SKY4-CBSKY4 comparison for 1= 0.0, b= 5.0 Figure 7: SKY4 - CBSKY4 comparison for 1 = 0.0, b = -85.0

15 16 16

Figure 8: Ttie region around Orion and the CBSKY4 catalog of stars Figure 9: Log(N) vs. Log(S) Plots Show No Skewing with Inclusion of Catalog Stars

17 20

Figure 10: Convolution filter results for Arcturus 25 Figure 11 Spectra of Arcturus, from the IRAS catalog (top), the spectrum of a stellar type 20 star (bottom) 26 Figure 12: Measure spectra of Arcturus from NASA archive Figure A.1: SKY4 - CBSKY4 comparison for 1 = 0.08, b = 0.02

27 31

Figure A.2: SKY4 - CBSKY4 comparison for 1 = 19.93, b = 0.46

34

Figure A.3: SKY4 - CBSKY4 comparison for 1 = 10.42, b = 0.13 Figure A.4: SKY4 - CBSKY4 comparison for 1 = 29.26, b = 0.08 Figure A.5: SKY4 - CBSKY4 comparison for 1 = 39.96, b = 0.07

37 40 43

Figure A.6: SKY4 - CBSKY4 comparison for 1 = 59.70, b = 0.09 Figure A.7: SKY4 - CBSKY4 comparison for I = 49.68, b = 0.16

46 49

Figure B.l: SKY4 - CBSKY4 comparison for 1 = 80.0, b = 0.0 at 25/im Figure B.2: SKY4 - CBSKY4 comparison for 1 = 107.5, b = 1.25 at 12/im

53 56

Figure B.3: SKY4 - CBSKY4 comparison for I = 1.0, b = -3.9 at Band B Figure B.4: SKY4 - CBSKY4 comparison for 1 = 1.0, b = -3.9 at Band V

59 62

Figure B.5: SKY4 - CBSKY4 comparison for 1 = 342.0, b = -70.0 at 12^m

65

Figure B.6: SKY4 - CBSKY4 comparison for 1 =194.0, b = -60.0 at 12/[im Figure B.7: SKY4 - CBSKY4 comparison for 1 =73.0, b = 55.0 at 12/im Figure B.8: SKY4 - CBSKY4 comparison for 1 =223.0, b = -52.0 at Ufim

68 71 74

Figure B.9: SKY4 - CBSKY4 comparison for 1 =345.0, b = -43.5 at 12/im

77

Figure B.IO: SKY4 - CBSKY4 comparison for 1 =333.0, b = -13.0 at 12Aim Figure B.ll: SKY4 - CBSKY4 comparison for. 1 =5.5, b = -10.0 at 12/im

80 83

Figure B.12: SKY4 - CBSKY4 comparison for 1 =83.5, b = -9.0 at 12/im Figure C.l: SKY4 - CBSKY4 comparison for 10.0 deg around 1 =3.0, b = 0.0

86 89

Figure C.2: SKY4 - CBSKY4 comparison for 5.56 deg around 1 =3.0, b = 0.0

90

Figure C.3: SKY4 - CBSKY4 comparison for 1.0 deg around 1 =3.0, b = 0.0 Figure C.4: SKY4 - CBSKY4 comparison for 0.556 deg around 1 =3.0, b = 0.0 Figure C.5: SKY4 - CBSKY4 comparison for 0.1 deg around 1 =3.0, b = 0.0

91 92 93

Figure C.6: SKY4 - CBSKY4 comparison for 0.0556 deg around 1 =3.0, b = 0.0

94

Figure C.7: SKY4 - CBSKY4 comparison for 0.01 deg around 1 =3.0, b = 0.0 Figure C.8: SKY4 - CBSKY4 comparison for 0.00556 deg around 1 =3.0, b = 0.0

95 96

Figure C.9: SKY4 - CBSKY4 comparison for 0.001 deg around 1 =3.0, b = 0.0

97

Figure CIO: SKY4 - CBSKY4 comparison for 0.000556 deg around 1 =3.0, b = 0.0

98

Figure C.ll: SKY4 - CBSKY4 comparison for 10.0 deg around 1 =0.0, b = 0.0

101

Figure C.12: SKY4 - CBSKY4 comparison for 5.56 deg around 1 =0.0, b = 0.0 Figure C.13: SKY4 - CBSKY4 comparison for 1.0 deg around 1 =0.0, b = 0.0 Figure C.14: SKY4 - CBSKY4 comparison for 0.556 deg around 1 =0.0, b = 0.0 Figure C.15: SKY4 - CBSKY4 comparison for 0.1 deg around I =0.0, b = 0.0 Figure C.16: SKY4 - CBSKY4 comparison for 0.0556 deg around 1 =0.0, b = 0.0 Figure C.17: SKY4 - CBSKY4 comparison for 0.01 deg around 1 =0.0, b = 0.0 Figure C.18: SKY4 - CBSKY4 comparison for 0.00556 deg around I =0.0, b = 0.0

102 103 104 105 106 107 108

Figure C.19: SKY4 - CBSKY4 comparison for 0.001 deg around 1 =0.0, b = 0.0 Figure C.20: SKY4 - CBSKY4 comparison for 0.000556 deg around 1 =0.0, b = 0.0 Figure C.21: SKY4 - CBSKY4 comparison for 10.0 deg around 1 = 3.0, b = 0.0 Figure C.22: SKY4 - CBSKY4 comparison for 5.56 deg around 1 = 3.0, b = 0.0 Figure C.23: SKY4 - CBSKY4 comparison for 1.0 deg around 1 = 3.0, b = 0.0 Figure C.24: SKY4 - CBSKY4 comparison for 0.556 deg around I = 3.0, b = 0.0 Figure C.25: SKY4 - CBSKY4 comparison for 0.1 deg around 1 = 3.0, b = 0.0

109 110 113 114 115 116 117

Figure C.26: SKY4 - CBSKY4 comparison for 0.0556 deg around 1 = 3.0, b = 0.0

118

Figure C.27: SKY4 - CBSKY4 comparison for 0.01 deg around 1 = 3.0, b = 0.0

119

Figure C.28: SKY4 - CBSKY4 comparison for 0.00556 deg around 1 = 3.0, b = 0.0

120

Figure C.29: SKY4 - CBSKY4 comparison for 0.001 deg around 1 = 3.0, b = 0.0 Figure C.30: SKY4 - CBSKY4 comparison for 0.000556 deg around 1 = 3.0, b = 0.0

121 122

Figure C.31: SKY4 - CBSKY4 comparison for 10.0 deg around 1 = -3.0, b = 28.0 Figure C.32: SKY4 - CBSKY4 comparison for 5.56 deg around 1 = -3.0, b = 28.0

125 126

VI

Figure C.33: SKY4 - CBSKY4 comparison for 1.0 deg around 1 = -3.0, b = 28.0

127

Figure C.34: SKY4 - CBSKY4 comparison for 0.556 deg around 1 = -3.0, b = 28.0

128

Figure C.35: SKY4 - CBSKY4 comparison for 0.1 deg around 1 = -3.0, b = 28.0

129

Figure C.36: SKY4 - CBSKY4 comparison for 0.0556 deg around 1 = -3.0, b = 28.0

130

Figure C.37: SKY4 - CBSKY4 comparison for 0.01 deg around 1 = -3.0, b = 28.0

131

Figure C.38: SKY4 - CBSKY4 comparison for 0.00556 deg around 1 = -3.0, b = 28.0

132

Figure C.39: SKY4 - CBSKY4 comparison for 0.001 deg around 1 = -3.0, b = 28.0

133

Figure C.40: SKY4 - CBSKY4 comparison for 0.000556 deg around 1 = -3.0, b = 28.0

134

Figure C.41: SKY4 - CBSKY4 comparison for 10.0 deg around 1 = 0.0, b = 28.0 Figure C.42: SKY4 - CBSKY4 comparison for 5.56 deg around 1 = 0.0, b = 28.0

137 138

Figure C.43: SKY4 - CBSKY4 comparison for 1.0 deg around 1 = 0.0, b = 28.0

139

Figure C.44: SKY4 - CBSKY4 comparison for 0.556 deg around 1 = 0.0, b = 28.0

140

Figure C.45: SKY4 - CBSKY4 comparison for 0.1 deg around 1 = 0.0, b = 28.0 Figure C.46: SKY4 - CBSKY4 comparison for 0.0556 deg around 1 = 0.0, b = 28.0 Figure C.47: SKY4 - CBSKY4 comparison for 0.01 deg around 1 = 0.0, b = 28.0

141 142 143

Figure C.48: SKY4 - CBSKY4 comparison for 0,00556 deg around 1 = 0.0, b = 28.0 Figure C.49: SKY4 - CBSKY4 comparison for 0.001 deg around 1 = 0.0, b = 28.0

144 145

Figure C.50: SKY4 - CBSKY4 comparison for 0.000556 deg around 1 = 0.0, b = 28.0 Figure C.51: SKY4 - CBSKY4 comparison for 10.0 deg around 1 = 3.0, b = 28.0

146 149

Figure C.52: SKY4 - CBSKY4 comparison for 5.56 deg around 1 = 3.0, b = 28.0

150

Figure C.53: SKY4 - CBSKY4 comparison for 1.0 deg around 1 = 3.0, b = 28.0

151

Figure C.54: SKY4 - CBSKY4 comparison for 0.556 deg around 1 = 3.0, b = 28.0 Figure C.55: SKY4 - CBSKY4 comparison for 0.1 deg around 1 = 3.0, b = 28.0

152 153

Figure C.56: SKY4 - CBSKY4 comparison for 0.0556 deg around 1 = 3.0, b = 28.0

154

Figure C.57: SKY4 - CBSKY4 comparison for 0.01 deg around 1 = 3.0, b = 28.0 Figure C.58: SKY4 - CBSKY4 comparison for 0.00556 deg around 1 = 3.0, b = 28.0

155 156

Figure C.59: SKY4 - CBSKY4 comparison for 0.001 deg around 1 = 3.0, b = 28.0 Figure C.60: SKY4 - CBSKY4 comparison for 0.000556 deg around 1 = 3.0, b = 28.0 Figure D.l: SKY4 - CBSKY4 comparison for 10.0 deg around 1 =90.0, b =0.0

157 158 161

Figure D.2: SKY4 - CBSKY4 comparison for 5.0 deg around 1 =90.0, b =0.0

162

Figure D.3: SKY4 - CBSKY4 comparison for 1.0 deg around 1 =90.0, b =0.0

163

Figure D.4: At the largest IFOV size, there were only fractional stars at the Galactic South Pole. 166 Vll

Figure E.l: SKY4 - CBSKY4 comparison for 10.0 deg around the LMC Figure E.2: SKY4 - CBSKY4 comparison for 5.56 deg around the LMC Figure E.3: SKY4 - CBSKY4 comparison for 1.0 deg around the LMC Figure E.4: SKY4 - CBSKY4 comparison for 0.556 deg around the LMC Figure E.5: SKY4 - CBSKY4 comparison for 0.1 deg around the LMC Figure E.6: SKY4 - CBSKY4 comparison for 0.0556 deg around the LMC

169 170 171 172 173 174

Figure E.7: SKY4 - CBSKY4 comparison for 0.01 deg around the LMC

175

Figure E.8: SKY4 - CBSKY4 comparison for 10.0 deg around the SMC

178

Figure E.9: SKY4 - CBSKY4 comparison for 5.56 deg around the SMC

179

Figure E.10: SKY4 - CBSKY4 comparison for 1.0 deg around the SMC

180

Figure E.11: SKY4 - CBSKY4 comparison for 0.556 deg around the SMC

181

Figure E.12: SKY4 - CBSKY4 comparison for 0.1 deg around the SMC

182

Figure E.13: SKY4 - CBSKY4 comparison for 0.0556 deg around the SMC

183

vm

List of Tables Table 1: Some Stellar Parallax Measurements

3

Table 2: Cohen Spectral Classification Types

6

Table 3: Comparison of Apparent and Absolute Magnitudes

8

Table 4: May 1993 Test Regions (K and 12nm band)

9

Table 5: February 1994 Test Regions

11

Table 6: Confused-Region Centers for Zoom-In

11

Table 7: Galactic Poles For Zoom-In

13

Table 8: Confused Regions for Zoom-In

14

Table 9: Finding the first few IRAS stars:

17

Table 10: CBSKY4 Catalog Stars Corresponding to NASA Archive of IR Spectra Stars (RA / DecinJ2000) 19 Table 11: Star Counts for Options of Statistical and Real Stars

20

Table 12: CBSKY4 Flux Values for Arcturus: Run for different output spectral band options.. 21 Table 13: CBSKY4 12nm Flux Values for Arcturus run for different output unit options Table 14: Formulas for Conversion between Units (Using W/cm^ as Reference)

22 22

Table 15: CBSKY4 Parameters Used for Testing the Convolution Routine Table 16: CBSKY4 Output Shows Convolution Preserves Total Radiance Table A.l: Interactive inputs used for the SKY4 runs for 1 = 0.08, b = 0.02 Table A.2: CBSKY4 Inputs for 1 = 0.08, b = 0.02

23 24 29 30

Table A.3: Interactive inputs used for the SKY4 runs for 1 = 19.93, b = 0.46

32

Table A.4: CBSKY4 Inputs for 1 = 19.93, b = 0.46 Table A.5: Interactive inputs used for the SKY4 runs for 1 = 10.42, b = 0.13 Table A.6: CBSKY4 Inputs for 1 = 10.42, b = 0.13

33 35 36

Table A.7: Interactive inputs used for the SKY4 runs for 1 = 29.26, b = 0.08

38

Table A.8: CBSKY4 Inputs for 1 = 29.26, b = 0.08

39

Table A.9: Interactive inputs used for the SKY4 runs for 1 = 39.96, b = 0.07 Table A.IO: CBSKY4 Inputs for 1 = 39.96, b = 0.07 Table A.ll: Interactive inputs used for the SKY4 runs for 1 = 59.70, b = 0.09 Table A. 12: CBSKY4 Inputs for 1 = 59.70, b = 0.09

41 42 44 45

Table A. 13: Interactive inputs used for the SKY4 runs for 1 = 49.68, b = 0.16 Table A.14: CBSKY4 Inputs for 1 = 49.68, b = 0.16n

47 48

IX

Table B.l: Interactive inputs used for the SKY4 runs for 1 = 80.0, b = 0.0 at 25pim Table B.2: CBSKY4 Inputs for 1 = 80.0, b = 0.0 at 25/im Table B.3: Interactive inputs used for the SKY4 runs for 1 = 107.5, b = 1.25 at 12/im Table B.4: CBSKY4 Inputs for 1 = 107.5, b = 1.25at llfim

51 52 54 55

Table B.5: Interactive inputs used for the SKY4 runs for 1 = 1.0, b = -3.9 at Band B Table B.6: CBSKY4 Inputs for 1 = 1.0, b = -3.9 at Band B

57 58

Table B.7: Interactive inputs used for the SKY4 runs for 1 = 1.0, b = -3.9 at Band V Table B.8: CBSKY4 Inputs for 1 = 1.0, b = -3.9 at Band V

60 61

Table B.9: Interactive inputs used for the SKY4 runs for 1 = 342.0, b = -70.0 at 12/im

63

Table B.IO: CBSKY4 Inputs for 1 = 342.0, b = -70.0 at 12/im

64

Table B.U: Interactive inputs used for the SKY4 runs for 1 =194.0, b = -60.0 at 12/«n

66

Table B.12: CBSKY4 Inputs for 1 =194.0, b = -60.0 at 12/im

67

Table B.13: Interactive inputs used for the SKY4 runs for 1 =73.0, b = 55.0 at 12/xm Table B.14: CBSKY4 Inputs for 1 =73.0, b = 55.0 at 12/im Table B.15: Interactive inputs used for the SKY4 runs for 1 =223.0, b = -52.0 at 12/im Table B.16: CBSKY4 Inputs for 1 =223.0, b = -52.0 at 12/im Table B.17: Interactive inputs used for the SKY4 runs for. 1 =345.0, b = -43.5 at 12/im Table B.18: CBSKY4 Inputs for 1 =345.0, b = -43.5 at 12/tm Table B.19: Interactive inputs used for the SKY4 runs for 1 =333.0, b = -13.0 at 12/im Table B.20: CBSKY4 Inputs for 1 =333.0, b = -13.0 at 12/im Table B.21: Interactive inputs used for the SKY4 runs for 1 =5.5, b = -10.0 at 12/im Table B.22: CBSKY4 Inputs for. 1 =5.5, b = -10.0 at 12/tm Table B.23: Interactive inputs used for the SKY4 runs for 1 =83.5, b = -9.0 at 12/im

69 70 72 73 75 76 78 79 81 82 84

Table B.24: CBSKY4 Inputs for 1 =83.5, b = -9.0 at 12/im Table C.l: Interactive inputs used for the SKY4 runs around 1 =3.0, b = 0.0 Table C.2: Region Definitions for 10 deg around 1 =3.0, b = 0.0 Table C.3: CBSKY4 Inputs around 1 =3.0, b = 0.0 Table C.4: Interactive inputs used for the SKY4 runs around 1 =0.0, b = 0.0 Table C.5: Region Definitions around 1 =0.0, b = 0.0 Table C.6: CBSKY4 Inputs around 1 =0.0, b = 0.0 Table C.7: Interactive inputs used for the SKY4 runs around 1 =3.0, b = 0.0 Table C.8: Region Definitions around 1 =3.0, b = 0.0 Table C.9: CBSKY4 Inputs for 1 =3.0, b = 0.0 X

85 87 88 88 99 100 100 Ill 112 112

Table CIO: Interactive inputs used for the SKY4 runs around 1 =-3.0, b = 28.0

123

Table C.U: Region Definitions around 1 =-3.0, b = 28.0

124

Table C.12: CBSKY4 Inputs around 1 =-3.0, b = 28.0

124

Table C.13: Interactive inputs used for the SKY4 runs around 1 =0.0, b = 28.0

135

Table C.14: Region Definitions around 1 =0.0, b = 28.0

136

Table C.15: CBSKY4 Inputs around 1 =0.0, b = 28.0

136

Table C.16: Interactive inputs used for the SKY4 runs around 1 =3.0, b = 28.0 Table C.17: Region Definitions around 1 = 3.0, b = 28.0

147 148

Table C.18: CBSKY4 Inputs around 1 = 3.0, b = 28.0

148

Table D.l: Interactive inputs used for the SKY4 runs around 1 =90.0, b =0.0

159

Table D.2: Region Definitions around 1 =90.0, b =0.0

160

Table D.3: CBSKY4 Inputs around 1 =90.0, b =0.0

160

Table D.4: Interactive inputs used for the SKY4 runs around 1 =90.0, b =0.0 Table D.5: Region Definitions around 1 =90.0, b =0.0

164 165

Table D.6: CBSKY4 Inputs around 1 =90.0, b =0.0

165

Table E.l: Interactive inputs used for the SKY4 runs around the LMC

167

Table E.2: Region Definitions around the LMC

168

Table E.3: CBSKY4 Inputs around the LMC

168

Table E.4: Interactive inputs used for the SKY4 runs around the SMC

176

Table E.5: Region Definitions around the SMC

177

Table E.6: CBSKY4 Inputs around the SMC

177

Table F.l: Input File for the Orion Image (Visible Band, Catalog Output)

184

Table G.l: Input File for the Arcturus Image (User-Specified Band, Catalog Output)

185

XI

1.

Background

Since its inception, the primary goal of the Celestial Background Scene Descriptor (CBSD) development is the generation of high-fidelity, physics-based celestial simulations to support National Missile Defense research and sensor design engineering requirements. This report focuses on one component of CBSD, the CBSKY4 model. CBSKY4 models emissions from stellar point sources. CBSKY4 is thus one of the key NMD tools for modeling one of the most important sources of clutter in the celestial background.

2.

Model Description

sponsor:

Air Force Research Laboratory

Author:

Paul Noah Mission Research Corporation One Tara Blvd., Suite 302 Nashua, NH 03062 Phone: 603-891-0070 x 208 FAX: 603-891-0088 email: [email protected]

Othe MDA ogram sers.

MSX, PLEXUS, SSGM, SBIRS (High) These programs collectively have several hundred users in the defense research industry.

Current Version:

CBSKY4 vl.09 28 July 2000

The CBSKY4 module generates images of the point sources in the sky. For CBSD, point source models are represented by the statistical distribution of 87 spectral classes of stars for arbitrary bandpasses between 2 and 40 microns, and for the pre-defined bandpass filters of B, V, J, H, K, and at 1400 A, at 1565 A, at 1660 A, at 2.4 microns, at 12 microns, and at 25 microns. The CBSKY4 module achieves this by using a combination of in-band flux estimates of bright stars listed in star catalogs and statistically generated stars based on expected stellar densities for each location in the sky. Options to include dense star counts in regions of Giant Molecular Clouds and to exclude star counts in dark regions are also provided. The CBSD input scenario definition is flexible to suit a wide variety of applications. Any number of celestial coordinate systems can be selected to define the stare point. The specifications of a hypothetical sensor are also flexible, providing the option of using wavelength dependent filter response functions, the specification of array size, pixel size, and the appUcation of different functions to simulate the MTF of the sensor's optics. The output image and statistics can be customized to fit a variety of applications. The images and tabulated statistical output generated from CBSKY4 have user-defined map projections, coordinate systems, and flux units.

2.1

Operational Overview

The CBSD suite currently represents celestial phenomenology through independent software components that produce infrared signatures of one class of celestial objects. Each model computes the position and flux of celestial objects handled by that model. The components do not interact, and output is synthesized into a description of the real world celestial background through simple co-adding of fluxes with simple masking. The CBAMP model produces infrared signatures of the asteroids, moon, and planets. The CBZODY model produces infrared signatures arising from zodiacal dust in the solar system. The CBSKY4 model produces infrared signatures of point sources, most of which are part of our galaxy. Other components in progress produce signatures of HE regions, galaxies, planetary nebulae, celestial cirrus, and other extended sources that can have significant infrared flux values. The CBSKY4 code runs as a stand-alone command line program, with no graphical interface. All user inputs are defined in text files. The CBSKY4.inp file is a Windows INI file format with sets of initialization variables, their values, and optional comment fields, all grouped under section headings for easy editing. There are no command line options or variables. The program uses input text files and binary data files built by the user when installing the software. These are described in the CBSD user manual. A separate reference manual provides detailed information about each input variable. Alternatively, the CBSKY4 may be accessed through the CBSD control component that drives all the models and synthesizes tfieir outputs into a single representation of the celestial background as a whole.

2.2

Intended Use

The CBSKY4 model is intended to be used by sensor systems designers who have a requirement to simulate the celestial background. It is not specifically optimized for hardware-in-the-loop operations and that has not been a goal of CBSD; however, it could be used for this type of simulation. It has been included in other large simulation platforms such as SSGM. The code could be parallelized and it could be run remotely in a distributed environment.

2.3

Limitations of CBSKY4

Known limitations of the CBSKY4 component are: • Binary stars and other star systems are not modeled. • Molecular clouds are only modeled for the 12 |im band and the 25 jrni band. • Variable stars (light curve variations in time) are not modeled. • Polarization is not modeled. • Multi-spectral star maps of statistical stars are limited. • The star catalogs represent only visible and IRAS; however, the software is extensible. There are plans to include the 2MASS star catalog. • Galactic extinction is included to the degree that it is known. • Proper Motion of stars is not modeled.



Stellar parallax of nearby stars is not included. Table 1 lists parallaxes of some nearby stars. Table 1: Some Stellar Parallax Measurements Star ParaUax Distance (parsecs) a Centauri

0".75

1.3

Barnard

0".55

1.8

61 Cygni

0".29

3.5

To date, no AFRL requirements have been compromised by these limitations, as they are irrelevant to the current domain of intended users of the CBSKY4 model. An exception to this is the goal to have multi-spectral star maps of the statistical stars. The algorithm for that enhancement is currently under development.

3.

Approach to Model Validation

3.1

Philosophy

Ideally, model validation involves the comparison of model predictions with real measurement data. Validation can be achieved by determining the degree to which a model is an accurate representation of the real world from the perspective of the intended application of the model. Experts establish what aspects of the real world are relevant, and which measurements are to be taken as truth. The selection of which measurement data to use as the basis of truth is somewhat subjective. To validate the model, its operation must be analyzed to verify that its overall design is realistic and representative of the key aspects of its intended use. This is somewhat subjective. Then the model is subjected to regression tests to quantify the degree to which its predictions match truth. The degree of match can be quantified using statistics. Model validation also involves verifying that the documented installation procedure runs as expected and that the software is flexible, extensible, maintainable, and easily ported to new systems.

3.2

Validation Basis

The following benchmarks were used to validate CBSKY4: • Martin Cohen's SKY4 model. This model provides the real world representations of star counts as a function of magnitude or flux bin for any line-of-sight in the sky. The degree to which SKY4 matches astronomical measurements is beyond the scope of our effort. To date, SKY4 is die most complete, non-biased representation of astronomical star counts for the whole sky. SKY4 is based on numerous star censuses, surveys, and regional studies. It is a software compendium of over 30 years of star population measurements.

• The Yale Bright Star Catalog. This catalog is a real world representation of the bright visible stars, their positions, spectral types and magnitudes. The YBSC is accurate and represents a non-biased sampling of the whole visible sky. • Compilation of IRAS and MSX supplement to IRAS star catalogs. These are a real world representation of the bright infrared stars, their positions, spectral types, and magnitudes. This compilation is an accurate measurement that provides a non-biased sampling of the whole infrared sky, with the known exceptions of the galactic plane and Magellanic clouds. Thus, the validation effort reported here focuses on the level to which the CBSKY4 predictions match these benchmark astronomical catalogs. Comparison to additional astronomical measurements may be discussed only to provide greater confidence that the code is performing properly.

3.3

Scope of Our Effort

In this section, we will summarize the CBSKY4 validation efforts using the following processes: • Predictive Validation of Stellar Distributions Validating that CBSKY4 accurately predicts a stellar distribution is the heart of this document. This involves comparing model output to the "real world" or "ground truth." For CBSKY4, Martin Cohen's SKY4 model is taken as truth, and the bulk of this effort is verifying that CBSKY4 produces the same statistical distributions of stars as the SKY4 model. • Implementation of Star Catalogs Here, we validate that the star catalog data is read and interpreted, and that units of flux and position are consistently carried through the program execution for final star placement. We also validate that when star catalog data are synthesized with statistical stars, the statistical distributions of bright stars are not skewed. • Predictive Positional Validation This involves validating the different coordinate systems and map projections in which output data are represented. The CBSD suite has a 2-arcsecond positional accuracy. The geometry modules provide options of galactic, equatorial and ecliptic coordinates, reckoned to the users equinox, and projected into arrays with rectangular, gnomonic, or MoUweide projections. • Predictive Flux Validation Here, the flux values are validated for the different unit options, bandpass options, and convolution options. • Code Operation Validation Systematically, the code inputs are varied to vaUdate that the input parameters result in the expected code performance. At this level, the fidelity of the output position and fluxes are not analyzed to any great extent, rather, we want to validate that when an output file is selected, it is produced. • Acceptance Regression Validation Since CBSKY4 is a new code, we developed a suite of code inputs and outputs against

which future versions are tested to verify that modifications made to the code did not corrupt or compromise features of the present code. • Documentation Validation The CBSKY4 code is complete with a user's manual, a reference manual, and other documentation that includes example cases for users to run. We validate that the code produces the results published in these documents.

4.

Model Validation Results

The following sections outline our rationale for validation, and our qualitative and quantitative assessment of the performance of the model.

4.1

SKY4 Description

The Cohen SKY4 model is a stand-alone FORTRAN code that models the counts per magnitude bin for an arbitrary line-of-sight at any location in the sky. The code produces histograms of star counts per magnitude bin for aibitrary rectangular regions in the sky and for pre-defined bandpasses and arbitrary bandpasses. The code optionally outputs the star counts on a component or source basis for the following galactic structures: • The disk • The bulge • The spheroid • The spiral arms (including the 'local arm') • The molecular ring, and • The extragalactic sky (distant galaxies). Other code features: • The default solar displacement from the galactic plane (15 parsecs North) can be overridden. • Surface brightness (flux describing extended sources including confused regions) can be output. • Computation of total flux in an area (flux arising from all the stars in a region). • Bandpass options: B, V, J. K, 2.4 fim, 12 ^tm, 25 \im, 1565 A, 1400 A, 1660 A, userdefined 2-30 micron response filter. Star counts for giant molecular clouds (for the 12 \un band or the 25 \im band), galactic extinction, and absent regions are included in the modeling. The output of Cohen's SKY4 is a set of text files. The file SKY4.0UT is a two-column text file. The first colunm is the magnitude or flux bins. The second column is the differential or cumulative Log(N) star counts. The Sky4.Log file is also a text file. The input parameter values are Usted as well as numbers like the total FOV size in square degrees.

4.1.1 Cohen's Spectral Classes The spectral classification scheme used by CBSKY4 is based on the work of Martin Cohen (1993,1994a, 1994b). Martin Cohen defined his spectral classification system for the program SKY4. Cohen's classification system includes 87 spectra templates. There are 33 normal stellar types; 42 types of AGB star, both oxygen and carbon rich; six types of objects that are distinct from others only by their midinfrared high luminosity; and six types of exotica including T Tau stars, HE regions, planetaries, and reflection nebulae. Their relationship to standard spectral types published in other catalogs is presented in Table 2. Table 2: Cohen Spectral Classification Types Cohen Nuniber

Related Spectral Tyx>e

Cohen Nuiflber

Related Spectral Type

Cohen Nuisber

Related Spectral Type

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

B0,1 V B2,3 V B5 V 38-AC V A2-5 V FO-5 V F8 V GO-2 V G5 V G8-K3 V K4-5 V MO-1 V M2-3 V M4-5 V M late V F8-G2 III G5 III G8 III K0,1 III K2,3 III K4,5 III MO III Ml III M2 III M3 III M4 III M5 III M6 III M7 III

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

YOUNG OB A-G I--II K-M2 I-II M3-4 I-II AGB M 01 AGB H 03 AGB M 05 AGB M 07 AGB M 09 AGB M 11 AGB H 13 AGB M 15 AGB M 17 AGB H 19 AGB M 21 AGB M 23 AGB M 25 AGB C 01 AGB C 03 AGB C 05 AGB C 07 AGB C 09 AGB C 11 AGB C 13 AGB C 15 AGB C 17 AGB C 19 AGB c 21 AGB c 23

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

AGB C 25 AGB CI 01 AGB CI 03 AGB CI 05 AGB CI 07 AGB CI 09 AGB CI 11 AGB CI 13 AGB CI 15 AGB CI 17 AGB CI 19 AGB CI 21 AGB CI 23 AGB CI 25 AGB CI 27 AGB CI 29 AGB CI 31 X IE X lA X 2 X 3 X 4 X 5 PN BLUE PN RED RN BLUE RN RED H II REG T TAURl

Every category of source has its own set of absolute magnitudes in the hardwired bandpasses; its own dispersion of M12; its own individual scale height and volume density in the local solar neighborhood. Some sources may be absent from specific galactic structures. The galactic arms and ring have higher populations of high-mass stars whereas the galactic halo does not.

4.1.2 Log(N) vs. Log(S) Plots Star counting and star cataloging of positions and magnitudes of bright stars dates back to antiquity; however, only in the last few hundred years has star counting been used to infer the shape and size of our galaxy. Based primarily on star counts, this is our present view of the Milky Way galaxy: ♦ The main portion of stars form a flat disk about 30 kpc in diameter. ♦ This disk contains spiral arms. ♦ The outer portions of the center of the galaxy can be viewed as bright swarms of stars in Scorpio and Sagittarius. ♦ The disk is surrounded by a considerably less flattened halo, which contains the globular clusters and certain types of individual stars. Halo objects, sometimes referred to as high velocity stars, follow elliptical orbits about the galactic center; their relative velocities with respect to the Sun are 100-300 km/s. ♦ Our solar system is about 9 kpc from the center of the galaxy. The Sun orbits the galactic center every ~250 million years at a velocity of ~220 km/s. ♦ The galactic center is hidden from Earth's view by thick, dark interstellar clouds. ♦ The whole system is about 2- lO" solar masses.

4.1.3 Magnitude Defined CBSKY4 output magnitudes are apparent magnitudes. Apparent magnitude is the measure of how bright a star appears, and magnitude differences between stars measure the relative brightness of stars. The most negative magnitude numbers correspond to the brightest objects, while the largest positive numbers correspond to the faintest objects. Apparent magnitudes are defined for a specified spectral region. Astronomers traditionally speak of visual magnitudes, or brightness as the human eye would perceive it. Magnitudes output in CBSKY4 are reported for the spectral region defined by the user. The following formula relates magnitude and brightaess: (m2 - mi) = 2.5 log(bi/b2) (mi - ma) = -2.5 log(bi/b2) where mi and bi are the magnitude and brightoess of object 1 and ma and ba are the magnitude and brightness of object 2. To convert magnitudes to brightness values, one needs a reference object, typically reported as the flux at magnitude zero. Using, m = -2.51og(F/Fo) with Fo being the flux at magnitude zero, and F being the flux of the star, tiie magnitude, m, of the star can be computed. Conversely, the flux can be computed from the magnitude: F = Fo'10'^"

Table 3 illustrates the relative differences in apparent magnitudes of objects through familiar examples. Table 3: Comparison of Apparent and Absolute Magnitudes Object Apparent Absolute Visual Magnitude

Magnitude

The Sun

-26.8

4.8

100 Watt Bulb at 3 m

-18.7

66.3

Full Moon

-12.5

32

Venus (at brightest)

-4.4

28

Sirius (brightest star)

-1.5

1.4

Alpha Centauri (closest star)

-0.04

4.4

Andromeda Galaxy (farthest seeable object)

3.5

-21

Faintest naked eye stars

6-7

Faintest star visible from Earth telescopes

-25

The absolute magnitude is a measure of the energy produced by a star or object. It is defined as the apparent magnitude of the star if the star were located at a standard distance of 10 parsecs from the observer. Absolute magnitudes can be inferred from the spectrum of a star. Apparent magnitude values are the result of both the intrinsic brightness of the star (which is related to its internal energy production) and the effect of distance (which has nothing to do with the intrinsic structure of the star). The inverse square law of brightness can be used to infer distances to stars. The difference between the absolute magnitude, M, and the apparent magnitude, m, and is known as the distance modulus (m-M): m - M = 5.0 log CD/10.0) where D is the distance between the observer and the object in parsecs. If a star's distance cannot be computed from parallax or other means, this formula is often used.

4.1.4 The Use of Log(N) vs. Log(S) Plots The stellar density of the sky for a given sky region is defined by the Log(N) vs. Log(S) values. The Log(N) is the logarithm of the number of stars in a given magnitude bin; the Log(S) is the logarithm of the flux, or the magnitude of the stars. Further, the Log(S) values are quantized into bins of equal (apparent) magnitude. For a cumulative Log(N) vs. Log(S) plot, the x-axis is the magnitude bin and the y-axis is the logarithm of the number of stars brighter than or equal to that magnitude. The curve is the logarithm of the cumulative histogram of star counts. For a differential Log(N)/m vs. Log(S) plot, the x-axis is tiie magnitude bin and the y-axis is the number of stars per magnitude bin for that magnitude. It is not a histogram of the number of stars in that magnitude bin. For validating the stellar distributions produced by CBSKY4, Log(N) vs. Log(S) plots are created by overiaying the SKY4 results (our "truth" data) with the CBSKY4 results for a given

region and bandpass and other code parameters. The plots are visually compared to subjectively determine that CBSKY4 is reproducing SKY4 stellar densities. Unless otherwise noted, the CBSKY4 model was run for statistical stars (including molecular clouds) only with real or catalog stars not included. While many bandpasses were compared for select regions, the majority of the comparisons were run for two fiducial bands: the K and the 12\im bands.

4.1.5 Validation Resuits For Select Regions The set of validation regions discussed in this section were selected on the basis of their inclusion in Martin Cohen's publications about the SKY4 model improvements. These regions are presumed to have significant features in the bandpasses and for tfie FOV size reported. For all of these regions, two pre-defined bands were selected as the basis for all star distribution validations. The two fiducial bands chosen were the K and the 12\im bands. Regions in Cohen (1993) were first selected. A complete set of Log(N) vs. Log(S) plots is given in Appendix A. Table 4 lists these regions and parameters used for the validation. Comparison plots were generated for the K band and for the 12^m band. Table 4: May 1993 Test Regions (Kand 12pun band) Galactic Latitude Galactic Longitude Field-of-Regard [degrees] [degrees] [square degrees] 90.0

90.0

1.0

0.0

80.0

10.0

0.02

0.08

1.0

0.46

19.93

1.0

0.13

10.42

1.0

0.08

29.26

1.0

0.07

39.96

1.0

0.09

59.7

1.0

0.16

49.68

1.0

The output of the /=10.43 fr=0.13) case is shown in the Figure 1. As Log(N) approaches zero, the CBSKY4 model is confounded by fractional star counts. Unable to place a fraction of a star, when Log(N) becomes less than or equal to zero, CBSKY4 assigns a single star to a single bright magnitude bin so that the Log(N=0) magnitude is the same on both curves. The results for the K band image below show the single bright star placement. These curves show excellent agreement between CBSKY4 and SKY4 statistical stars.

CBSKY4 - SKV4 Connporiaon

C8SKY4 - SKY4 Compprtson

MognHude _ Rtpeoltnq St
\

....

?\v

1

MognHude Zoom In On e>90 dcq L*0 dtq

MggnHude Zoom In On 6«d0 deq L>-0 dn]

Figure 4: SKY4 - CBSKY4 comparison for I = 0.0, b = 90.0.

4.1.8 LMC/SMC Confused Region The CBSKY4 code was tested for its ability to reproduce statistics in stressing high star density or confused regions from very large FOV to very small FOV. The K band and I2[im band runs were made for the following central lines-of-sight (Table 7), centered in the Large Magellanic Cloud and the Small Magellanic Cloud. All were run using the Galactic coordinate system option. Figure 5 once again illustrates the excellent agreement between CBSKY4 and SKY4. All of the comparison plots are provided in the Appendix E. Table 8: Confused Regions for Zoom-In Galactic Latitude Galactic Longitude Approx. Location [degree] [degree] Large Magellanic Qoud 281 -32 -44

303

14

Small Magellanic Cloud

'

10

'

1

'

1

1

'

CBSKY4 - SKY4 Comporison ' ' 1 ' ' ' ' 1 1 ' -t—1 -1

1

1

1

i

1

10

1

1

j

1

j

1

CBSKY4 - SKYd Comporiaon 1 1 1 1 1 1 1 1 1 ......

4. . cb9l0'4 HoqnHiHh IknH .12 Ph.1 Sl» • OJHSSC d.s Proiedlon . I»EC«>I0UL»«

_

s

.

OKFtKENTlAL SJi« COUWIS

Oirrp>ENIIAL STAR COUHIS ..*y4 ■I- . cb*y4 MognHuite llmli -IS Plvri Sat . 0.M556 dcq Prdtclion . BECTWOUW BondOom- K 5

-

t

1

X

I ^%v^4. m

4-

'^''Ssi4.

440

0

,

b- -32.0000001100 ^\^ 1 - 2B1j0OO0OO00O ^\ , «.« . I>.0026r7 >, lie; \_^

-ft

.

IS

.

.

.

1 .... 10

1 i

....

.

1 0

rv ...

1 ... -5

.

b - -32J0OO0OO0OO 1. 281.000000000 *-»[> - 0.002617 n d.9

1 . .

-1

- 5

15

10

CBSKY4 - SKY"! Comporison ■•T-r-r-i—p-r-1—r.-r , t i i T | i i 1

.

,

.

.

.

^\. ^v...___^

. 1 . . . . ,^"?"T>-.., 5 0 MognKudc Zoom In On B.-32 d.g L.2ai dtl Sbc - 0.S5556 d.9 P>o|ecllon - BECTAMCIJUU) Gondl^ns « 12om

VfrinrnK. sr» ooums ..*y4 4. - cl>lVy4 Uoqnilud. LMt -12 Phcl Sbe - 0.55556 i^ P'olcct'o" ■ "ECTANCUUU)

s

-5

-

5

'1

'1

z

z

-

I

I ■

^^?>tev.^^ 0

0

^\

^\ ,

b- -

.

b-

.

1 *

S.l>

. *-«! -

1275. »| d.^ .

.

N

^1

12.5000

1

.

1

,

.

-IS.OO' b 7X :*•#'>

•hoi* 9l(y n>h< * 1.B3DSE-027 tt/CM3 oholl 9by incn • I.ODSOE-OU W/CU2 Inwoe tolol - 7.2679E-015 W/CU2 Imigc mln s O.00COC.IO0O W/CV2 Vingo ii«l« = 1.73S9E-015 W/CM2 knog* Mz* -• 3?8 V S96 plMl9 B- I2um

Figure A.2: SKY4 - CBSKY4 comparison for I = 19^3, b = 0.46.

34

Table A.5: Interactive inputs used for the SKY4 runs for I = 10.42, b = 0.13. Value Used Description y

Keep solar displacement of 15 pc N of plane.

n

Integrate over area? No, model 1 square degree.

0.1300

Center galactic latitude in degrees.

10.4200 n

Center galactic longimde in degrees. No, don't print bright magnitudes-by-components information.

n

No, don't print surface brightness data.

n

No, don't bring back colors.

y 5 and 7

Yes, create LogN vs. LogS plots. Use the pre-defined" 12UM" bandpass (value=7) and use the predefined "K" bandpass (value=5) [Two separate sky4 runs.]

y and n

y = plot cumulative LogN on the y-axis; n = plot differential LogN on the y-axis [Two separate sky4 runs.]

y

Plot Magnitudes on x-axis.

n

No, don't plot observed points.

35

Table A.6: CBSKY4 Inputs for I = 10.42, b = 0.13. [Path] architecture = DOS path=\cbsd4\dataout\cbsky4\AJ_Mayl9 93_12uin\ code_path=\cbsd4\cbsd\cbsky4 data_path=\cbsd4\cbsd\sky4data verbose = YES [cbsky4] log_output = Case_4.log map = NO real_stars = NO statistical_stars = YES clouds = YES magnitude_limit = 12 seed = 346 method = catalog = NO catalog_limit = 10 nodesfile = NODE_IAH.DAT elementsfile = ELEM_IAH.DAT extinction = YES count_statistics = YES X-axis = MAGNITUDES y-axis = Differential errmap = NO extmap = NO spectral_type = 0

[Image] Image = YES output_format = FITS image_type=4-BYTE REAL image_projection = RECTANGULAR X column_pixels = 256 y_row_pixels = 256 pixel_size = 0.0039062500000 image_center_longitude_degrees = 10.420000000 image_center_latitude = 0.130000000 units = W/CM2 [Positional] observer_altitude = 0.0 observer_geographic_latitude = 0.0 observer_geographic_longitude =0.0 Reference_Frame = B1950 coordinate_system = galactic positions = apparent Reference_system = geocentric [spectral] start_wavelength =12um end_wavelength=12iam [Time] observation_date=2 2 2000 observation_time=0 0 0.0

[convolution] convolution = NO point_spread_function = gaussian psf_half_width =1.01

36

CBSKy4 - SKY4 Compariapn

Ca5KY4 - SKV4 Camporison T—1—I

I

>

I

i CUUUlATrvE STAR COUNTS

4- - cMr,* Usqnttude limit .12

Phil si» - a.oaxt Otq Profedlort .

PEHANCUIAP

10 5 0-5 MosnHude Repeoirnci SKY4 plot of AilJ Vol 105 No 5 May 1093 p. 1S76

RepMjlIng SKY4 plot of AilJ Vol 105 Mo 5 Uoy 1993 p, 1ff76

CBSKY4 - SKY4 Comparison

SKY4 Comporiapn DIFFEPENTIAL ST« OOUMTS .- 11^4

Ue^nHude Phel Size Prelection BondPon

limit -13 - 0.00M1 - U7l«C-tl11 W/»2 >n»e tolol - 4.Wt9E-OI< W/CWZ hooe min c O.DOOOE'tOOO lr/CU2 iTmemijYs 1^455E-0I4V»/CM2 ■mogi Hz* - 7Xt IX ptnls BondPon - K

whole Iky ft^n . 1,S3;X-027 W/CM2 whole ikr mm - 1.0050I-01J W/CM? kmge lolol - &4227E-015 W/CWZ Image mln = O.DDODE'OOO W/CU2 -rgr moY » J,9383E-016 VII/CM2

trm)t «> - ne I GontJPon - I3um

Figure A.3: SKY4 - CBSKY4 comparison for I = 10.42, b = 0.13.

37

:H

prnis

Table A.7: Interactive inputs usedfor the SKY4 runs for I = 29.26, b = 0.08. Value Used Description y Keep solar displacement of 15 pc N of plane. n

Integrate over area? No, model 1 square degree.

0.0800 29.2600 n

Center galactic latitude in degrees, Center galactic longitude in degrees. No, don't print bright magnitudes-by-components information.

n

No, don't print surface brightness data.

n

No, don't bring back colors.

y 5 and 7

Yes, create LogN vs. LogS plots. Use the pre-defined "12UM" bandpass (value=7) and use the pre-defined "K" bandpass (value=5) [Two separate sky4 runs.]

y and n

y = plot cumulative LogN on the y-axis; n = plot differential Lo^ on the y-axis [Two separate sky4 runs.]

y n

Plot Magnitudes on x-axis. No, don't plot observed points.

38

Table A,8:CBSKY41^nputsfor I = 29.26, b - 0.08. [Path] architecture = DOS path=\cbsd4\dataout\cbsky4\AJ_May19 93_12um\ code_path=\cbsd4\cbsd\cbsky4 data_path=\cbsd4\cbsd\sky4data verbose = YES [cbsky4] log_output = Case_5.log map = NO real_stars = NO statistical_stars = YES clouds = YES inagnitude_limit = 12 seed = 346 method = catalog = NO catalog_limit = 10 nodesfile = NODE_IAH.DAT elementsfile = ELEM_IAH.DAT extinction = YES count_statistics = YES X-axis = MAGNITUDES y-axis = Differential errmap = NO extmap = NO spectral_type = 0

[Image] Image = YES output_format = FITS image_type=4-BYTE REAL image_projection = RECTANGULAR x_coliMrai_pixels = 256 y_row_pixels = 256 pixel_size = 0.0039062500000 image_center_longitude_degrees = 29.260000000 image_center_latitude = 0.080000000 units = W/CM2 [Positional] observer_altitude =0.0 observer_geographic_latitude = 0.0 observer_geographic_longitude =0.0 Reference_Frame = B1950 coordinate_system = galactic positions = apparent Reference_system = geocentric [spectral] start_wavelength =12um end_wavelength=12\im [Time] observation_date=2 2 2000 observation_time=0 0 0.0

[convolution] convolution = NO point_spread_function = gaussian psf_half_width = 1.01

39

eBSKY4 - SKYJ Cofnporhon

eBSKY4 - SKVJ Connpariann

UognKudi Rvpnllng SKY4 ptot of AilJ Vd 105 Ho 5 Moy 1993 p. 1S76

MagnKude Bepeoirng SKVJ plot ol *llj Vol 105 No 5 Moy 1M3 0. 1876

eBSKV4 - SKV-i Compciriaon

CBSKY4 - SKY4 Comparijon

MognHude RoPMlIng 90r4 plot of AslJ Vol 105 No 5 Uoy 1H3 p. 1B76

10 5 0-5 Mognttude Dopnllng 3CH plot 0< «sU Vol 105 No S Moy 1H3 p. 1S76

whole ahy rWn •■ 3^142E-01B W/CV3 •hole sl» rnOT - t.27ie[-OI3 W/CW: hnoe lolol - 2.mS9E-01< W/CU2 tnpor hiln = 0.O00OE-> 000 W/CM2 hioo« mov = 5,51ME-015 «/CM2 tKO^ Hze • 796 I ?H pinig eondPeta •* If

whole sUv inin - 1.S37K-023 Vr/CM3 whole •!>> >Tn. . 1.0O5O[-O1i W/CM: Vmge loiol - 4.750OE-OI3 W/CM2 kmgo miM = O.OOOOE-tOOO »/CW2 -nxige mo. = 1.1381E-015 VI/CMI knag* iJz* • 256 i ?9e plHfg BondPon "• I2um

Figure A.4: SKY4 - CBSKY4 comparison for 1 = 29.26, b = 0.08.

40

Table A.9: Interactive inputs usedfor the SKY4 runs for I = 39.96, b - 0.07. Value Used Description y

Keep solar displacement of 15 pc N of plane.

n 0.0700

Integrate over area? No, model 1 square degree. Center galactic latitude in degrees.

39.9600 n

Center galactic longitude in degrees. No, don't print bright magnitudes-by-components information.

n

No, don't print surface brightness data.

n

No, don't bring back colors.

y

Yes, create LogN vs. LogS plots.

5 and 7

Use the pre-defined" 12UM" bandpass (value=7) and use the pre-defined "K" bandpass (value=5) [Two separate sky4 runs.]

y and n

y = plot cumulative LogN on the y-axis; n = plot differential Lo^ on the y-axis [Two separate sky4 runs.]

y

Plot Magnitudes on x-axis.

n

No, don't plot observed points.

41

Table A.10: CBSKY4 Inputs for I = 39.96, b = 0.07. [Path] architecture = DOS path=\cbsd4\dataout\cbsky4\AJ_Mayl9 93_12uin\ codejath=\cbsd4\cbsd\cbsky4 data_path=\cbsd4\cbsd\sky4data verbose = YES [cbsky4] log_output = Case_6.log map = NO real_stars = NO statistical_stars = YES clouds = YES magnitude_limit =12 seed = 346 method = catalog = NO catalog_limit = 10 nodesfile = NODE_IAH.DAT elementsfile = ELEM_IAH.DAT extinction = YES count_statistics = YES X-axis = MAGNITUDES y-axis = Differential ernnap = NO extmap = NO spectral_type = 0

[Image] Image = YES output_format = FITS image_type=4-BYTE REAL image_projection = RECTANGULAR x_column_pixels = 256 y_row_pixels = 256 pixel_size = 0.0039062500000 image_center_longitude_degrees = 39.960000000 image_center_latitude = 0.070000000 units = W/CM2 [Positional] observer_altitude = 0.0 observer_geographic_latitude =0.0 observer_geographic_longitude = 0.0 Reference_Frame = B1950 coordinate_system = galactic positions = apparent Reference_system = geocentric [spectral] start_wavelength =12iam end_wavelength=12um [Time] observation_date=2 2 2000 observation_time=0 0 0.0

[convolution] convolution = NO point_spread_function = gaussian psf_half_width =1.01

42

/

i

i

1

1

1

1

eBSKV4 - SKV4 Comporiaon .

1

1

r

1

I

1

r

1

CBSKy4 - SKY4 Comporijon 1

1

1

1

i

1

1

CUMULAT^E STAR COUNTS .- *J4 4. - ebE40C0 Hr/CW! inogvmo. B l/JTOTE-OIS VI/CM2 ■mog* mo - 2M I 796 pinll BondPoia m I2l|fn

Figure A.5: SKY4 - CBSKY4 comparison for 1 = 39.96, b = 0.07.

43

Table A.11: Interactive inputs used for the SKY4 runs for I = 59.70, b = 0.09. Value Used Description y Keep solar displacement of 15 pc N of plane. n

Integrate over area? No, model 1 square degree.

0.0900

Center galactic latitude in degrees.

59.7000 n

Center galactic longitude in degrees. No, don't print bright magnitudes-by-components information.

n

No, don't print surface brightness data.

n

No, don't bring back colors.

y

Yes, create LogN vs. LogS plots.

5 and 7

Use the pre-defined " 12UM" bandpass (value=7) and use the pre-defined "K" bandpass (value=5) [Two separate sky4 runs.]

y and n

y = plot cumulative LogN on the y-axis; n = plot differential Lo^ on the y-axis [Two separate sky4 runs.]

y

Plot Magnitudes on x-axis.

n

No, don't plot observed points.

44

Table A.12: CBSKY4 Inputs for I = 59.70, b - 0.09. [Path] architecture = DOS path=\cbsd4\dataout\cbsky4\AJ_Mayl9 93_12uin\ code_path=\cbsd4\cbsd\cbsky4 data_path=\cbsd4\cbsd\sky4data verbose = YES [cbsky4] log_output = Case_7.log map = NO real_stars = NO statistical_stars = YES clouds = YES magnitude_liinit = 12 seed = 346 method = catalog = NO catalog_limit = 10 nodesfile = NODE_IAH.DAT elementsfile = ELEM_IAH.DAT extinction = YES count_statistics = YES X-axis = MAGNITUDES y-axis = Differential errmap = NO extmap = NO spectral_type = 0

[Image] Image = YES output_format = FITS image_type=4-BYTE REAL image_projection = RECTANGULAR x col\amn_pixels = 256 y_row__pixels = 256 pixel_size = 0.0039062500000 image_center_longitude_degrees = 59.700000000 image_center_latitude = 0.090000000 units = W/CM2 [Positional] observer_altitude = 0.0 observer_geographic_latitude = 0.0 observer_geographic_longitude = 0.0 Reference_Frame = B1950 coordinate_system = galactic positions = apparent Reference_system = geocentric [spectral]

start_wavelength =12um end_wavelength=12um [Time] observation_date=2 2 2000 observation_time=0 0 0.0

[convolution] convolution = NO point_spread_function = gaussian psf_half_width =1.01

45

CBSKY4 - SKY4 Comporlipn

CBSKY4 - SKV4 Compgriaon CUUUlAIire 5TAR COUNTS .. *,4 4- - clnl»4 Uognttude LImK -12 Pivfl Size - 0.00391 d«q Praledlon - RECTANGULAR

Uognttude Rmrallng SKY4 pM »(tM Vol 105 No 5 Moy 1»9! p. 1S7E

10 6 0-6 UaonRudtr Ret)«olfng SKY4 plot OT AilJ Vol 105 No 5 May 1995 p. 1B76

CBSKY4 - SKV4 Comporijon

CBSKY4 - SKY4 CompiirijDn

Uognltude R«s«Hlng 90r4 plot o( MJ Vol 105 No 5 Uoy IMS p. 1S7e

MognHurfe Repcollng SKY4 plot oT AstJ Vol 105 No 5 May 1993 p. 1876

•«i»s

wi^ie afay rnl" - 3.4i42C-oia VI/CM3 •hole Iky rm. . I.2TI«[-0I3 W/CM: Vn>oc lolol - 1.a?9eE-014 W/CM2 Vtioor mta i: O.OOOOE^OOO Ir/CUZ v™.9» "lOT - IJ265r-015 */CM2 knol* «» - 756 < ?:« pinn ----- I - If

whole 9i>y min - 1.S375E-033 V(/CW3 •hole il^ mo« - 1.0O5OC-O14 W/CMJ kmoe Idol • 2.ce2gE-015 W/CWZ know inin = 0.00OOE4 00O W/CM2 imogemg. ^ IJ718E-015 */'C«2 hwg* llz* * ?S« I ?96 pls«l9 - - B - I2ym

Figure A.6: SKY4 - CBSKY4 comparison for 1 = 59.70, b = 0.09.

46

Table A.13: Interactive inputs used for the SKY4 runs for I = 49.68, b = 0.16. Value Used Description ^ y Keep solar displacement of 15 pc N of plane. n

Integrate over area? No, model 1 square degree.

0.1600

Center galactic latitude in degrees.

49.6800 n

Center galactic longitude in degrees. No, don't print bright magnitudes-by-components information.

n

No, don't print surface brightness data.

n

No, don't bring back colors.

y 5 and 7

Yes, create LogN vs. LogS plots. Use the pre-defined "12UM" bandpass (value=7) and use the predefined "K" bandpass (value=5) [Two separate sky4 runs.]

y and n

y = plot cumulative LogN on the y-axis; n = plot differential LogN on the y-axis [Two separate sky4 runs.]

y

Plot Magnitudes on x-axis.

n

No, don't plot observed points.

47

Table A.14: CBSKY4 Inputs for I = 49.68, b - 0.16n. [Path] architecture = DOS path=\cbsd4\dataout\cbsky4\AJ_Mayl9 93_12um\ code_path=\cbsd4\cbsd\cbsky4 data_path=\cbsd4\cbsd\sky4data verbose = YES [cbsky4] log_output = Case_8.log map = NO real_stars = NO statistical_stars = YES clouds = YES magnitude_limit =12 seed = 346 method = catalog = NO catalog_limit = 10 nodesfile = NODE_IAH.DAT elementsfile = ELEM lAH.DAT extinction = YES count_statistics = YES X-axis = MAGNITUDES y-axis = Differential errmap = NO extmap = NO spectral_type = 0

[Image] Image = YES output_fo]rmat = FITS image_type=4-BYTE REAL image_projection = RECTANGULAR X column_pixels = 256 y_row_pixels = 256 pixel_size = 0.0039062500000 image_center_longitude_degrees = 49.680000000 image_center_latitude = 0.160000000 units = W/CM2 [Positional] observer_altitude = 0.0 observer_geographic_latitude =0.0 observer_geographic_longitude =0.0 Reference_Frame = B1950 coordinate_system = galactic positions = apparent Reference_system = geocentric [spectral] start_wavelength =12um end_wavelength=12um [Time] observation_date=2 2 2000 observation_time=0 0 0.0

[convolution] convolution = NO point_spread_function = gaussian psf_half_width =1.01

48

CHSKY4 - SKY< Comporijon

C8SKY4 - SKY4 Comporijon

Magnitude Refwdrng SKV-I plot ot AslJ Vol IDS No 5 Uoy 1993 p. 1B7G

MoanKudo Roontlnq gel Slr< - OJXnil d
\

V

• •

^ 4* 4^4iat^l.

b - OJOCCOOOCKXI 1 ■ tCOOOOOCOM Arco - 10.00 9q d«q

I

10

\\.

.1 .1

5

0

-5

UognHuilE Beped'^'g SKVI plol of OaUVol 107 Mo ? Ftb 1494 p. 5S:

Figure B.l: SKY4 - CBSKY4 comparison for 1 = 80.0, b = 0.0 at 25^111.

53

Table B.3: Interactive inputs used for the SKY4 runs for I = 107.5, b = 1.25 at UfLm. Value Used Description y Keep solar displacement of 15 pc N of plane. y Integrate over area? Yes, area integration. 0.5 2 100 115 0.15 1.5 n

Limits of galactic latitude in degrees. Limits of galactic longitude in degrees. Lat/Lon step size in degrees. No, don't print bright magnitudes-by-components information.

n

No, don't print surface brightness data.

n

No, don't bring back colors.

y

Yes, create LogN vs. LogS plots.

7

Enter passband: 1=B 2=V 3=J 4=H 5=K 6=2.4um 7=12um 8=25um 9=special 10=1565A 11=1400A 12=1660A

y and n

y = plot cumulative LogN on the y-axis; n = plot differential Lo^ on the y-axis [Two separate sky4 runs.] Plot Magnitudes on x-axis. No, don't plot observed points.

y n

54

Table B.4: CBSKY4 Inputs for I = 107.5, b = 1.25at 12im. [Path] architecture = DOS path=\cbsd4\dataout\cbsky4\AJ Febl9 94\ code_path=\cbsd4\cbsd\cbsky4 data_path=\cbsd4\cbsd\sky4data verbose = YES

[Image] Image = YES output_format = FITS image_type=4-BYTE REAL image_projection = RECTANGULAR x_column_pixels = 750 y_row_pixels =75 pixel_size = 0.0200000000000 image_center_longitude_degrees = 107.500000000 image_center_latitude = 1.250000000 units = W/CM2

[cbsky4] log_output = Case_2.log map = NO real_stars = NO statistical_stars = YES clouds = YES magnitude_liinit = 12 seed = 346 method = CENTER catalog = NO catalog_limit = 10 nodesfile = NODE_IAH.DAT elementsfile = ELEM_IAH.DAT extinction = YES count_statistics = YES X-axis = MAGNITUDES y-axis = Differential errmap = NO extmap = NO spectral_type = 0

[Positional] observer_altitude = 0.0 observer_geographic_latitude =0.0 observer_geographic_longitude = 0.0 Reference_Frame = B1950 coordinate_system = galactic positions = apparent Reference_system = geocentric [spectral] start_wavelength =12um end_wavelength=12um [Time] observation_date=2 2 2000 observation_time=0 0 0.0

[convolution] convolution = NO point_spread_function = gaussian psf_half_width =1.01

55

CBSKy4 - SKY4 Comporiaon

10 S 0 Uognltude Repffliing SKYI plol of AalJW 107 No 2 Feb 1991 p. 58?

i

1

.


2E-012 W/CIIQ kKOgr i«ln = ajOO}E-0 c C.5002E-O1! */CM2 kmog* lil» > 1 v 1 pjsfis

whole sky min . 1,S339E-OZ7 M/CW3 whole •kync - 1.0050C-OM W/CW Vmge lelol - >.Oe94E-013 W/CM2 tnooe K-lii = 9.ae»4E-OI3 W/CU2 -inoqe -tvn = 9.0SHE-013 W/CM: fcna9» ilz* - 1 y 1 pl««C} dcg

CBSKY4 - SKV4 Comporison

CBSKy4 - SKY4 Compariaon T OrTFEPENTIAl SFiW OOUmS

.- ^r' * - clal^t MsqnHudc LImH -l^ Pl»«l Size - 5.55566 1.2710C-013 W/CM? know hdol - 2.74S3C-012 W/CM2 know mln e 2.74B5E-D12 W/CU2 kno9>nn>E ;.74B3E-012 VI/CM2 hY)a94 III* ■- 1 Y 1 pl»ei* BandPoia ~ K

whole Bk* n^n - 1.B335C-OZ7 W/OrfZ Whole iby mos • 1.00SaC-014 W/CM? knogrlolol. 3.1017E-013 W/'CW2 know mln t= 3.1017E-013 W/CU2 ino9emii 3.1D17E-013 VI/CU2 knog« fll» - 1 V 1 plwH eondPats - 19ufn

Figure C.2: SKY4 - CBSKY4 comparison for 5.56 deg around 1 =3.0, b = 0.0.

90

CBSKY4 - SKV4 Comporiaon

eBSKY4 - SKY4 Comporiaon CIJUJLATW STAB COUNTS . - *y4 HognUuik Lli^H -12 Pkel Size - 1.00000 -3 dc^ L>0 deq

UoqnEtude Zoom In On ^-3 deq L-0 daq

eBSKy4 - SKY4 Corryoraon

CBSKY4 - Slflf4 Comporhon

OTtmnTW. SIM COUWTS ..*r4 ■•■ . clnl^ Uo^nHude llmll .12 Pbel Sb: - 1JXXXI0 deg Pmledion . BECTAHCUUW

« 0 Uognltude Zoom In On B>-3 dcq L-0 deg

? 0 UognHude < In On ei-3 deg L-0 deg

«hole sky mln - 3.4142C-01B W/CM3 •tnle 9l>y mm . 1.:71«t-013 W/Cie tragr iolol - 1.(B3>E-013 W/CM2 hnd>mlnz lAtSK-OIS W/™' Imogomcrc li»]9E-013 1II/CM2 Imog* VZ* - IV 1 plK*l1 BondniBI ■ K

Whole >k)-mlr> - 1.S335E-0S? W/CM? whoto aky rwx - 1^50C-014 W/CM7 bti09» Iolol - 1.1174E-014 W/CM2 brogc min = 1.1174E-014 W/CU2 imo9» moY = 1.1174E-014 W/CM? VrtOge K?» - 1 ¥ 1 plwls ~ '" I taum

Figure C3: SKY4 - CBSKY4 comparison for 1.0 deg around 1 =3.0, b = 0.0.

91

eBSKY4 - SKV-I Comporijon

5

CBSKY4 - SKV4 CompariTOn

0 UoqnHude

Zoom In On B"-3 deq L-O deq

Zoom ln0nBl-3dl dcq L-E> deg

eBSKY4 - SKY4 CoTiparison

eBSKY4 - SKY4 Comporiron

onTEittiTui sT/m coutns . • ii -I- - cb9>>y< Mcqnitude LlmK .12 Pkel Size - l>.5S50 dcq

CBSKY4 - SI

6 0-5 Waqnitude Zoom tn On ^-3 de^ L.0 dtg

CB5Ky4 - SKfi Comparison -T-

HognRude OnG!-3de dcg 1.0 deg

CBSKY4 - SKY4 Comporison

-r

OlfFEBEKtW. STAB COUHTS . . *y» * . clnl>r4 UoirKude LMt .12 Hiel Size - 0.01000 deq l>,o|ecllon - BECTAMUIAB

.

b- -3.000000000

.

• 0.000000000 Afco . g.g8£E~Cl05 ?q deg

Magnitude Zoom tn On h'~'3 l} deq

UognKucte Zoom In On 8>-} deq L>0 4cq

whole ^ rrin - 3.41A2E-01B Vr/CM2 whole Iky rrvR - 1,271flt-013 W/CM? know total - 9.S3S7E -01B W/CM2 Imogrmlns 9.fl367E-018 V/CM2 ■wnag» mav = 9J3S7E-01B W/CM2

W>og« sftfr - 1 V 1 phwia •cindPaM - K

whole Iky mfai - 1.S335E-OZ7 W/CM3 »l»lo >l tn^ mh s XB5I»E-019 W/CM2 kKO^imv;: Xg9a0E-O19 W/CIII3 Wiog» «» - IV 1 phwls ISww

Figure C.7: SKY4 - CBSKY4 comparison for 0.01 deg around 1 =3.0, b = 0.0.

95

CBSKY4 - SKV-I Comporison T—I—I—I—I—I—I—I—e^-1—I—r-

CBSKY4 - SKY') Comporiaon

.

I

'

'

'

CUUUW^E STA« COUNTS

CUUUL*Tire STAR COUNTS .. *,4 4. . ct»l9l0 deq

i.hote Bky min - 3.41«2t-0ia W/CMS •hotelky mon- K

4. . cbsliV^ Moiinllude LI ^H .12 Pkrel Sbe . 0.55556 d men - 1.0050C-014 W/CU2 knogelolol - 2.2319E-014 W/CM2 kno» in)n = 2.2319E-014 W/CM2 «tKi9» mov e ?:?319E-014 tt/CM2 frnog* A* - 1 V 1 plved BondPOM - ISum

Figure C.14: SKY4 - CBSKY4 comparison for 0.556 deg around 1 =0.0, b = 0.0.

104

■'■'

-r

'

'

eBSKY4 - SKY4 Comporison 1 . 1 . . . > 1 1 1

eBSKY4 - SKY4 Comporiaon i

1

1

1

1

1

!

I

Cl»im>T« SUB COUNTS

'

'

'

CIJMUUTM S«B COUWS ...ly4 4- • dnliyl Uoqnitwie LlmH .12 Pkel Sin > 0.10000 d^ Prolecllon - PECTANOULW) g m 12wfn

Moy-Kude limn .12 Phd Size - 0.10000 n, • O-OOXSi XI dcq

,

,

.

,

1

,

.

.

V^ .

1

.

.

-

^\^

.

6

0 Moqnnude

Moqnltude Zgom In On 9-0 deg L'O deq

Zc»fT» In On a-0 deq L-0 deq

CBSKy4 - SKY-I Comparison

CBSKy-l - SKY4 Comporuon

-'—r

OlrrtOENTW. STAR COUNTS 4- . cbtV).* HoqnHude llmH -12 Pkel Stze • 0.09K6 deq Proloetlon - OECTANCUlA» BondPoal - K

b - 0.000000000 I - 0.000000000 Aim • 0.003086 ai deq

UraxKude Zoom In On 9-0 de^ L-0 deq

>0 deq L-0 deq

Whole ab^ rrtn - 3.4143E-01B W/CM3 »hoto ■W mm - 1,271 e[-013 W/CM2 h)09» lolol - 5. S642E -01S W/'CU2 know mtn = S.3M2E:-016 W/CU2 rno9*m()v= 5.3B42E-018 W/CM2 Iwioj* *li* - 1 V 1 (jiYeb BdncfPoBG - K

whole skf irJn - 1 ,A33St-027 W/CM2 whole sky men - 1.00501-014 W/CW? kragr lola> - 1.9358E-016 W/CM2 imctwntlns 1.935aE-01Q W/CM2 ■mo9» mav >t 1.9358E-01S W/CM3 *7»og« »I2# - 1 V 1 pivelfl BondPau — t2iim

Figure C.16: SKY4 - CBSKY4 comparison for 0.0556 deg around 1 =0.0, b = 0.0.

106

CBSKY4 - SKV4 Comporison

eBSKY4 - SKV4 Comparison I

'

'

'

CUMULATE STAB COUNTS . - *y* 4- . dnM MoqnItudE LlmH .12 PhEl Sin - 0.0)000 dtq Proferflor. ■ BECTANCUIAK

. b- oxaoaxuxio I - 0.000000000 tnn - 0.0001000 iq diq

.

MoanHudc Zoom In On S*0 deq L-0 del)

Magnitude Zoom In On ||>0 4eg L«0 dcq

CBSKY4 -- SKY4 Comporijon

5

CBSKy4 - SKY4 Compofiion

'

'

1

1

'

1

'

'

'

'

1

'

'

'

'

1

'

'

'

'

1

1 •'■' '

OUTEPENTW. SI« COU>riS

offrtnENTMi. STAR caums

J. . cb.ky< Uo^mlude IMi .12 Phel Sbe - 0.01000 deq

^ • ctaV Uo«nHude LMl .12 Pktl Stn • 0.01000 d0 deg

CBSKY4 - SKV4 Comporiaon T-

CBSKY4 - SKY4 Comporison T-

L

I

orrEBEiiTiAL sr«R cou>rs * • cbiky< WeqnHude Limit .12 n>cl Sin - aOOlOO de^ BECTANCU/n >. K

Uoqnitude Zoom In On S-O d0 deg L>0 deq

CBSKy4 - SKY4 Cotnporlson

CBSKY4 - SKV4 Comporijon I

'

'

'

OirrERENTW. STAR C0UW5 . . *yt * - Cbsbyl MoqnRude llmK .12 Phel Size - 0.00066 «i . 3.me£-0QT\ mm - 1.271«[-013 W/CM2 tnon hlltil - aOOOOE 4^000 W/CU2 kmor mln = 0.0O0OC400O V/CU2 •nog* mov = O.OOOOC4^000 Vnin= ;.14taE-013 W/CW2 fenog* il» - 1 T 1 pliwit ~ ~ ' tSum

Figure C.21: SKY4 - CBSKY4 comparison for 10.0 deg around 1 = 3.0, b = 0.0.

113

CBSKy4 - SKY-I Comparison

CBSKY4 - SKV4 Compprison

Maqnitude Zoom In On 8-3 deg L-0 deq

loom In On B-3 deg L*0 deq

CBSKY4 - SlfY-l ComporisDn

SKY4 Comporison -t—1—I

I

I

CIFTEPENTML fm COUNTS

. - •!
0 deq

UDOnitudC

whole sin mJn - 3.414ZC-01B W/CM2 •hole 9l13 */CMJ knoge yre - l ¥ i piveii tendPats - If

whole «l» mln - 1.a3?X-OZ? W/OitS whole 9l» mcs - 1.0O5OC-014 W/CM? know lolal - ».2BSIE-01S W/CM2 know mln s 9.2W1E-01S »/CM2 kno9«nn>= VJHIE-OtS W/CM2 knog» lli« - 1 » 1 pl«ll 1 - laum

Figure C.23: SKY4 - CBSKY4 comparison for 1.0 deg around 1 = 3.0, b = 0.0.

115

CBSKY4 - SKV4 Comporiaon

eBSKY4 - SKV4 Comporison

UoonHudc Zgom In On 8-3 dcq L-0 deq

_^ iHude Zoom In On 9-3 deq L-0 deq

eBSKY4 - SKY4 Comporiaon

CBSKY4 - SKY4 Comporison

UognHud: Zoom tn On a-3 de9 L-0 deq

UnqnHude Zoom In On B-3 d«g L-0 deq

whole »k» njn - 3.4142E-0ia W/CM2 «hole il= 3v4183C:-014 W/CM2 Wflg* Vze - 1 V 1 plvf^ BondPoiB - K

■ ■'*«iiimwi^

Whote sir* frJn m 1 .B3^X-0^^ W/CM3 «hole Bky men - 1.005Ct-014 W/CM7 hww told - 246G45E -015 W/CM2 hK>Hniog* ft* - 1 V 1 pjvsifl BorvdPatD •■ 13um

Figure C.24: SKY4 - CBSK:Y4 comparison for 0.556 deg around 1 = 3.0, b = 0.0.

116

CBSKYJ - SKY4 CorrporiaBti

CBSKY4 - SKY^ Comporison CtUUUTire STAR COUNTS

CtMJlATire S»l> COUHTS

-I- ■ ctrsl^ UoqnHude LImH .12 Pkcl size - I1.100CO ;« mm = B/l^ 4- ■ cbiVy* MoqnHudc llmK -12 Phil She • O.OJSSe dog Prolcdion . PECTANCUUB BondPoTO - K

CLMUUITIVE SIM COUNTS . - il-y* 4- . cbil-y* Mo9">ludc tin '« .12 Pkcl Sbc • IXI»56Sdcq Prolecllon BECIANCULAP BW C0UW1S .-•1^ 4- - cbiV UognKude LlmH -13 PIrel size - 0.01000 deq Proledion - SECTAMOUIAO BondBo» - 12»Kn

WfTEOENTOl. ST« COUITS ..*y4 * - cb*y> HoqnHude LImH -12 Pkel %e - 0.01000 d cM^ Uoqnitude LlmH .IS Ptvel Sbe - 0.005G6 dcq Pro[ec{l(Ki . PECTANCUAB BoridPoM - 12wni

I \

b . 3.000000000 I . 0.000000000 A/CO • ias2E-oas » ^^

UoqnHude Zoom In On 0-3 de9 L.O deg

Uognttude Zoom In On 9.3 dcg L.O deq

whole tk» n.Jn - 3. moY » 7.aB81E-C19 W/CHIS kii09» 1lz» . 1 V 1 pl1*l« BondPokfi . 13lim

Figure C.28: SKY4 - CBSKY4 comparison for 0.00556 deg around I = 3.0, b = 0.0.

120

CBSKY4 - SKV4 Comporison -T CUMUIATOE STAB COUNTS . - •I>r4 4. . clnl>y< Hoqtiltude LImH .12 PkclSIn • 0.00100 lolol - 9.297eE -013 W/CU2 tnoje mln = «.3«7aE-013 */CU2 rnoQ* moY s 9^7ae-013 VI/CM2 Imogt «iz« - 1 ¥ 1 ftiteh BOndPoH - K

whole sky mJn - 1 .a3?SE-OZ? W AX3 •.hole sky mcK - I.0050C-0M W/CU7 Hvig» Mot - 1.4346E-013 W/CU2 hio» mln « 1.43UE-013 •r/CU2 tno^tmnx 1^34SE-013 W/CM2 Wi9g« *I2# - 1 ¥ 1 pl¥»4« BandPdBfi ■• I9um

Figure C.32: SKY4 - CBSKY4 comparison for 5.56 deg around 1 = -3.0, b = 28.0.

126

eBSKY4 - SKYii Cowporison

eBSKY4 - SKY4 Corrporiipn

5 0 MoqnHude Zoom in On B—3 deq L-J8 deg

Moqnitude Zoom In On B>-3 dog L>20 dog

CBSKY4 - SKY-I Compariaon

CBSKY4 - SKY4 Comporiapn

6

0

I

'

'

'

OVTEDENTIAL STW COUOTS

Uogmtudc n>el Size Pfolodlon 9

Limit .12 • 1.00000 d2< dcg

MoqnHudo Zoom In On B>-3 dcg L-26 dog

whole sky min - 3^1«3E-0ia W/CMS oholo Iky mm - 1.J7ie[-m3 W/CilO know hdol - 2.3744E-014 m/Oa hWM mln e 237ME-014 W/CI1I2 ->nogoi cb9l7< MognHudi Limit >12 PkEl Sbe - 0J5Si6 d9li«uile Zoom In On B>-3 itq L-3fl deg

b - -3.000000000 I - 2B.O0OO00OOO Afco - 0.0099fl& 911 deg

1 In On B^-3 ile9 I.-2S lie;

CBSKY4 - SKY4 Comporiron

eB5KY4 - SKYd Comporison

6 0-5 Uognltude Zaom In On B—3 dc^ L-2A deg

Uoqnilvde Zoom In On B—3 deq L-2fi deg

whole sky mln - 3.4143t-01S W/CM3 »hole tWy men - t.me[-013 W/CM? hnmlolol- 1. W/CM2 hnw inin z 1.g0BSE-0ie W/Ctl2 mogonux t.tOaK-OIS W/CM2 ►nog» *» - 1 » 1 plwU

whole sky n*i - 1.S32K-02? VI/CM2 «holo sk> nn - 1.00S0[-0t4 W/CM2 hnno kdol - 1.77e2E-0ir W/CMa hoor min = 1.77e2E-017 W/CM: 'iragomev' 1.77«2E-017 W/CM2 *Tiog» *♦ - 1 * 1 fi^t^ BondPasB - 13um

Figure C35: SKY4 - CBSKY4 comparison for 0.1 deg around 1 = -3.0, b = 28.0.

129

CBSKY4 - SKY4 Comppriaon

CBSKY4 - SKV4 Comppriapn

5 0 MoqrrHude Zoom In On B--3 ticg L-26 deg

6 0 Mognltude Zoom In On B—3 6tq L-22 deg

CBSKy4 - SKV4 Comporispn

CBSKY4 - SKY*! Comporiaon

Mo9nHude HmH -12

PKer Stzr -

0.Q55G6 d«9

Prelection . l»ECTAW3lll>* BondPow - •
2fi de9

I deg

CBSKY4 - SKY4 Comparison

CBSKV4 - SKV4 Comporison -T

-r

-)

I

I

r-

OlffEBENTIAL STAB COUNTS

OlfTEBENTttL STAR COUNTS

. •■ il^' 4- - cbaV UognHude LImH -12 Pkel SIzo ■ 0.00556 dcq ProlEdlon ■ BECTANCULAB

* - clnl>y< Uognnude limit .12 Phel Size - 0.00556 doo - 3.082E-005 n dog--

-3.OOOO0
21 V«/CM2 b-noge 5tze - l v i piv«ii ttandPoM - 12um

Figure C.38: SKY4 - CBSKY4 comparison for 0.00556 deg around 1 = -3.0, b = 28.0.

132

eBSKY4 - SKY4 Comporison

CBSKY4 - SKV4 Comporison

-r

T

CUMUUrilrt STAB COUNTS

CUUULATVE STAB COUNTS . - *y* ■^ - clnVy< MoqnttudE llniH .12 fihetSIze - ^00100 0.00100 2B deq

whole ekf inJn - 3.4142E-Oia W/CM2 •hole Iky mm ■ 1.27101-013 W/CU2 trtooe tolol - 3.Kie7E-01 B W/CM2 knmo mln ' J.aoe7E-OtS lr/CU2 •iyi9»mo»= 3.B0«7t-O1B »I/CM2 frnog* ilr« - 1 V 1 ptveh BondOau - If

whole tkf rrir, m

1J1335E-02Z W/CM2

»hol< sin mox - 1.00S0C-D1J W/CM2 know lolol • 1.42S1E-01S W/CW2 hi09rinlnECTA>ICUIAR BondAcnv " K

M 1 KmdPon - K

-5 15

....

1

>v ^v ^y.

....

10

I-^

1

....

1

....

1

...

.

6 0-5- 0 Moqnltude Zoom In On 8^3 d»3 1-2S in)

.hole *y mo. . 1J050I-014 W/CM2 Vnojc Idol . 181421-013 */CM2 Vnoge min c 3.814JE-013 */CMZ tnog« mo' 3 xgi42E-013 W/CU2 Imog* «» - 11 1 fl»»H

Figure C^l: SKY4 - CBSKY4 compa risonl or 10.0 de g around 1 = 3.0, b = 28.0.

149

CBSKY4 - SKY-I CannporiaDn

CBSKY4 - SKY^ Comporljon ..

1

....

1

1

1

1

1

....

1

...

,

CUMULATVE STAB COUNTS . . *,4 MoqnHudc LImH .12 Pl-el Sbt - 5.55556 -Itq P'olccllon > BECtUtCULAB

s s

I a

\

>.

.

b-

.

1 ■ A>«

\.

yaootxcmo

N.

26.0000011000 . 30.82 «| dv;

\ -5

11

1

.1

1

.

1

1

1

.

1

1

1

1,

r

I


U» BondPo» - 12«m

Moqnitudc Zoom In On S^iS dcq L*2& drq

UognHude Zoom In On B^3 deg L-28 d«q

CBSKY4 - SKY4 Comporison

CBSKY4 - SKY4 Cornporiaon WrrEBENTW. STAR COUNTS .. *y4 * - clnkyJ MaqnHudc LlmH .13 Pkel Sin - 1.00000 d«9 Pfoledio" . BECTAWUUS 12wm

« 0 WoqnHudc Zoom In On B.3 deg L.2B deq

whole >ky mln •

Moqnitude Zoom In On B^3 dcg L.2& dcq

3.4142E-01B ¥(/CM2

ohole il>y mo> - 1,Z7ie[-013 W/CM2 htogc lolol - 3uS7nx-014 W/CM2 hn^ mm = ]A7»E-014 V/CU2 •«™g.r«033 - K

.. *,'

4. . cl>5l0'< MoqnHudc Limit -12 Pircl Sbc . 0.00556 '*

'7i»i?)w?a,.ir

1^

-r

CUUUL»TIVE STAB COUNTS

Cumulative

•*- - cbaty* Hoqniludc Llmq .12 PKel Size . 0.00391 deq Prolcdion . BECTAHCUUB eondP*oa» - 15om

- b • 90.i»iiciooaoo

b - SO.ODOOOOOOO I - COOOOOOOOt)

I - cooooooooo Af« ■

Ar«o ■ ntiiiiii* aq deq

II* gq (Jeq

Moqnnude Zoom In On B-90 dcq l-O (Jpq

Uoqnitude Zoom In On 8^90 deq L-0 6e

,

Afpo -

\

* aq deq \

........ .\ . 15

.

.

1

.

.

.

.

1

,

.

10 UognHudc Zoom In On B"-9& dcq L-0 dcg

Moqnltudc Zoom In On 8--90 deg L-0 deg

Figure D.4: At the largest IFOV size, there were only fractional stars at the Galactic South Pole.

166

Appendix E Appendix E.1 The region around 1 = -32 deg, b = 281 deg (the Large Magellanic Cloud) with the following pixel sizes (degrees) for Band K and 12/im: 10.0 5.56 1.0 0.556 0.10 0.0556

0.01

0.00556

0.001

0.000556

Table E.l: Interactive inputs used for the SKY4 runs around the LMC. Value Used Description Keep solar displacement of 15 pc N of plane. y y

See Table E.2

Integrate over area. Limits of galactic latitude in degrees.

n

Limits of galactic longitude in degrees. Incremental steps in latitude and longitude (in degrees). No, don't print bright magnitudes-by-components information.

n

No, don't print surface brightness data.

n

y

No, don't bring back colors. Yes, create LogN vs. LogS plots. Use the pre-defined "12UM" bandpass (value = 7) and use the predefined "K" bandpass (value = 5) [This value is regressed upon, there are two separate SKY4 runs.] Yes, plot the cumulative LogN on the y-axis, and no, plot the differential LogN on the y-axis. [This value is regressed upon, there are two separate SKY4 runs.] Plot Magnitudes on x-axis.

n

No, don't plot observed points.

See Table E.2 See Table E.2

y

5 and?

y andn

167

Table E.2: Region Definition.y around the LMC X_FOV

(Deo) l.OOE+01 5.56E+00 l.OOE+00 5.56E-01 l.OOE-01 5.56E-02 l.OOE-02 5.56E-03 l.OOE-03 5.56E-04

Initial Latitude (Deg) -3.70E+01 -3.48E+01 -3.25E+01 -3.23E+01 -3.21E+01 -3.20E+01 -3.20E+01 -3.20E+01 -3.20E+01 -3.20E+01

Final Latitude (Deg) -2.70E+01 -2.92E+01 -3.15E+01 -3.17E+01 -3.20E+01 -3.20E+01 -3.20E+01 -3.20E+01 -3.20E+01 -3.20E+01

Initial Longitude (Deg) 2.76E+02 2.78E+02 2.81E+02 2.81E+02 2.81E+02 2.81E+02 2.81E+02 2.81E+02 2.81E+02 2.81E+02

Final Longitude (Deg) 2.86E+02 2.84E+02 2.82E+02 2.81E+02 2.81E+02 2.81E+02 2.81E+02 2.81E+02 2.81E+02 2.81E+02

Step Latitude (Deg) l.OOE+00 5.56E-01 l.OOE-01 5.56E-02 l.OOE-02 5.56E-03 l.OOE-03 5.56E-04 l.OOE-04 5.56E-05

Step Longitud e (Deg) l.OOE+00 5.56E-01 l.OOE-01 5.56E-02 l.OOE-02 5.56E-03 l.OOE-03 5.56E-04 l.OOE-04 5.56E-05

Table E.3: CBSKY4 Inputs around the LMC. [Path] architecture = DOS path=\cbsd4\dataout\cbsky4\ZoomIn_B -32_L281_12um\ code_path=\cbsd4\cbsd\cbsky4 data_path=\cbsd4\cbsd\sky4data verbose = YES [cbsky4] log_output = ZooinIn_Pl.log map = NO real_stars = NO statistical_stars = YES clouds = YES magnitude_limit = 15 seed = 346 method = CENTER catalog = NO catalog_limit =10 nodesfile = NODE_IAH.DAT elementsfile = ELEM_IAH.DAT extinction = YES count_statistics = YES X-axis = MAGNITUDES y-axis = Differential errmap = NO extmap = NO spectral_type = 0 [convolution] convolution = NO point_spread_function = gaussian psf_half_width =1.01

[Image] Image = YES output_format = FITS image_type=4-BYTE REAL image_projection = RECTANGULAR x_coliJinn_pixels = 1 y_row_pixels = 1 pixel_size = 10.0000000000000 image_center_longitude_degrees = 281.000000000 image_center_latitude = 32.000000000 units = W/CM2 [Positional] observer_altitude = 0.0 observer_geographic_latitude = 0.0 observer_geographic_longitude = 0.0 Reference_Frame = B1950 coordinate_system = galactic positions = apparent Reference_system = geocentric [spectral] start_wavelength =12uin end_wavelength=12um [Time] observation_date=2 2 2000 observation_time=0 0 0.0

168

eBSKY4 - SKY4 Comporijon

CBSKY4 - SKV4 Comporiaon

Zoom In On 9--32 deg L-?fl1 deg

5 0 MognHude Zoom In On B=-32 deg L-2ai deq

CBSKY4 - SKY4 Comporison

eBSKY4 - SI0f4 Compori^on ' 1 '

oirrEBENiw. STAR coums 4. - ct«l^* MognKude limit -12 Phtl Sbf - 10.00000 deg Pro|!rtlon - PtCIAKCUHn BondBoES - 12om

-

^v

X

.

^

b - -32.000000000 1 - 281.000000300 A»» - M.BO K deg

,

5 0 Uognttude Zc»m In On B--3? d»g L-?ai deq

Ill]

"^^^

1

1

1

1

1

1

^.

,

1

,

.

1

1

.

.

1

1

1

1

Magnltudi
Figure E.l: SKY4 - CBSKY4 comparison for 10.0 deg around the LMC.

169

1

1

CBSKY4 - S^fVo|=rilon . OECTANCULAB GandPais - 12um

_

'V \ ■^ ^~~"-\.„^^

^

-32.000000000 281.000000000 Areo - 26.17 n dcq

.

b -

,

• i

i

-L-^

1

UoqnHude Zoom In On B--32 deq L-JB1 deg

MognHudc Zoom In On B--3? deq L-2ai deg

CBSKY4 - SKV4 Comparison

CBSKV4 - SKY4 Comporison DlfTEPE^JTlAL STAR COUMTS . - .1./4 4- - cbalo'* Moqritude limit -12 Pirti Skt . 5.55556 dtg Prolsdion . BECTAJlCUlAI' BondPoas - 12ym



"'^'^

;

"N.

. .

^^"^---.,,^^

'

\ ^

b - - 32.000000000 1 - 2B1.000000000 A,ro . 26.17 iq l)«)

• ,

...

1

....

1

.

.

.

,

1

,

.

.

,

1

,

.

Moqnllude < lnO'^B--32 drqL-2«1 deg

UoqnHude Zoom In On B--3? dcq 1-281 deq

Figure E.2: SKY4 - CBSKY4 comparison for 5.56 deg around the LMC.

170

.

CBSKY4 - SKY4 Compprison

CBSKY4 - SKY4 Comporiaon

UognKudc Zoo'o In On B--3} ieq L-281 deq

UoanHude In On B--3J d«iL.2Sl deq

CBSKy4 - SKY-I Comporispn

1

1

1

I

1

1

1

CBSKY4 - SKY4 Comporison r-]—1 r—r- r ' 1 '

|

.

i

.

OirrEPENTIAL SI»R COlllflS

.. *>
clnl^ ,,,,..



UoonHude Zoom In On B--32 dt? 1.-261 dcq

UocjnKudc Zoom In On B--32 dpq L-2ai dcq

CBSKY4 - SKV4 Comporiaon

CBSKY-1 - SK^'l Comporison T

T-'—■—^

DIFTEBENTIAL STAR COUNTS

DIFFEPEMTIAL STAR C0UMT5

. - *y« * - ctakyi MoqnHudc limit -12 Pl>cl She - 0.05556 dc^ Projedion - BECTANCUIAP BondPoss - K

. - »l.y« 4. - ctaty* MoqnHode Umll . 12 Pkcl Stee • 0.05556 do) Prolcdlon - BECTAhCULAB BondPoas - 12um

MoqnHude Zoom In On B--32 dcg L-2ei dcq

Moqnitudc Zoom In On B--32 dcq 1-281 deq

Figure E.6: SKY4 - CBSKY4 comparison for 0.0556 deg around tlie LMC.

174

*T0jeCl'0n ■

r«t^ ■)w«VULr«'*

CBSKY4 - SKY-I Comporison

CBSKY4 - SKYd Co I

Tiffiflf^a^if

-r

-r

CUMUUTIVE STAR COUNTS . - H-yt 4. . ctaky* MoqnHuds llm« . 1J Phtl Sbc - 0,01000 dtq Proitdlon • OECTAOOULAB BondPoas - 12um

Cumulative

I - ittjoaocixn .

fceo- MSOE-OOSsq'i

5

0 MoqiHudc Zoom In On B--32 dtq L-JSI dc?

Zoom 'n On B--32 deq C"?fl1 deq

CBSKy4-SKV.ICor,|B^rJ|^n..^

^

eBSKY4 - SKY4 Compofison "T"

-r

DirFEOENTlAL STAR COU»OS

Differential

. - H-y* 4- ■ cln^l UoqnHudc LImH -12 P'nel Sbe • 0.01OO0 d«k^ +

b - -44.000000000 1 - 303.00000000) A>n: - 22.20 sg dM)

^""^\ X



Uoqnitude Zoonn In On B--44 deq L-303 deq



1

.

1

.

.

.

Magnitude Zoom In On B--^^ deq L-303 deq

Figure E.9: SKY4 - CBSKY4 comparison for 5.56 deg around the SMC.

179

CBSKY4 - SKY4 Comporispn

CBSKV'' - SKV-I Comporison CUMOUTtlrE ?TAI1 COUHTS . - il-r* ■»- - cin^* Uoqnttude LlmH -12 Pl-tl Sbc - 1.00000 dtq Pro[ection - RECTAHCULAP GondPoas - K

Moqnttudc Zoom In On B---^ 4+^«?'\^^ +

+

-

\~,^^ \v.^ . .

b . -44.000000000 1 - 303.000000000 t.eo . 0.71S3 sg deq

1

i

i

1

1

.

i

\^^^ 1

i

^\^ Magnitude Zoom In On B--4A dcg L-303 deq

UognHudc Zcwm In On B--^* drq L-303 deq

Figure E.IO: SKY4 - CBSKY4 comparison for 1.0 deg around the SMC.

180

CBSKY4 - SKY4 Comporlson

6

CBSKY4 - SKV4 Comporison

0

Zoom I" On S—« dtg L.303 deq

UognKudE Zoom In On B--44 dr^ L*303 deq

CBSKY4 - SKY-I Connpcirispn

eBSKy4 - SKV4 Comporiaon

MoqnHude Zoom In On B—-^. .... Mognltude Zoom In On B.-44 drg 1-303 deq

Zoom In Oi B--44 dtq L-303 deq

Figure E.12: SKY4 - CBSKY4 comparison for 0.1 deg around the SMC.

182

CBSKY-l - SKV-I Comporison T-

CBSKV-I - SKV'I Comporison

-r

COMUUTIVE SIAB COUHTS

CUMULATIVE: STAB COUNTS 4. . chV

* - cbity* MoqnHudt llmH -12 Pl'sr Sizr . 0.05556 dt.) Pcoiedlo" . BECTANCUW BondPoas • K

MognHudt Phcl Size Prolsdlon BondPoK

MognHude Zoom In On S--44 deq L-303 d«q

UognHudc Zoom In On B--