Dynamic Line Rating State Estimation - Ph.D. Defense

1 downloads 0 Views 16MB Size Report
Dec 5, 2017 - 2. Motivation. Literature Review. Objective. State Estimation. Assessment of. Algorithms. Conclusions. Technologies to Increase OHL's Capacity.
Dynamic Line Rating State Estimation Ph.D. Defense

David L. Alvarez A. Ph.D. Candidate

[email protected] December 5, 2017 Supervisor: Co-Adviser:

Prof. Javier A. Rosero, Ph.D. Prof. Enrique E. Mombello, Ph.D.

Dissertation Committee: Prof. Mario A. R´ıos, Ph.D., U. Andes, Bogot´ a Prof. Oscar G. Duarte, Ph.D., UNAL, Bogot´ a Prof. Alejandro Garc´ es, Ph.D., UTP, Pereira Prof. Ernesto P´ erez, Ph.D., UNAL, Medellin

Outline DLR State Estimation David L. Alvarez A. Introduction Objective

1

Introduction

2

Objective

3

State Estimation

4

Assessment of Algorithms

5

Conclusions

State Estimation Assessment of Algorithms Conclusions

:

58

1

Introduction

2

Objective

3

State Estimation

4

Assessment of Algorithms

5

Conclusions

1. DLR Methods

3. Steady state

4. Validation →Simulations

3. Dynamic State

4. Validation →Simulations, test

5. Conclusions

Modern power systems - New challenges Transformers, cables, and OHL are closer to their operate limits DLR State Estimation David L. Alvarez A.

G G

Introduction 1

Motivation Literature Review

Objective State Estimation Assessment of Algorithms

G

Conclusions

CIGRE - Study Committees

:

58

Technologies to Increase OHL’s Capacity Relative cost and ability according to CIGRE-425

Introduction 2

Motivation Literature Review

Objective State Estimation Assessment of Algorithms Conclusions

:

58

B2-C1 (19). Increasing Capacity of Overhead Transmission Lines: Needs and Solutions. CIGRE, 2010

David L. Alvarez A.

Conseil International des grands r´eseaux ´electriques. Joint working group

DLR State Estimation

SLR vs DLR Smart grid, real time monitoring DLR State Estimation

i [pu]

David L. Alvarez A.

G

DLR

2

G

Introduction

SLR

3

Motivation Literature Review

1

Objective

0

State Estimation

t

G

Assessment of Algorithms

Dynamic Line Rating (DLR) or Real Time Thermal Rating (RTTR)

Conclusions

It is defined by the CIGRE as “the thermal rating calculated based on real-time weather data”.

Electrical and thermal states Adiabatic ms

s

Electromagnetic Transient :

58

Unsteady State

min

Electro-mechanic Transient

Steady State

h

Steady State

DLR Applications Operation and control of power systems DLR State Estimation Operation and Planning

David L. Alvarez A. Introduction 4

Motivation Literature Review

Day-ahead Short-Term Operation Planning Planning Safe, Economical, Maintenance

Operation

Objective Contingencies

State Estimation Assessment of Algorithms

Long-Term Planning Expansion

Rating

Conclusions

DLR SLR

Overloading Acceptable Range Overloading Acceptable Range Normal Operation Normal Operation

:

58

Normal

Alert

Emergency

In Extremis

Restauration

Dynamic Line Rating (DLR) CIGRE 498 Clasification DLR State Estimation

Real Time Monitoring RTM 30

David L. Alvarez A. 25

Introduction

Stability

Motivation

Thermal

Sag

Tension

20

5 y [m]

Literature Review

Mechanical DLR

Objective

Temperature

15

o

T =10 [ C]

10

T =20 [oC]

State Estimation

T =30 [oC] o

T =40 [ C] T =50 [oC]

5

Assessment of Algorithms

T =60 [oC] o

T =70 [ C] T =80 [oC] 0

Indirect Measurement

Conclusions

Direct Measurement • Angle measurement • Clearance • Wind vibration • DGPS • Temperature • PMU

Weather stations: • Temperature • Wind velocity and angle • Solar radiation

0

200

400

600

800

1000 1200 x [m]

1400

1600

1800

Electro-Magnetic i, v E~

TS , P, σ R, L, C

Average conductor temperature

Rating limit :

58

Thermal ~ Q, Ta , S, ϑ

D, ℓ

Mechanical H

2000

Indirect Measurementes Atmospheric conditions, current intensity and conductor characteristics DLR State Estimation David L. Alvarez A. Introduction

Thermal transient

Motivation Literature Review

6

Objective

dTS

Solar Radiation - S

dt

State Estimation

=

QJ (TS ) + QS − QC (TS ) − QR (TS ) mc c

Current - |ikm |

Assessment of Algorithms

~ Wind - ϑ

Thermal equilibrium

Conclusions

QJ + QS = QC + QR

7

2 6.5

1 6

°

64.5 N

64.5° N 0

5.5

-1

5

Numerical integration

4.5

-2

4

-3 3.5

-4 3

-5 2.5

-6 2

21.5° W

:

58

21.5° W

∆TS =

QJ (TS ) + QS − QC (TS ) − QR (TS ) mc c

∆t

Direct Measurements - Tension Forces that act on an OHL DLR State Estimation

y

David L. Alvarez A. Introduction Motivation Literature Review

7

y=

Fx cosh mc g

mc gx Fx

!

Objective

Fy + dFy dl

State Estimation

Fx F~

Assessment of Algorithms x

Conclusions

dl

F~ + d F~ Fx + dFx

mc g Fy

State equation, H = Fx # " EA (Rs mc g )2 EA (Rs mc g )2 2 + EAεt (TS − Tref ) = HS HS − HTref + 24 24HTref 2

:

58

Tensioning Section DLR State Estimation

30

David L. Alvarez A. 25

Introduction Motivation Literature Review

20

8

y [m]

Objective State Estimation Assessment of Algorithms

15

T =10 [oC]

10

T =20 [oC] T =30 [oC]

Conclusions

T =40 [oC] T =50 [oC]

5

T =60 [oC] o

T =70 [ C] T =80 [oC] 0

0

200

400

600

800

1000 1200 x [m]

1400

Ruling Span Approximation Rs = :

58

sP

n

si3 i =1 si

Pin=1

1600

1800

2000

Direct Measurements - Sag Sag-Tension Method DLR State Estimation

y

David L. Alvarez A.

s

A

Introduction Motivation Literature Review

h

9

Objective

f

State Estimation

D

Assessment of Algorithms

B

Conclusions

H mc g x 0

Catenary Equation " H D= cosh mc g :

58

mc gs 2H

!

#

−1

Synchrophasor Measurements Relationship between resistivity and temperature DLR State Estimation

R(TS , ℓ)

ik

David L. Alvarez A.

im +

1 C (D, ℓ) 2

vk

Introduction Motivation Literature Review

L(ℓ)

+

10 90

120 30

0

180

0

270

GPS

30

210

300

330 240

TS1

TS2

TSn

~a , S T a1 , ϑ 1 1

~a , S T a2 , ϑ 2 2

~a , S T an , ϑ n n

ik = Y

Z ·Y

vk = 58

270

300

i m , vm

Relationship between v , i and Z , Y

:

360

0

i k , vk

Conclusions

60

0

180

330 240

90

150

360

210

Assessment of Algorithms



60

150

State Estimation

vm

− 120

Objective

1 C (D, ℓ) 2

4

!

+1

Z ·Y 2

vm − !

+1

Z ·Y 2

!

+1

v m − Z · im

im

OHL under test - BR1 Landsnet Weather interpolation using Biharmonic splines at 2016-04-18 21:00 DLR State Estimation

2

David L. Alvarez A.

1

64.5° N

Introduction

0

Motivation

-1

Literature Review

11 -2

Objective

-3

State Estimation

-4

-5

Assessment of Algorithms

-6

Conclusions

21.5° W

7

6.5

6

64.5° N 5.5

5

4.5

4

3.5

3

2.5

2

:

58

21.5° W

Temperature along the OHL Timestamps of atmospheric conditions each 3 hours DLR State Estimation David L. Alvarez A. Introduction Motivation Literature Review

12

Objective State Estimation Assessment of Algorithms Conclusions

:

58

1

Introduction

2

Objective

3

State Estimation

4

Assessment of Algorithms

5

Conclusions

1. DLR Methods

3. Steady state

4. Validation →Simulations

3. Dynamic State

4. Validation →Simulations, test

5. Conclusions

General Objective DLR State Estimation

To develop a methodology to estimate thermal rating of power OHLs, taking direct and indirect measurements in order to optimize its capacity.

David L. Alvarez A. Introduction Objective

13

State Estimation

OHL ratings

Network data

Assessment of Algorithms

◮ Conductor data ◮ OHL geometry ◮ Configuration

Conclusions

State prediction

State estimation

◮ GIS data

DLR

Downscaling Weather Nowcast

Numerical Weather Prediction - NWP

Indirect Methods :

58

PMU vk , i k , vm , i m

Sag Tension Temperature

Direct Methods

Methodology of the Dissertation DLR State Estimation

1. DLR Methods

David L. Alvarez A. Introduction Objective

14

State Estimation Assessment of Algorithms

3. Steady state

4. Validation →Simulations

3. Dynamic State

4. Validation →Simulations, test

Conclusions

5. Conclusions :

58

Weighted Least Square Method ε = h (z, ˆx) DLR State Estimation

Least Squared Error Norm

David L. Alvarez A. Introduction Objective

|ε|2 = 15

Nm X

wn hn (z, ˆ x)2 = [h(z, ˆ x)]T [W] [h(z, ˆ x)]

n=1

State Estimation

Cost function

Assessment of Algorithms

min J (x) = [h(z, ˆ x)]T [W] [h(z, ˆ x)]

Conclusions

x

∂J (x)/∂x = 0, or the gradient ∇x J (x) = 0 ∇x J (x) = [H]T [W] [h(z, ˆ x)]

Iterative Newton’s method :

58

h i−1 ∆ˆ x = [H]T [W] [H] [H]T [W] [h(z, ˆ x)]

Hybrid Extended Kalman Filter - EKF To Model, predict and update DLR State Estimation David L. Alvarez A. Introduction Objective

zk = xk + vk



16

Pˆk+

State Estimation

Pˆk−

Assessment of Algorithms

xˆk+

− xˆk+1

xˆk−

Conclusions

+ xˆk−1

t :

58

Contribution to Knowledge DLR state estimation DLR State Estimation David L. Alvarez A. Introduction Objective

DLR State Estimation

17

State Estimation Assessment of Algorithms Conclusions

Affine Arithmetic

Monte Carlo

Weighted least squares

Extended Kalman filter

Atmospheric measurements

Atmospheric measurements

Atmospheric and direct measurements

Atmospheric and direct measurements

Contributions of the thesis

Antonio Piccolo, Alfredo Vaccaro, and Domenico Villacci. Thermal rating assessment of overhead lines by Affine Arithmetic.

:

58

Electric Power Systems Research, 71(3):275–283, 2004 A Michiorri, P C Taylor, and S C E Jupe. Overhead line realtime rating estimation algorithm : description and validation. Proc. IMechE - J. Power and Energy, 224(A):293–304, jan 2009

1

Introduction

2

Objective

3

State Estimation

4

Assessment of Algorithms

5

Conclusions

1. DLR Methods

3. Steady state

4. Validation →Simulations

3. Dynamic State

4. Validation →Simulations, test

5. Conclusions

Steady State State Estimation problem DLR State Estimation

e

OHL data

Introduction Objective

 ˆ x= R

L

WLS TS1 TS2

C

z

State Estimation

e

18

Steady State

State estimation

◮ Conductor properties ◮ OHL geometry ◮ Configuration ◮ GIS data

David L. Alvarez A.

· · · TSN

T

z e

Dynamic State

Assessment of Algorithms

Down scaling

NWP

Conclusions

PMU vk , ik , vm , im

Temperature - TS Tension - H Sag - D Direct Methods

Indirect Methods

Integration equations 0=R−

N X n=1

:

58

ℓn Rn′ T

ref

(1 + αn (TSn − Tref ))

2 N 2 X v Y vk Yc m c Rn (TSn ) − im 0 = ik − R − 2 2 n=1

Measurement Model 0 = h (z, x) + e DLR State Estimation

State Variables

David L. Alvarez A.

 x= R

Introduction Objective State Estimation 19

Steady State Dynamic State

Assessment of Algorithms

L C

TS1

TS2

· · · TSN

Measurements  z = Re (vk ) Im (vk ) Re (ik ) Im (ik ) Re (vm ) . . .  Im (vm ) Re (im ) Im (im ) zW zTS zH zD

Conclusions

Residual

ε = h (z, ˆ x) ∇x J (x) = [H]T [W] [h(z, ˆx)] :

T

58

Measurement Functions  h (z, x) = Re (hv (z, x)) hR (z, x)

Im (hv (z, x))

hP (z, x)

Re (hi (z, x))

hQ (z, x)

hT (z, x)

DLR State Estimation David L. Alvarez A.

Re (hv (x, z)) = Re (vk ) −



Introduction Im (hv (x, z)) = Im (vk ) −



Objective Re (hi (x, z)) = Re (ik )−

State Estimation

Im (hi (x, z)) = Im (ik )− −

Dynamic State

Re (vm ) XL YC Im (vm ) YC R Re (vm ) − + Im (im ) XL − Re (im ) R 2 2

hR (z, x) = R −

N X

Rn (TSn )

2 N 2 n=1 X v Y vk Y m Rn (TSn ) − im hP (z, x) = ik − R − 2 2 hQ (z, x) = QC + QR − (QJ + QS )

hT (z, x) = z [TS ] − x [TS ] hH (z, x) = z [H] − H (x [TS ]) hD (z, x) = H (z [D]) − H (x [TS ])

58

! !

Re (vm ) XL YC 2 Im (vm ) YC 2 R Im (im ) XL YC Re (im ) YC R + Re (vm ) YC − + − Im (im ) − 4 4 2 2

n=1

:

!

Re (vm ) YC R Im (vm ) XL YC + Im (vm ) + − Im (im ) R − Re (im ) XL 2 2

Assessment of Algorithms Conclusions

...  hD (z, x) T

Im (vm ) XL YC 2 Re (vm ) YC 2 R Re (im ) XL YC Im (im ) YC R − Im (vm ) YC − + − Re (im ) + 4 4 2 2

20

Steady State

Im (hi (z, x)) hH (z, x)

!

Jacobian Matrix H=

∂h(z, x) ∂x

DLR State Estimation David L. Alvarez A.



Introduction Objective State Estimation 21

Steady State Dynamic State

Assessment of Algorithms Conclusions

:

58

                     H=                    

∂ Re (hv (z, x)) ∂R ∂ Im (hv (z, x)) ∂R ∂ Re (hi (z, x)) ∂R ∂ Im (hi (z, x)) ∂R ∂hR (z, x) ∂R ∂hE (z, x) ∂R

∂ Re (hv (z, x)) ∂XL ∂ Im (hv (z, x)) ∂XL ∂ Re (hi (z, x)) ∂XL ∂ Im (hi (z, x)) ∂XL

∂ Re (hv (z, x)) ∂YC ∂ Im (hv (z, x)) ∂YC ∂ Re (hi (z, x)) ∂YC ∂ Im (hi (z, x)) ∂YC

0

0

0

∂hE (z, x) ∂YC

0

0

∂hP (z, x) ∂YC

0

0

0

0

0

0

0

0

0

0



        0     0     ∂hR (z, x)     ∂TS  ∂hE (z, x)    ∂TS    ∂hP (z, x)    ∂TS    ∂hTS (z, x)    ∂TS  ∂hH (z, x)    ∂TS  ∂hD (z, x)  ∂TS 0

Weights Matrix - W h W = diag 1/σv 2 1/σh

2

P

1/σv 2 1/σh

1/σi 2

2

Q

1/σi 2

1/σT

2

S

1/σh 2

... iT 1/σh 2

R

1/σH 2

D

DLR State Estimation David L. Alvarez A. Introduction

Standard deviations for σv ,σi , σTS and σH are taking as a third part of the accuracy.

Objective State Estimation 22

Steady State

As remaining measurement functions are taking through indirect measurements the uncertainty is propagated

Dynamic State

Assessment of Algorithms Conclusions

σh(z,x)

:

58

v !2 u u ∂h (z, x) t + = σz1 ∂z1

∂h (z, x) ∂z2

σz2

!2

+ ··· +

∂h (z, x) ∂zN

σzN

!2

Heat Transfer Equation   0 = PCn Tan , Sn , ϑan , TSn + PRn Tan , TSn − DLR State Estimation

2 ! v Y  m c − im Ri′ TSn + PSn (Sn ) 2

Forced convective cooling

David L. Alvarez A. Introduction QC = π 2.42 · 10

Objective

−2

+ 7.2 · 10

−5

State Estimation

TS + Ta 2

!!



  (TS − Ta ) B1   

n

ρr ϑd 1.32 · 10−5 + 9.5 · 10−8

  !  TS + Ta  2

Solar Radiation - S

Current - |ikm |

~ Wind - ϑ

23

Steady State

Error propagation

Dynamic State

Assessment of Algorithms

σhQ (z,x)

Conclusions

∂QJ ∂ikm ∂QR ∂Ta ∂QC ∂Ta ∂QC ∂ϑ ∂QC ∂δ :

58

v !2 u u ∂QR ∂QC + σTa + σTa =t ∂Ta ∂Ta

∂QC σϑ ∂ϑ

!2

+

∂QC σδ ∂δ

!2

+

∂QJ σi ∂ikm km



=2ikm Rref (1 + α (TS − Tref )) = − 4πd ǫσb (Ta + 273)3 ≈ − 2.42 × 10−2 πB1 7.58 × 104 ρr ϑd

n

(A2 + B2 sin δ m1 )

n 2.42 × 10−2 nπ (TS − Ta ) B1 7.58 × 104 ρr ϑd (A2 + B2 sin δ m1 ) ϑ n 2.42 × 10−2 π (TS − Ta ) B1 ≈ 7.58 × 104 ρr ϑd (B2 sin δ m1 m1 cos δ) sin δ



!2

+ σS2

Change State Equation " 0=

EA (Rs mc g)2 24

− Hs 2 Hs − Href +

EA (Rs mc g)2 2

24Href

#

+ EAεt (Ts − Tref )

DLR State Estimation David L. Alvarez A.

Derivative of inverse function

Introduction

y

  −1 ′ f (f (H)) =

Objective State Estimation 24

Steady State

TS =

(Rs mc g)2

1

εt 24

H2

Dynamic State



1

f ′ (H) F y= cosh ! m g H − HT 1 ref +T − ref 2 HT EAεt x

c

mc gx Fx

!

Fy + dFy dl

Fx F~

ref

x

Assessment of Algorithms Conclusions

Partial derivative dTS dH ∂hH ∂TS

=− =−

(Rs mc g )2 12εt H 3

58

1 EAεt

1 (Rs mc g )2 12εt H 3

:



+

1 EAεt

dl mc g Fy

F~ + d F~ Fx + dFx

Catenary Equation " 0=

EA (Rs mc g)2 24

− Hs (D)2 Hs (D) − Href +

EA (Rs mc g)2 24Href

2

+ EAεt (Ts − Tref )

#

DLR State Estimation David L. Alvarez A.

Mechanical tension as a function of sag - Numerical approximation

Introduction

y

Objective State Estimation

h

25

Steady State

s

A

Dynamic State

3

H D−

s 2 mc g H 2 8



s 4 (mc g)3 384

f

≈0

D B

Assessment of Algorithms

H mc g x 0

Conclusions Polynomial form - ax 3 + bx 2 + cx + d = 0 2

4

3

a = D , b = −s mc g/8 , c = 0 , d = −s (mc g) /384 H (D) =

r 3

q+

q

q   3 q2 + r − p2 3 + q − q2 + r − p2 3 + p

p=−

:

58

r

b

3a

3

,q = p +

bc − 3ad 6a2

,r =

c

3a

Dynamic Temperature Estimation EKF designed DLR State Estimation

vk u (t)

David L. Alvarez A. Introduction



x (t)

Heat transfer Dynamic phenomenon Model

w (t)

Objective State Estimation

ˆ x+ k−1

ˆ+ ˆ˙ − x k−1 , u, 0, t k =f x Prediction



z k = xk + vk •

Measurement process

ˆx− k ˆ+ P k−1

zk

h (xk , vk )



ˆ− P k

EKF



xˆk+

Pˆk+ Pˆk−

− xˆk+1

xˆk−

ˆx+ k ˆ+ P k

• + xˆk−1

Update

Steady State 26

Dynamic State

t

Dynamic state estimation

Assessment of Algorithms

1. Model →

Conclusions

dTS dt

=

QJ (TS ) + QS − QC (TS ) − QR (TS )

  f (x, u, w, t)   0  x˙ =    0 0

zk = h (xk , vk ) w (t) ∼ (0, Q) vk ∼ (0, Rk ) :

58

mc c

T  x = TS |ϑ| εs αs   u = |ikm | Ta δ S z = TS , H, D

Dynamic Temperature Prediction EKF designed DLR State Estimation

vk

David L. Alvarez A.

u (t)



x (t)

Heat transfer

Introduction

Dynamic phenomenon Model

w (t)

zk

h (xk , vk )

z k = xk + vk •

Measurement process



xˆk+

Pˆk+ Pˆk−

− xˆk+1

xˆk−

Objective ˆx− k

State Estimation

ˆ+ P k−1

Steady State

ˆ x+ k−1

ˆ˙ − x x+ k =f ˆ k−1 , u, 0, t Prediction



ˆ− P k

• EKF Update

27

Dynamic State

Assessment of Algorithms

ˆx+ k ˆ+ P k

• + xˆk−1

t

Dynamic state estimation

2. Predict

Conclusions

df   dTS F=   0  0

df

df

0

dϑ 0 0 0

dεs 0 0 0

df

df

df



   + f ˆ xk−1 , u, 0, t   − 0  ˆ x˙ k =    0 0

+ T T ˙ − = FP+ P k−1 + Pk−1 F + LQL k

:

58



 dw  ikm L=   0  0 0

dwTa dwδ 0 0 0 0 0 0

  dαs   0  0  0 df

df

xˆ,u

 dwS    0   0 0 ˆ x,u

Dynamic Temperature Estimation EKF designed DLR State Estimation vk

David L. Alvarez A. u (t)

Introduction



Heat transfer Dynamic phenomenon Model

w (t)

Objective

ˆ+ P k−1

Steady State 28

Assessment of Algorithms

ˆ x+ k−1

ˆ˙ − x x+ k =f ˆ k−1 , u, 0, t Prediction



zk

h (xk , vk )

z k = xk + vk •

Measurement process

ˆx− k

State Estimation Dynamic State

x (t)

ˆ− P k

• EKF

Pˆk−

− xˆk+1

xˆk−

ˆx+ k ˆ+ P k



Update

+ xˆk−1

t

Dynamic state estimation

Conclusions

3. Update −1  − T T T Kk = P− k H k H k P k H k + Mk R k Mk    ˆ x− x+ x− k =ˆ k + Kk zk − h ˆ k

H=

− T T T P+ k = (I − Kk Hk ) Pk (I − Kk Hk ) + Kk Mk Rk Mk Kk

:



xˆk+

Pˆk+

58



dh dTS

0

0

 0

ˆ x

dh (TS ) M= dv

ˆ x

1

Introduction

2

Objective

3

State Estimation

4

Assessment of Algorithms

5

Conclusions

1. DLR Methods

3. Steady state

4. Validation →Simulations

3. Dynamic State

4. Validation →Simulations, test

5. Conclusions

OHL under test - BR1 Landsnet Weather interpolation using Biharmonic splines at 2016-04-18 21:00 DLR State Estimation

7

2 6.5

David L. Alvarez A.

1 6

64.5° N

64.5° N 0

Introduction

5.5

-1

5

Objective

4.5

-2

State Estimation

4

-3 3.5

Assessment of Algorithms

-4 3

-5 2.5

29

Steady State

-6 2

Dynamic State 21.5° W

Conclusions

:

58

Towers

Conductor

Fx [kN]

Tref [◦ C]

Capacity [MVA]

1-4 4-13 13-23 23-38 38-62 62-72 72-83 83-94 94-95 95-98 98-103 103-104 104-105 105-106 106-109

470-AL3

24.2 28.1 21.2 22.2 25.7 23.1 21.4 33.9 35.1 7.4 6.6 23.8 23.7 36.1 15.2

20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

304

109-112

6469AL3134ST4A

49.9

20

112-116 116-120 120-125 125-127 127-129 129-130 130-139 139-143 143-147 147-151 151-155 155-161 161-166 166-172

470-AL3

14.0 21.7 21.6 16.9 10.6 9.4 19.2 17.3 73.6 25.4 39.4 39.7 25.7 47.4

20 20 20 20 20 20 20 20 20 20 20 20 20 20

470-AL3 470-AL3 470-AL3 470-AL3 470-AL3 470-AL3 470-AL3 470-AL3 470-AL3 470-AL3 470-AL3 470-AL3 470-AL3 470-AL3

470-AL3 470-AL3 470-AL3 470-AL3 470-AL3 470-AL3 470-AL3 774-AL3 2X774-AL3 2X774-AL3 2X774-AL3 2X774-AL3 2X774-AL3

Span

21.5° W

1

2

3

4

5

6

7

8

9

10

289 230 436 421 318 379 388 387 426 197 208 400 392 480 272

387 395 398 343 449 453 389 389

440 302 457 394 386 317 446 294

308 340 408 414 299 429 224

392 277 308 386 411 433 241

410 188 397 441 328 293 455

337 432 414 413 450 377 272

336 268 313 402 418 446 398

359 187 376 441 416 372 414

331 435 410 308 446 366

213 140

194 136

183

162

136

142

146

133

304

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

295

192

304

16

202

909

159

304

17 18 19 20 21 22 23 24 25 26 27 28 29 30

318 316 258 377 270 312 380 373 468 222 441 193 173 368

278 316 383 182 284

371 233 327

329 217 374

255

290 329 329 349 249 398 260 384

362 365 289 337 288 307 276 398

378 347 580 387 349 238 213 385

388

349

303

280

341

351 297 337

316

304 304 304 304 304 304 304 304 304 304 304 304 304

352 304 304 304 304 304 304 304 415 830 830 830 830

Section

340

11

12

13

14

15

16

17

18

19

20

21

22

23

24

435 416

436 433

405 405

208 431

394 395

444

408

428

391

367

353

342

349

375

225 398

354

252

State Estimator Performance - Simulation OHL BR-1 located in Iceland and operated by LandsNet DLR State Estimation

~ S, |ikm | Ta , ϑ,

David L. Alvarez A.

Thermal phenomenon

TS

Mechanical phenomenon

ℓ, D, H

Electro-magnetic phenomenon

R, L, C

Introduction Objective State Estimation Assessment of Algorithms 30

Steady State Dynamic State

Conclusions

Matlab simulations ik

vk

R(Ts , ℓ)

C (D, ℓ)

L(ℓ)

C (D, ℓ)

im

vk , i k , vm , i m vm

Solar Radiation - S

Current - |ikm |

Power Flow R SIMULINK

:

58

R, L, C

Heat Transfer R Matlab

~ Wind - ϑ

State Estimator Performance - Simulation OHL BR-1 Simulation at 18:00 18.04.2016 DLR State Estimation

Weather station report

David L. Alvarez A. Direct and indirect meas. accuracy

Introduction Objective

NWP

State Estimation Assessment of Algorithms

Down scaling 31

Steady State Dynamic State

Direct measurements

Conclusions

Name Ta ϑ δ Ta ϑ δ TS D H v i

Accuracy 2 35 11.25 1 20 11.25 0.5 2.5 0.03 0.3 0.3

Units [K] [%] [◦ ] [K] [%] [◦ ] [K] [cm] [%] [%] [%]

Name

Ta [◦ C]

ϑ [m/s]

Rvk Holms Korpa Geldn Kjaln Skrau Blikd Sfell

3.0 2.1 2.7 3.1 2.0 2.1 1.8 -4.7

3 4 3 3 5 7 5 4

Algorithm 1 1: 2: 3: 5: 6: 7:

Direct Measurements

8: 9:

zTheor.

zmeasured zTheor. + e −125.60 + j26.63 −517.26 + j486.07 −111.39 + j37.95 511.86 − j505.74 16.7 25.353 15.696 10.39

Ruling Span 17 1 15 11

Span Units

10:

1 1 1 1

12:

11:

[kV] [A] [kV] [A] [◦ C] [kN] [kN] [m]

13: 14: 15: 16: 17: 18: 19: 20: 21: 22:

:

58

Name

Ta [◦ C]

ϑ [m/s]

Moshe Tingv Akrfj Tyril Botns Skahe Hamel Hveyr

-0.5 2.5 1.7 2.0 -3.5 -3.5 1.3 1.5

4 3 6 3 5 7 4 5

Wind Direction [◦ ] -68 270 202 135 270 225 225 225

Algorithm

4:

vk −125.78 + j26.667 ik −518.32 + j486.70 vm −111.32 + j37.853 im 513.00 − j506.26 TS17 16.8 H1 25.356 H15 15.698 D11 10.38

Wind Direction [◦ ] 225 225 202 202 247 202 247 -68

23:

Proposed algorithm for DLR state estimation using WLS

procedure DlrSE(z, OHL, ˆ x0 ) ˆx ← ˆx0 ǫ ← 0.01 e←∞ while e ≥ ǫ do if ∃ ˆx.TS ≤ −273 then return error break else h (z, ˆx) ← h(z, ˆ x, OHL) ⊲ Measurement functions  T  ⊲ Weights matrix W ← diag 1/σ1 2 1/σ2 2 . . . 1/σi 2 H ← ∂h(z, x)/∂x ⊲ Jocabian matrix h i−1 T T ∆ˆx ← [H] [W] [H] [H] [W] [h(z, ˆ x)] ˆx ← ˆx − ∆ˆx e ← max |∆ˆx| if ∃ Im (∆ˆx) 6= 0 then return error break end if end if end while return ˆx end procedure

TS Estimated by Proposed Algorithm

b S = 40 [◦ C] Rb0 = 3.83 [Ω], XbL0 = 25.2 [Ω], YbC0 = 164 [µS], T 0

DLR State Estimation

25

David L. Alvarez A. Introduction

20

Objective State Estimation

15

Assessment of Algorithms 32

Steady State Dynamic State

10

Conclusions

5

0

-5 5 :

58

10

15

Ruling Span

20

25

30

The algorithm converged in 4 iterations

Standard laptop, 8 GB of RAM and Intel R Core i5-1.70 GHz DLR State Estimation

107

David L. Alvarez A. Introduction

106

Objective State Estimation

105

Assessment of Algorithms 33

Steady State Dynamic State

104

Conclusions

103

102

101 :

58

1

1.5

2

2.5

3

3.5

4

Impact of Meas. errors - 1000 runs Average time of 2.6 [s] with 3 or 4 iterations. The maximum distance between whiskers was ≈ 8 [K] DLR State Estimation David L. Alvarez A.

25

Introduction Objective

20

State Estimation Assessment of Algorithms

15 34

Steady State Dynamic State

Conclusions

10

5

0

-5 2

4

6

8

10 12 14 16 18 20 22 24 26 28 30

Ruling Span :

58

Comparison between TS estimated and computed using the two weather models DLR State Estimation

8

David L. Alvarez A. Introduction

7

Objective

6

State Estimation Assessment of Algorithms

5 35

Steady State Dynamic State

4

Conclusions

3 2 1 0 2

:

58

4

6

8

10

12

14

16

18

20

22

24

26

28

30

Influence of Direct Measurements DLR State Estimation

5

David L. Alvarez A.

4.5

Introduction Objective

4

State Estimation

3.5

Assessment of Algorithms 36

Steady State

3

Dynamic State

2.5

Conclusions

2 1.5 1 0.5 0 2

:

58

4

6

8

10 12 14 16 18 20 22 24 26 28 30

Dynamic State Estimator Performance Temperature tracking calculation Example - Cigre 601 DLR State Estimation David L. Alvarez A. Introduction Objective

Time [min]

Ta [◦ C]

ϑ [m/s]

δ [◦ ]

t≤0 0 < t ≤ 10 t > 10

24.0 23.7 23.5

1.9 1.7 0.8

55 62 37

  S W/m2

Assessment of Algorithms Steady State 37

Conclusions

Type A d ms ma E ′ R25 ◦C βs βa αs ε α cs 20 ◦ C ca 20 ◦ C

Drake 26/7

unit

ACSR 486.6 × 10−6 10.4 × 10−3 0.5119 1.116 57000 × 106 0.0727 × 10−3 1 × 10−4 3.8 × 10−4 0.8 0.8 23 × 10−6 481 897

m2 m kg/m kg/m N/m2 Ω/m 1/K 1/K 1 1 1/K J/K kg J/K kg

Rs Tref Href

Units

300 20 24.2

m ◦C kN

2: 3: 4: 5: 6: 7: 8: 9: 10: 11: 12:

ˆx− x+ k ←ˆ k−1 + P− k ← Pk−1 for j ← ∆t to tk step ∆t  do ˆx˙ − x− k ←f ˆ k , u, 0, ∆t ˆx− ← ˆx− + ˆx˙ − k

⊲ Predict

k

k

F ← ∂f/∂x|ˆx− ,uk k L ← ∂f/∂w|ˆx− ,uk k ˙ − ← FP− + P− FT + LQLT P k k k − − ˙− Pk ← Pk + P k end for

13: 14: 15: 16: 17: 18: 20:

58

Values

Algorithm 2 Proposed algorithm for DLR State estimation using an EKF + 1: procedure HybridEKF(zk ,uk ,ˆ x+ k−1 ,Pk−1 ,∆t,tk ,Q,Rk )

19:

:

802 819 856

Conductor and span characteristics

State Estimation

Dynamic State

|ikm | [A]

0 0 0

21:

Hk ← ∂h/∂x|ˆx− k Mk ← ∂h/∂v|ˆx−

k −1 − T T Kk ← P− Mk Rk MT k k Hk Hk Pk Hk +  x− ⊲ Update xˆ+ x− k k ←ˆ k + Kk zk − h ˆ T + − T Pk ← (I − Kk Hk ) Pk (I − Kk Hk ) + Kk Mk Rk MT k Kk

+ return ˆx+ k , Pk end procedure



Thermal Monitoring - Transient State lower limit |ϑk | = |ϑk |Theor. + 0.5 [m/s] RMSe = 4.02 [K], upper limit |ϑk | = |ϑk |Theor. − 0.5 [m/s], RMSe = 6.73 [K]. DLR State Estimation

70

David L. Alvarez A. Introduction

65

Objective State Estimation

60

Assessment of Algorithms Steady State 38

Dynamic State

55

Conclusions

50

45

40 00:00 :

58

00:10

00:20

00:30

Time

00:40

00:50

Temperature Measurements Estimated wind speed DLR State Estimation

2.5

David L. Alvarez A. Introduction

2

Objective State Estimation Assessment of Algorithms

1.5

Steady State 39

Dynamic State

Conclusions

1

0.5

0 00:00

00:10

00:20

00:30

Time :

58

00:40

00:50

Estimated Temperature 

  ✯, t0 , R = (1.5/3)2 K2 , Update rate = z = TS , x˙ = f x, u, w 60 [s] DLR State Estimation

7

David L. Alvarez A.

6

Introduction

55

Objective

5 State Estimation

50

Assessment of Algorithms

4

Steady State 40

Dynamic State

45

Conclusions

3

2 40 1 35 0 00:00

00:10

00:20

00:30

00:40

00:50

Time

:

RMSe lower limit 0.34 [K] 58

RMSe upper limit 0.54 [K]

RMSe Simulated 0.6 [K]

Predicted Temperature  

  ✯, t0 , R = (1.5/3)2 K2 , Update rate = z = TS , x˙ = f x, u, w 60 [s], ∆tC = 15 [min] DLR State Estimation

15

David L. Alvarez A.

55

Introduction Objective State Estimation

50

10

Assessment of Algorithms Steady State 41

Dynamic State

45

Conclusions

5 40

35 0 00:00

00:10

00:20

00:30

00:40

00:50

Time

RMSe lower limit 1.6 [K] :

58

RMSe upper limit 2.2 [K]

Mechanical Monitoring   Tension   0

✯, t , R = (100/3)2 N2 , Update rate = z = H, x˙ = f x, u, w 60 [s] DLR State Estimation

58

21.8

David L. Alvarez A.

56

21.6

54

21.4

State Estimation

52

21.2

Assessment of Algorithms

50

21

48

20.8

46

20.6

44

20.4

42

20.2

Introduction Objective

Steady State 42

Dynamic State

Conclusions

40 00:00

20 00:10

00:20

00:30

00:40

00:50

Time

:

58

RMSe lower limit - estimated 0.18 [K]

RMSe upper limit - estimated 1.5 [K]

RMSe lower limit - predicted 0.22 [K]

RMSe upper limit - predicted 2 [K]

Sag Monitoring  z = D, x˙ = f 60 [s] DLR State Estimation

58

David L. Alvarez A.

56

   ✯, t0 , R = (0.2/3)2 m2 , Update rate = x, u, w 9.1 9

Introduction

54

Objective

8.9

State Estimation

52

Assessment of Algorithms

50

8.7

48

8.6

8.8

Steady State 43

Dynamic State

Conclusions

8.5

46

8.4 44 8.3 42 40 00:00

8.2 8.1 00:10

00:20

00:30

00:40

00:50

Time

:

58

RMSe lower limit - estimated 0.28 [K]

RMSe upper limit - estimated 1.5 [K]

RMSe lower limit - predicted 0.29 [K]

RMSe upper limit - predicted 1.5 [K]

Performance Comparison 1000 simulations for each one of direct measurements DLR State Estimation David L. Alvarez A. Introduction Objective

Performance comparison between the three kind of direct measurements for 1000 random cases

State Estimation Assessment of Algorithms Steady State 44

Dynamic State

Conclusions

:

58

Measurement

Avg. RMSe [K]

Avg. Time [s]

Temperature Tension Sag

0.303 0.253 0.328

0.0593 0.0598 0.0602

Dynamic Estimation Algorithm Validation Testing scheme DLR State Estimation

W1

W2

Transformer

z1

z2

z1′

z2′ y2′ x2′

David L. Alvarez A.

A V1

V2

y1

y2

y1′

U1

U2

x1

x2

x1′

Introduction

OHL conductor

ikm



+

Objective

V State Estimation Assessment of Algorithms Steady State 45

Dynamic State

Type Standart A d ms ma ′ R50 ◦ C,60 Hz βs βa αs εs α cs 20 ◦ C ca 20 ◦ C

Conclusions

:

58

Linnet ACSR 26/7 ASTM B 232 198.38 × 10−6 18.31 × 10−3 0.217 0.472 0.2095 × 10−3 1 × 10−4 3.8 × 10−4 0.5 0.5 23 × 10−6 481 897

unit

m2 m kg/m kg/m Ω/m 1/K 1/K 1 1 1/K J/K kg J/K kg

Test Setup EM&D- Laboratory, UNAL - Bogota, Colombia DLR State Estimation David L. Alvarez A. Introduction Objective State Estimation Assessment of Algorithms Steady State 46

Dynamic State

Conclusions

:

58

Assumed Conditions - Planned case 1: assumed conditions ǫs = 0.5, case 2: |ϑk | = |ϑk |fore. − 0.5 [m/s] ǫs = 0.2, case 3: |ϑk | = |ϑk |fore. + 0.5 [m/s], ǫs = 0.9 DLR State Estimation

2.5 450

David L. Alvarez A. Introduction

400

2

Objective State Estimation

350

Assessment of Algorithms

1.5

300

Steady State 47

Dynamic State

250

Conclusions

1 200 150 0.5 100 0

50 12:00

13:00

14:00

Time :

58

15:00

16:00

Measurements

    z = TS , x˙ = f (x, u, w , t), Q = (5/3)2 A2 , (1.5/3)2 K2 ,   R = (1.5/3)2 K2 , Update rate = 30 [s]

DLR State Estimation

450

David L. Alvarez A.

60

Introduction

400

Objective

50

State Estimation Assessment of Algorithms

350 300

40

Steady State 48

Dynamic State

Conclusions

250

30

200 20 150 10

100 50

0 12:00

13:00

14:00

Time :

58

15:00

16:00

Uncertainty Influence case 1: RMSǫ = 2.4 [K], case 2: RMSǫ = 5.7 [K], case 3: RMSǫ = 5.5 [K] DLR State Estimation

70

David L. Alvarez A.

65

Introduction

60

Objective State Estimation

55

Assessment of Algorithms

50

Steady State 49

Dynamic State

45

Conclusions

40 35 30 25 20 12:00 :

58

13:00

14:00

Time

15:00

16:00

Estimated Parameters DLR State Estimation

3

0.9

David L. Alvarez A.

0.8

Introduction

2.5

Objective

0.7

State Estimation

2

Assessment of Algorithms

0.6

Steady State 50

Dynamic State

1.5

0.5

Conclusions

0.4 1 0.3 0.5 0.2 0

0.1 12:00

13:00

14:00

Time :

58

15:00

16:00

EKF - Estimated Temperature Using case 2: RMSǫ = 1.5 [K] DLR State Estimation David L. Alvarez A.

60

Introduction

25

Objective State Estimation

50

20

40

15

30

10

20

5

Assessment of Algorithms Steady State 51

Dynamic State

Conclusions

10

0 12:00

13:00

14:00

Time :

58

15:00

16:00

EKF - Predicted Temperature Using case 2: RMSǫ = 2.5 [K] DLR State Estimation David L. Alvarez A.

60

Introduction

25

Objective State Estimation

50

20

40

15

30

10

20

5

Assessment of Algorithms Steady State 52

Dynamic State

Conclusions

10

0 12:00

13:00

14:00

Time :

58

15:00

16:00

1

Introduction

2

Objective

3

State Estimation

4

Assessment of Algorithms

5

Conclusions

1. DLR Methods

3. Steady state

4. Validation →Simulations

3. Dynamic State

4. Validation →Simulations, test

5. Conclusions

Conclusions Concluding Remarks DLR State Estimation

1. A state estimation methodology was proposed both steady and dynamic state

David L. Alvarez A. Introduction

OHL ratings

Network data

Objective

◮ Conductor data ◮ OHL geometry ◮ Configuration

State Estimation

State prediction

State estimation

◮ GIS data

DLR

Assessment of Algorithms Conclusions

Downscaling Weather Nowcast

53

Numerical Weather Prediction - NWP

Indirect Methods

PMU vk , i k , vm , i m

Sag Tension Temperature

Direct Methods

2. This methodology runs with typical DLR measurements Technology DGPS PLS Power DonutTM

58

Communication Measurements TCP-IP ZigBee GSM, GPRS, EDGE, ZigBee DNP, Modbus, GSM, CDMA GSM, GPRS, DNP3, IEC61850 GSM IEEE C37.118

R Sagometer

Sag

Ampacimon

Sag

CAT-1

Tension Sag - Temperature

PMU :

Parameter Sag Temperature Sag - Temperature

D TS i , V , T , θ, P, Q Image f

Tension, H v, i

Conclusions Concluding Remarks DLR State Estimation

3. Expressions to implement the proposed SE algorithms were derived

David L. Alvarez A. 

Introduction Objective State Estimation Assessment of Algorithms Conclusions

54

∂ Re (hv (z, x))  ∂R    ∂ Im (hv (z, x))  ∂R    ∂ Re (hi (z, x))  ∂R    ∂ Im (hi (z, x))   ∂R   ∂hR (z, x)   ∂R H=  ∂hE (z, x)   ∂R    0     0     0    0

∂ Re (hv (z, x)) ∂YC ∂ Im (hv (z, x)) ∂YC ∂ Re (hi (z, x)) ∂YC ∂ Im (hi (z, x)) ∂YC

∂ Re (hv (z, x)) ∂XL ∂ Im (hv (z, x)) ∂XL ∂ Re (hi (z, x)) ∂XL ∂ Im (hi (z, x)) ∂XL 0

0 ∂hE (z, x) ∂YC ∂hP (z, x) ∂YC

0 0 0

0

0

0

0

0

0



        0     0    ∂hR (z, x)   ∂TS   ∂hE (z, x)   ∂TS   ∂hP (z, x)   ∂TS   ∂hTS (z, x)  ∂TS   ∂hH (z, x)   ∂TS   ∂hD (z, x)  0

∂TS

4. This research proposed the integration of direct and indirect DLR measurements Electro-Magnetic i, v E~

TS , P, σ R, L, C Thermal ~ Q, Ta , S, ϑ

:

58

D, ℓ

Mechanical H

Conclusions Concluding Remarks DLR State Estimation David L. Alvarez A. Introduction

5. To simulate and test the algorithms, these showed computational efficiency and stability

Objective State Estimation Assessment of Algorithms Conclusions

107

2.5

106

2

55 105

1.5 104

1 103

0.5 102

101

1

1.5

2

2.5

3

3.5

4

0 00:00

00:10

00:20

00:30

Time

:

58

00:40

00:50

Conclusions Published researches DLR State Estimation

◮ David L Alvarez, Filipe Faria Miguel da Silva, Claus Leth Bak,

David L. Alvarez A.

Enrique E Mombello, and Javier A Rosero. Dynamic line rating Technologies and challenges of PMU on overhead lines: A survey. In 2016 51st International Universities Power Engineering Conference (UPEC), pages 1–6, Coimbra, sep 2016. IEEE Press ◮ David Alvarez, Filipe Miguel Faria da Silva, Claus Leth Bak, Enrique

Introduction Objective State Estimation Assessment of Algorithms Conclusions

56

Mombello, Javier Rosero, and Daniel Olason. A Methodology to Assess PMU in the Estimation of Dynamic Line Rating. Generation, Transmission Distribution, IET- Under Review - Round 1, 2017 ◮ David L Alvarez, F Faria, Enrique E Mombello, Claus Leth, and Javier A Rosero. An Approach to Dynamic Line Rating State Estimation at Thermal Steady State Using Direct and Indirect Measurements. Electric Power Systems Research - Accepted, 2017 ◮ David Alvarez, Filipe Miguel Faria da Silva, Enrique E Mombello, Claus Leth Bak, and Javier A Rosero. Dynamic Line Rating Estimation and Prediction at Thermal Transient State. IEEE Transactions on Power Delivery - Under Review, 2017

:

58

Conclusions Future Works DLR State Estimation David L. Alvarez A. Introduction Objective

1. Several assumptions were considered in the assessment of the algorithms

State Estimation Assessment of Algorithms Conclusions

57

2. The algorithms were based on available true measurements 3. Field measurements on a real OHLs under typical operating conditions need to be considered 4. A framework can be developed

:

58

Assessment with Field Measurements 2  2 2  2

z = TS , D, RTS = (1.5/3) K , RD = (0.1/3) m , Qikm =     (5/3)2 A2 , QTa = (1.5/3)2 K2 , Update rate = 5 [min]

DLR State Estimation

40

David L. Alvarez A.

30

35 25 30

Introduction Objective

Rs Tref Href

State Estimation Assessment of Algorithms Conclusions

Values 82.3 20 4.130

Units m ◦C kN

20

25 20

15 15 10

10 5

5

0

58

0 06:00

09:00

12:00

15:00

18:00

21:00

Time - [h:m] 40

40

2.7

35

2.6

30

2.5

25

2.4

10

20

2.3

5

15

2.2

0

10 06:00

30

35 25 30 20

25 20

15 15 10 5 0 06:00

09:00

12:00

15:00

Time - [h:m]

:

58

18:00

21:00

2.1 09:00

12:00

15:00

Time - [h:m]

18:00

21:00

Thank you for your attention Questions?

David L. Alvarez Phone +57 301 4413314 Email: [email protected] Web: www.ing.unal.edu.co/grupos/emd/

Suggest Documents