Dynamic optimization model for natural gas processing plant units. ⢠Dynamic energy and ..... Feed: vapor from High Pressure Separator. ⢠Polytropic expansion ...
Dynamic Modeling and Optimization of Large-Scale Cryogenic Processes Maria Soledad Diaz Planta Piloto de Ingeniería Química Universidad Nacional del Sur -CONICET Bahía Blanca, ARGENTINA
Outline ¾ Objective ¾ Natural Gas Processing Plants ¾ Methodology ¾ Mathematical Models ¾ Discussion of Results ¾ Conclusions and Current Work
2
Objective ¾ Dynamic optimization model for natural gas processing plant
units • • • • • •
Dynamic energy and mass balances Phase equilibrium calculations with cubic equation of state Hydraulic correlations Phase change in countercurrent heat exchanger Carbon dioxide precipitation in column Phase existence in column
¾ Simultaneous dynamic optimization approach • Discretization of state and control variables • Resolution of large-scale Nonlinear Programming problem
¾ Analysis of main variables temporal and spatial profiles
3
Natural Gas in Argentina Component
Feed A
Feed B
Nitrogen
1.44
1.37
Carbon dioxide
0.65
1.30
Methane
90.43
89.40
Ethane
4.61
4.43
Propane
1.76
2.04
Butanes
0.77
0.96
Pentanes+
0.34
0.50
4
Natural Gas Processing Plants ¾ Provide ethane as raw material for olefin plants (ethylene)
and petrochemical ¾ High ethylene yield ¾ Minimum by-products
a Bahía Blanca
a Bahía Blanca Ingeniero White
EP II
EP I
PEA D Pta. Clo ro Soda
PEBDL PEBD
a Médanos
tr
General D. Cerri
l Ce r ri
Pta. NH3 y Pta. Urea Pta. Fracc. de LGN
ferrocarril
Pe
o
Estación Aguara
Estación D. Cerri
lo Po
ic m uí oq
Almacen. de GN I
Gen e ra
GN I
NGL Plant
a hí Ba
ca an Bl
so a
ro f er
ril car
ac ce
Su r Nº 3 Ru t a
VCM PVC
a Bahía Blanca
PEBDL Puerto Galván Posta de Inflamables
5
Natural Gas Plants at Bahia Blanca
Natural Gas 24 MMsm3/d
NGL
5 MMsm3/d
Residual Gas
LPG Gasoline
355
Ethane
LPG Gasoline
533 C3 + C3= C4
700 Mt/y
C5+
Ethylene 6
Natural Gas Processing Plants ¾ Cryogenic sector (demethanizing), Conventional
fractionation (deethanizing, depropanizing, debutanizing, gasoline stabilization), CO2 removal ¾ Current technology: Turboexpansion (Old technology: Absorption) ¾ High pressure ¾ Cryogenic conditions
7
NATURAL GAS PLANT D E H Y D R A T I O N
Ethane To Ethylene Plant Ethane Treatment
CO2
TRAIN A
TRAIN B
C2
C3
C4
Propane
Compression/ Recompression
D E H Y D R A T I O N
TRAIN C
Separation
Butane Fractionation Gasoline
To Recompression TRAIN A
C3
C4
C3
C4
TRAIN B
Pipelines
Absorption Plant
8
Cryogenic Sector
Turboexpander
Demethanizer
Cryogenic Heat Exchangers High Pressure Separator
to deethanizer 9 column
Previous Work ¾ Operating conditions optimization in natural gas
processing plants (NLP) (Diaz, Serrani, Be Deistegui, Brignole, 1995)
¾ Automatic design and debottlenecking of ethane extraction
plants (MINLP) (Diaz, Serrani, Bandoni Brignole, 1997)
¾ Thermodynamic model effect on the design and
optimization of natural gas plants (NLP) (Diaz, Zabaloy, Brignole, 1999)
¾ Flexibility of natural gas processing plants - Dual mode
operation (Bilevel NLP) (Diaz, Bandoni, Brignole, 2002)
10
Dynamic Optimization Problem General Formulation min Φ(z(tf),y(tf), u(tf), tf , p) z(t),y(t), u(t), tf , p
st F(dz(t)/dt ,(z(t), y(t), u(t), p, t)=0 G(z(t) , y(t), u(t), p, t) = 0 zO = z(0) z(t) ∈ [zl, zu] u(t) ∈ [ul, uu] t, time z, differential variables y, algebraic variables
y(t) ∈ [xl, xu] , p ∈ [pl, pu] ,
tf, final time u, control variables p, time independent parameters
11
Dynamic Optimization Strategy Simultaneous Approach
Cervantes, Biegler (1998)
Nonlinear DAE optimization problem
Discretization of Control and State variables Collocation on finite elements
Large-Scale Nonlinear Programming Problem (NLP) Interior Point Algorithm
Biegler, Cervantes, Waechter (2002) 12
rSQP Algorithm Initialization Linearization Objective function, constraints and gradients at xk
Basis selection
Step for dependent variables (dY) (Linear system) Step for independent variables (dZ) QP in null space (Inequality constraints)
QP
dx = YdY + ZdZ Line search or Trust region Check Convergence
Optimal Solution
13
Nonlinear Programming Problem Application of Barrier method n
min f (x)
min f ( x) − µ ∑ ln x j
s.t c( x) = 0
s.t c( x) = 0
j =1
x ≥0 As µ Î 0,
x*(µ) Î x*
Sequence of barrier problems for decreasing µ values
14
Barrier Method Algorithm: Primal-Dual Approach Initialization BP
B, µ,ε
Step for dependent variables (dY) (Linear system) Update B Step for independent variables (dZ) Unconstrained QP in null space
Update B
QP
dx = YdY + ZdZ Step for dual variables dv Update µ, ε Line search or Trust region No
Check Barrier Problem Convergence
Check NLP Convergence
Optimal Solution 15
Cryogenic Sector Turboexpander Area 203
High pressure separator
Columm
Heat Exchangers
Area 204
Area 501
16
Cryogenic Heat Exchangers and HP Separator To Recompression
Rodriguez, Bandoni, Diaz (2004)
Residual Gas
V
To Turboexpander
ht
Phase Change
Horizontal High Pressure Separator
To Demethanizing Column
Baffled shell-and-tube single-pass countercurrent heat exchangers Tubes: residual gas
Ts2_i = 322 K
Shell: natural gas feed Natural Gas
Partial condensation: Second heat exchanger
17
HE Model (no Phase Change) Energy Balances: Partial Differential Equations System Tube side Shell side
ht * Asup ∂Tt( z ,t ) ∂Tt( z ,t ) (Ts( z ,t ) − Tt( z ,t )) + vt = ∂t ∂z ρt * Cpt * At * L
hs * Asup ∂Ts( z ,t ) ∂Ts( z ,t ) − vs = (Tt( z ,t ) − Ts( z ,t )) ∂t ∂z ρs * Cps * As * L
Tt( 0 ,t ) = Tto( t ) Ts( L ,t ) = Tso( t ) Tt( z ,0 ) = Tt * ( z ) Ts( z ,0 ) = Ts * ( z )
Flowing Fluid
First-order hyperbolic PDE
z
z+∆z
Method of Lines Spatial Discretization: Backward Finite Differences for Convection Term Æ ODE System
18
HE Model (no Phase Change) Energy Balance at cell i Tube side
Shell side
ht * Asup dTti vti = − (Tti − Tti −1 ) + (Tsi − Tti ) dt ∆z ρti * Cpt * At * L
hs * Asup dTsi vsi = (Tsi − Tsi −1 ) + (Tti − Tsi ) ρsi * Cp s * As * L dt ∆z
Multicell model
19
Algebraic Equations (no Phase Change) ρ j ,i =
v j ,i =
M*P z j ,i * R * T j ,i
To Recompression
Residual Gas
Fj
ρ j ,i * A j G
i = 1, …, N (cells) j = tube or shell side
HE model
DAE System Natural Gas
20
HE Model (Partial Phase Change on Shell Side) Mass Balance at cell i Vapor Phase
dM V ,i = Vi −1 - Vi - mVL ,i dt
Liquid Phase
dM L ,i = Li −1 - Li + mVL ,i dt
Component
dmij dt
Rodriguez, Bandoni, Diaz (2005)
mVL,i: interfacial mass-transport rate from vapor to liquid phase
= Vi −1 yi −1, j + Li −1 xi −1, j − Vi yi , j − Li xi , j
Energy Balance at cell i dEi = Li −1*hi −1 + Vi −1*H i −1 - Li*hi - Vi*H i + Qit dt
21
HE Model (Partial Phase Change on Shell Side) Momentum Balance at cell i Vapor Phase
d ( M V ,i vV ,i ) = Vi −1vV ,i −1 - Vi vV ,i + FP ,i − Fint er ,i − mVL ,i vL ,i dt
Liquid Phase
d ( M L ,i vL ,i ) = Li −1vL ,i −1 - Li vL ,i + FP ,i + Fint er ,i + mVL ,i vL ,i − Fw ,i dt
Algebraic Equations at cell i AV ,i θi = AT
Void fraction based on cross-section area
M V ,i = AT Leiθi ρV ,i
vV ,i =
M L ,i = AT Lei ( 1 − θi )ρ L ,i
vL ,i
Vi
AV ,i ρV ,i Li = ( 1 − AV ,i )ρ L ,i
22
HE Model (Partial Phase Change on Shell Side) Driving Force
FP ,i = ( Psi −1θ i −1 − Psiθ i ) AT
Interfacial shear stress
Fint er ,i =
ρ 4 θi 2 f f ,i L ,i (vV ,i − vL ,i ) D 2
1/ 3 ρ L ,i δ = f v 1 + 24 ρV ,i D
Interfacial friction factor
f f ,i
Friction resistance on wall surface
Fw ,i =
4 τw D
0.079 Re −0.25 ,4000 ≤ Re ≤ 30000 fv = −0.20 0 . 046 Re , Re > 30000
23
HE Model (Partial Phase Change on Shell Side) Internal Energy
Ei = M V ,i H i + M L ,i hi
Summation Eqns
∑ yi , j − ∑ xi , j = 0 j
Equilibrium ratio
hi =
hiideal
Hi =
H iideal
− ∆hi ,
− ∆H i ,
j
Ki,j
φ iL, j = V φi , j
h iideal H
ideal i
yi , j = K i , j xi , j nc
= ∑ h iideal ( T i )x i , j ,j j =1
nc
= ∑ H j =1
ideal i,j
( Ti )y i , j 24
HE Model (Partial Phase Change on Shell Side) Compressibility factor
z iV = z V ( Ts i , Ps i , y i , j ) z iL = z L ( Ts i , Ps i , x i , j ) Residual enthalpies
∆H
i
= ∆ H ( Ts i , Ps i , y i , j )
Soave-Redlich-Kwong EoS
∆ h i = ∆ h ( Ts i , Ps i , x i , j ) Fugacity coefficients
φ iV, j = φ V ( Ts i , Ps i , y i , j ) φ i L, j = φ L ( Ts i , Ps i , x i , j ) Psi =
ρ L ,i * ziL * R * Tsi PmolsiL
Psi =
ρV ,i * ziV * R * Tsi PmolsiV
25
High Pressure Separator dM = Lp+ Vp - L - V dt 2
VolV = πr Long − L = Cv x
ML
ρL
(Pt − Ps ) + g ρ L ( ht + r ) ρL / ρw
M V = ρV VolV ML =
Horizontal tank
M = MV + M L
ρ L Long
2 ht 2 2 2 + − π r r arccos h r h − t t
Pmol L
r
26
Turboexpander ¾ Feed: vapor from High Pressure Separator ¾ Polytropic expansion (η = 1.26, natural gas) η −1 η
Ts Ps = Te Pe
¾ Assumption: Static mass and energy balances ¾ Thermodynamic predictions: Soave-Redlich-Kwong ¾ Algebraic equations: Same as Flash ¾ Outlet partially condensed stream: to Demethanizing column
27
Demethanizing Column Diaz, Tonelli, Bandoni, Biegler (2003)
Differential Equations at stage i (1 ≤ i ≤ N) dM i = Fi + Vi +1 + Li −1 − Vi − Li dt dmij dt
= Fi zi , j + Vi +1 yi +1, j + Li −1 xi −1, j − Vi yi , j − Li xi , j
j=1,…,ncomp
dEi = Vi +1 H i +1 + Li −1hi −1 − Vi H i − Li hi − Fi [ϕi H Fi + (1 − ϕi )hFi ] + Qsri dt N = 8; ncomp = 10
28
Demethanizing Column Algebraic Equations Compressibility factor ( z iV , z iL) Residual enthalpies (∆Hi, ∆hi) V L Fugacity coefficients (φ i , j , φ i , j)
Ki , j
φiL, j = V φi , j
SRK
yi , j = K i , j xi , j
∑ yi , j − ∑ xi , j = 0 j
j
H i = H iideal − ∆H i hi = hiideal − ∆hi
29
Demethanizing Column Algebraic Equations 2
Vapor volume
M iL Di V Voli = π H plate ,i − L ρi 2
Vapor and liquid holdup
M iV = ρ iV VoliV M i = M iV + M iL
Component holdup
mi , j = M iV yi , j + M iL xi , j
Internal energy holdup
Ei = M iV ( H i −
pi
ρ
V i
) + M iL ( hi −
pi
ρ
L i
) 30
Demethanizing Column Hwo Hw
Liquid holdup and hydraulic correlations i
2
M iL
Di ( = 0.896π Hwi + Hwoi )ρiL 2
Hwoi = 30(0.01495)
2/ 3
Li Fwi L ρi Weirli
2/ 3
Hldropi = β ( Hwi + Hwoi )
Vi Hoi = 5.56.10−4 V ρi AholeiCoi Pressure drop
2
i+1
Equivalent height of vapor free liquid Pressure drop through aerated liquid
ρiV PmoliV L L ρi Pmoli
Dry hole pressure drop
P1 = PTOP − KKρ1V V12 L Pi = Pi −1 + 0.24917.10 −5 ( Hoi + Hldropi )ρiL Pmoli31
Demethanizing Column Carbon dioxide solubility constraints Phase Equilibrium
µiV,CO 2 = µiL,CO 2 = µiS,CO 2 f iV,CO 2 = f i ,LCO 2 = f i S,CO 2
Assumption No hydrocarbon in solid phase To avoid CO2 precipitation
f i S,CO 2 = f i S,CO 2
f iV,CO 2 ≤ f i ,SCO 2 f i ,LCO 2 ≤ f i S,CO 2
But
f i ,LCO 2 = f iV,CO 2
from VLE calculations at each stage
32
Demethanizing Column Carbon dioxide solubility constraints
f iV,CO 2 ≤ f i ,SCO 2
Solid phase
f i ,SCO 2 = Pi ,SCO 2φiV,CO 2 t Pi S,CO 2 TCO T T 2 − 14.480 ln t i + 65.356 t i − 1 ln t = 14.5681 − Ti TCO 2 TCO 2 PCO 2
T 2 T 3 − 47.146 t i − 1 + 14.540 t i − 1 TCO 2 TCO 2
Vapor phase
f iV,CO 2 = yi ,CO 2 Pi φiV,CO 2
33
Demethanizing Column: Phase Existence Raghunathan, Diaz, Biegler (2004)
Gibbs Free Energy minimization at stage i
Karush Kuhn Tucker conditions Raghunathan, Biegler (2003)
MPECs (Mathematical Program with Equilibrium Constraints) as additional constraints ( x.y = 0; x,y≥0)
IPOPT-C under AMPL (x.y ≤ δµ)
34
Demethanizing Column: Phase Existence Relaxed Equilibrium Conditions
yi , j = γ i K i , j ( Ti , Pi , xi , j , yi , j )xi , j ∑ yi , j − ∑ xi , j = 0 j
γ i −1 =
γ = 1 ⇒ M iL > 0 , M iV > 0
j
siV
γ < 1 ⇒ M iL = 0 , M iV > 0
− siL
0 ≤ M iL ⊥ siL ≥ 0 0 ≤ M iV ⊥ siV ≥ 0
γ > 1 ⇒ M iL > 0 , M iV = 0 , Complementarity Constraints
35
Demethanizing Column: Phase Existence Liquid Holdup and Hydraulic correlations 2
D M iL = 0.896π i Hwi ρiL + M iL+ − M iL− 2
Hwo Hw
i
i+1 2
D M iL+ = 0.896π i Hwoi ρiL 2 Hwoi = 30(0.01495)
2/ 3
Li Fwi L ρi Weirli
2/ 3
3 L + 2 Li = kd ( M i )
0 ≤ M iL + ⊥ M iL − ≥ 0 36
Numerical Results
Optimization Problem: HEs + HPS min
T
tf ∫0
(T − TSP ) dt 2
st . h t
G
Tout
L
{DAE System} 60 ≤ L ≤ 80( kmol / min) 5 ≤ G ≤ 80( kmol / min) 303 ≤ Tout ≤ 306( K )
(8+6 cells in HEs) 38
Numerical Results: HEs + HPS Optimization variables: G, L 20 elements 2 collocation points
65.325
Lt
0.95
h
0.90 0.85 0.80
Lt (Kmol/min)
65.320
0.75 0.70
65.315
0.65 0.60
65.310
0.55 0.50
65.305
0.45 65.300 0
5
10
15
20
25
0.40 30
time (min) 39
h (m)
18274 disc. variables 18 iter. (3 barrier problems)
1.00
65.330
Numerical Results: HEs + HPS Optimization variables: G, L 83
307
82
G0
81
306
Tout
80
304
77 76
303
75 74
Temperature vs time 212.0
302
211.9
73 72
301
211.8
71 70 0
5
10
15
time (min)
20
25
300 30
Ts (K)
G0 (Kmol/min)
78
Tt (K)
305
79
211.7 211.6 211.5 211.4 0
5
10
15
time (min)
20
25
40
30
Numerical Results: HEs + HPS
Temp. profile, tubes side
Temp. profile, shell side (no phase change) 41
Numerical Results: HEs + HPS
58.5
35.0
58.2
30.0
57.9 57.6
25.0
57.3
Ps (bar)
20.0
57.0
L (Kmol/min)
56.7
15.0
56.4
10.0
56.1 55.8
5.0
55.5 0
2
11.5
time (min)
21
30.5
40 1
2
3
4
5
6
cells
Pressure profile, shell side
6
cells
0.0 5
4
3
2
1 0
2
11.5
21
30.5
40
time (min)
Liquid flowrate, shell side 42
Optimization Problem: Demethanizing Column min
tf ∫0
(ηethane − η SP ) dt 2
st .
{DAE System} 15 ≤ PTOP ≤ 22( bar ) 99 ≤ QREB ≤ 200( kJ / min) 0 ≤ xB ,CH 4 ≤ 0.008 f iV,CO 2 ≤ 0.90 f i ,SCO 2
Alg. Eqns = 385 Differ. Eqns = 97
43
Numerical Results: Demethanizer Feed A: Low CO2 content (0.65%)
82
20
Optimization variable: PTOP
80
2 collocation points
P Ethane recovery
18
Ptop (bar)
20 finite elements
76
74
21357 discretized variables 40 iter. (3 barrier problems)
16
72
ηss = 80.9 %
70 0
10
20
30
40
50
Time (min)
44
Ethane recovery (%)
78
Numerical Results: Demethanizer Feed B: High CO2 content (2%) Optimization variable: PTOP Ptop (bar)
2 collocation points
80
P Ethane Recovery
18
43 iter. (3 barrier problems)
76
ηss = 74.5 % 72
16 0
10
20
30
40
Time (min)
45
Ethane recovery (%)
20 finite elements
84
20
Numerical Results: Demethanizer Feed B (high CO2 content) 84
No solubility constraints
P Ethane recovery
20
20 finite elements
Ptop (bar)
80
78 18
2 collocation points
76
59 iter. (4 barrier problems) ηss = 76.6 %
74 16 0
10
20
30
40
50
Time (min)
46
Ethane recovery (%)
Optimization variable: PTOP
82
Numerical Results: Demethanizer Feed A Optimization variable: 178
Reboiler Heat Duty (QR)
57 iter. (5 barrier problems) ηss = 77.8 % (PTOP=19bar)
Reboiler Heat Duty (MJ/min)
2 collocation points
176
Active constraint: Methane mole fraction in bottoms
174
0.007
QREBOILER XCH4
172
0.006
170 0.005
168 166
0.004 164 162
0.003 0
5
10
15
20
25
30
35
40
Time (min)
47
Bottom methane mole fraction
20 finite elements
0.008
Numerical Results: Demethanizer Start Up MPECs Optimization variable:
Three time periods Ideal Gas, Ideal solution
Ethane Recovery
PTOP, QR
Solved in AMPL with IPOPT-C (Raghunathan, Biegler, 2003) Time (min) 48
Numerical Results: Demethanizer Start Up MPECs
PTOP, QR 3rd time period 17944 discretized variables 576 complementarity constraints
Reboiler Heat Duty (MJ/min)
Optimization variable:
97 iterations Time (min) 49
Boiler Dynamic Optimization Rodriguez, Bandoni, Diaz (2005b)
Dynamic optimization model to determine controller parameters Boiler
Flue Gas
Combustion chamber
High Pressure Steam Feed Water
Risers Superheater
E-1
Air
Steam drum
Combustion Chamber
Superheater
RISER 1
RISER 2
Gas path Natural Gas
Furnace Gas
PI Controller (Liquid level in drum) Manipulated: Feed water flowrate
50
Boiler Dynamic Optimization DAE Optimization model ¾ Differential equations • Momentum and energy balances in risers and superheater • Mass and energy balances in drum • Integral part of controller and valve equation ¾ Algebraic equations • Friction loss • Mixture properties • Vapor holdup in drum • Gas – temperature distribution equations in furnace, risers ans superheaters (6 eqns.) • Air / fuel ratio • Drum geometric relations (5 eqns.) • Steam tables correlations for saturated and high pressure steam density, pressure and enthalpy
51
Boiler Dynamic Optimization DAE Optimization model ¾ Optimization variables • PI controller parameters ¾ Step change in high pressure steam demand 6 32
4
Liquid Level Drum (ft)
Feed Water Flowrate (lb/s)
30
28
26
24
2
0
-2 22
-4 0
200
400
600
800
1000
0
200
400
Time (s)
600
800
1000
Time (s)
¾ Additional PI controllers (current work) • Outlet steam pressure (fuel gas flowrate) • Superheated steam temperature (air excess)
52
Conclusions ¾ Rigorous dynamic optimization models for cryogenic train in
Natural Gas Processing plant within a simultaneous approach ¾ Thermodynamic models with cubic equation of state ¾ Carbon dioxide solubility addressed in both liquid and vapor phases
as path constraints, at each column stage ¾ Phase detection through the first order optimality conditions for
Gibbs free energy minimization (MPECs) ¾ Boiler dynamic model for controller parameters ¾ Simultaneous approach provides efficient framework for the
formulation and resolution of DAE optimization problems for large-scale real plants
53
References ¾ Biegler, L. T., A. Cervantes, A. Waechter, “Advances in Simultaneous
¾
¾
¾
¾
¾
Strategies for Dynamic Process Optimization,” Chem. Eng. Sci., 57, 575-593, 2002 Cervantes, A., L. T. Biegler, “Large-Scale DAE Optimization using Simultaneous Nonlinear Programming Formulations”, AIChE Journal, 44, 1038, 1998 Diaz, S., A. Serrani, R. de Beistegui, E. Brignole, "A MINLP Strategy for the Debottlenecking problem in an Ethane Extraction Plant"; Computers and Chemical Engineering, 19s, 175-178, 1995 Diaz, S., A.Serrani, A. Bandoni, E. A. Brignole, “Automatic Design and Optimization of Natural Gas Plants", Industrial and Engineering Chemistry Research, 36, 2715-2724, 1997 S. Diaz, M. Zabaloy, E. A. Brignole, “Thermodynamic Model Effect on the Design And Optimization of Natural Gas Plants”, Proceedings 78th Gas Processors Association Annual Convention, 38-45, March 1999, Nashville, Tennessee, USA Diaz, S., A. Bandoni, E.A. Brignole “Flexibility study on a dual mode natural gas plant in operation”, Chemical Engineering Communications, 189, 5, 623641, 2002 54
References ¾ Diaz, S., S. Tonelli, A. Bandoni, L.T. Biegler, “Dynamic optimization for
¾
¾
¾
¾
¾
switching between steady states in cryogenic plants”, Foundations of Computer Aided Process Operations, 4, 601-604, 2003 Diaz, S., A. Raghunathan , L. Biegler, “Dynamic Optimization of a Cryogenic Distillation Column Using Complementarity Constraints”, 449d, AIChE Annual Meeting, San Francisco, Nov. 16-19, 2003. Advances in Optimization Raghunathan, A., M.S. Diaz, L.T. Biegler, “An MPEC Formulation for Dynamic Optimization of Distillation Operations”, Computers and Chemical Engineering, 28, 2037-2052, 2004 M. Rodríguez, J. A. Bandoni, M. S. Diaz, “Optimal dynamic responses of a heat exchanger/separator tank system with phase change”, submitted to Energy Conversion and Management, 2004 Rodríguez, M., J. A. Bandoni, M. S. Diaz, “Dynamic Modelling and Optimisation of Large-Scale Cryogenic Separation Processes”, IChEAP-7, The Seventh Italian Conference on Chemical and Process Engineering, 15 - 18 May 2005a Giardini Naxos, Italy Rodríguez, M., J. A. Bandoni, M. S. Diaz, “Boiler Controller Design Using Dynamic Optimisation”, PRES05, 8th Conference on Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction, 15 55 18 May 2005b Giardini Naxos, Italy
Appendix: Soave Redlich Kwong Equation of State Compressibility factor L V for a mixture ( zi , zi )
z=
V aα − V − b RgT ( V + b )
aα = ∑ x*j z*j ; x*j =x j a jα j ; z j = ∑ x*k ( 1 − k j ,k ) k
b = ∑ b j ; b j = 0.08664 RgTcj / Pcj j
0.42747 Rg2Tcj2
aj =
Pcj
0. 5
T 0.5 ;α j = 1 + m j 1 − Tcj
Soave modification (Temperature dependence)
m j = 0.48 + 1.574ω j − 0.176ω 2j 56
Appendix: Soave Redlich Kwong Equation of State Fugacity Coeff. for component j in mixture ( φiV, j ,φiL, j )
* a z bj B 2 α A j j j − ln1 + ln φ j = ( z − 1 ) − ln( z − B ) − b B aα b z
bj
1 ∆H Residual enthalpy B * * 1 + m j ln1 + ∑ x j z j − = −1 − in mixture ( ∆H i , ∆hi ) RgT bRg T zj α j
A=
bP aαP = ; B Rg2T 2 RgT 57