effects of temperature on two-stage biostabilization of landfill leachate

1 downloads 0 Views 3MB Size Report
and 20 days MCRT polishing reactors were eliminated. The leachate employed was lysimeter generated and characterized by COD and BOD,. concentrations of ...
EFFECTS OF TEMPERATURE ON TWO-STAGE BIOSTABILIZATION OF LANDFILL LEACHATE

by

Reidar

Zapf-Gilje

B.Eng., M c G i l l U n i v e r s i t y , M o n t r e a l , 1977

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED

SCIENCE

in

THE FACULTY OF GRADUATE (The Department o f C i v i l

STUDIES

Engineering)

We a c c e p t t h i s t h e s i s as conforming t o the r e q u i r e d

THE UNIVERSITY

OF BRITISH COLUMBIA

October (cT)

standard

1979

R e i d a r Zapf-Gilje., 1979

In presenting this thesis in partial

fulfilment of the requirements for

an advanced degree at the University of B r i t i s h Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives.

It

is understood that copying or publication

of this thesis for financial gain shall not be allowed without my written permission.

Department of

Tj-

B-hJc^/Nfcg/^vM^

The University of B r i t i s h Columbia

2075 Wesbrook Place Vancouver, Canada V6T 1W5

Date

C%&r(fi«r

h=M

(ii)

ABSTRACT

Leachate i s generated by seepage o f water through s a n i t a r y l a n d fills. and

Where c o n d i t i o n s a r e u n f a v o u r a b l e ,

leachate

o f high

strength

l a r g e volumes may be produced, thus c r e a t i n g t h e p o t e n t i a l f o r s e r i o u s

water c o n t a m i n a t i o n problems. T h i s study i n v e s t i g a t e d a e r o b i c , two-stage b i o l o g i c a l t r e a t m e n t o f h i g h s t r e n g t h l e a c h a t e , a t d i f f e r e n t o p e r a t i n g temperatures. mixed b a t c h

r e a c t o r s o f 10 l i t r e volume were employed and operated

daily fill-and-draw basis. B0Dj-:N:P = 100:5:1. at

and

N u t r i e n t l o a d i n g was s l i g h t l y i n excess o f

A t room temperature t h e f i r s t

a t a mean c e l l r e s i d e n c e

time

stage r e a c t o r s t h a t were operated

stage r e a c t o r s

(MCRT) o f 6, 9 and 20 days

the p o l i s h i n g r e a c t o r s a t 6, 9, 10 and 20 days.

the f i r s t

on a

Two-stage b i o l o g i c a l treatment were performed

23-25°C, 16°C and 9°C.

were operated and

Completely

A t lower temperatures,

a t 20 days MCRT and the 10

20 days MCRT p o l i s h i n g r e a c t o r s were e l i m i n a t e d .

The l e a c h a t e

employed was l y s i m e t e r generated and c h a r a c t e r i z e d by COD and BOD,. concentrations

o f a p p r o x i m a t e l y 19,000 mg/L and 14,000 mg/L r e s p e c t i v e l y .

In a d d i t i o n , i t c o n t a i n e d

a spectrum o f heavy metals and i n o r g a n i c

solids. Organic removal by t h e f i r s t stage systems was e x c e p t i o n a l l y good.

B e t t e r than 95% COD and 99% BOD,, were removed under a l l c o n d i t i o n s

investigated.

Removal o f heavy metals was 90% o r b e t t e r f o r most o f t h e

9 metals m o n i t o r e d . 50%

reduction.

N i c k e l and magnesium e x p e r i e n c e d

F o r temperatures r a n g i n g

from 9°C t o 25°C the

performance was n o t s i g n i f i c a n t l y a f f e c t e d . and BODj. were s l i g h t l y h i g h e r the h i g h e s t o r g a n i c

a t 9°C,

o n l y an average o f removal

However, t h e e f f l u e n t COD

e s p e c i a l l y for the reactor r e c e i v i n g

l o a d o f 3.2 kg COD/m

3

-day.

(iii)

As a r e s u l t o f t h e low r e s i d u a l c o n c e n t r a t i o n o f o r g a n i c m a t e r i a l i n t h e f i r s t s t a g e e f f l u e n t , the p o l i s h i n g r e a c t o r s e x p e r i e n c e d washout a t all

temperatures b u t 9°C.

A t t h i s temperature and f o r t h e range o f

MCRT's t e s t e d , t h e second stage d i g e s t e r s s t a b i l i z e d a t low MLSS l e v e l s of

220-600 mg/L, removing about 45% o f t h e r e s i d u a l COD and 80% o f t h e

r e s i d u a l BOD,.; i n a d d i t i o n , manganese, i r o n and z i n c were f u r t h e r reduced by 60-80%. S e t t l i n g problems

caused by b u l k i n g , d e f l o c c u l a t i o n and p r o b a b l y

some h i n d e r e d s e t t l i n g were encountered throughout t h e experiment, e s p e c i a l l y a t lower MCRT's and temperatures.

Hence, i n o r d e r t o produce

enough f e e d f o r t h e p o l i s h i n g r e a c t o r , a l l e f f l u e n t s were o b t a i n e d by f i l t e r i n g , r a t h e r than s e t t l i n g .

The f i l t e r e d e f f l u e n t s a t i s f i e d the

l o c a l p o l l u t i o n c o n t r o l o b j e c t i v e s f o r most parameters under n e a r l y a l l c o n d i t i o n s t e s t e d ; however, s l i g h t l y h i g h e r c o n c e n t r a t i o n s a r e e x p e c t e d under f i e l d c o n d i t i o n s due t o s o l i d s l o s t i n t h e e f f l u e n t .

(iv)

TABLE OF CONTENTS

Page ABSTRACT

i i

LIST OF TABLES

vi

LIST OF FIGURES

viii

ACKNOWLEDGEMENTS

i

x

CHAPTER 1

INTRODUCTION ."

1

2

BACKGROUND

3

2.1

Sanitary

2.2

A e r o b i c B i o l o g i c a l Treatment o f Leachate 2.2.1 2.2.2 ' 2.2.3 2.2.4

3

Organic matter Heavy metal removal Temperature e f f e c t s C h a r a c t e r i s t i c s of fill-and-draw systems

EXPERIMENTAL MATERIAL AND

METHODS

3 . . .

6 7 9 12 14 18

3.1

L a b o r a t o r y System

18

3.2

E x p e r i m e n t a l Apparatus

18

3.3

E x p e r i m e n t a l Procedure

20

3.3.1 3.3.2 3.3.3 3.3.4

20 21 24

3.4

3.5

D i s s o l v e d oxygen and pH S o l i d s , COD arid B0D Heavy metals Others 5

DISCUSSION

Mixed L i q u o r

24 25

Leachate C h a r a c t e r i s t i c s

RESULTS AND 4.1

Acclimatizing Room temperature study Reduced temperature study E f f e c t s o f the f i l l - a n d - d r a w procedure

A n a l y t i c a l Procedures 3.4.1 3.4.2 3.4.3 3.4.4

4

L a n d f i l l Leachates

Characteristics

25 25 26 26 26 29 29

(v)

TABLE OF CONTENTS

(Continued)

CHAPTER

Page

4.2

Organic M a t t e r Removal

31

4.2.1

BOD

33

4.2.2

COD

33

4.3

Heavy Metal Removal

36

4.4

Temperature E f f e c t s

38

4.5

Biological Polishing

4.6

Effluent Quality

4.7

E f f e c t s o f t h e F i l l - a n d - D r a w Procedure

5

Reactors

and t h e PCB G u i d e l i n e s

40 . . . .

41 44

CONCLUSIONS AND RECOMMENDATIONS

50

5.1

Conclusions

50

5.2

Recommendations

52

REFERENCES

APPENDICES

53

. . .

55

Appendix A:

KINETICS

56

Appendix B:

SUPPLEMENTARY RESULTS

62

Appendix C:

ALKALINITY REMOVAL . . . . . . . . . . . . . . .

64

(vi) LIST OF TABLES

T a b l e No.

Title

Page

1

Composition o f T y p i c a l Leachates

4

2

Proposed R e l a t i o n s h i p Between COD/TOC, BOD/COD, A b s o l u t e COD, and Age o f F i l l t o Expected E f f i c i e n c i e s o f O r g a n i c Removal from Leachate . . . .

5

O p e r a t i o n a l Parameters f o r A c t i v a t e d Treatment o f Domestic Sewage . . .

7

3

4

Sludge

C h a r a c t e r i s t i c s o f Mixed-Liquor P r i o r t o F i r s t Leachate A d d i t i o n

20

5

L y s i m e t e r System C h a r a c t e r i s t i c s

27

6

Lysimeter Operational C h a r a c t e r i s t i c s

27

7

Composition o f Refuse

27

8

Leachate C h a r a c t e r i s t i c s

28

9

Mixed-Liquor S o l i d s C o n c e n t r a t i o n s

29

10

A p p l i e d Organic and F/M Loadings

31

11

Reported Organic Loadings and Removal E f f i c i e n c i e s f o r A e r o b i c B i o l o g i c a l Treatment o f Leachate

32

12

Organic Matter Removal i n Terms o f BOD,, and COD

34

13

M i x e d - L i q u o r COD (MLCOD) C o n c e n t r a t i o n s and MLVSS/MLCOD R a t i o s

14

. . .

36

Reported M e t a l Removal by A e r o b i c B i o l o g i c a l D i g e s t e r s T r e a t i n g Leachate

37

15

M e t a l Removal E f f i c i e n c i e s

38

16

Performance o f B i o l o g i c a l P o l i s h i n g R e a c t o r s a t 9°C C h a r a c t e r i s t i c s o f E f f l u e n t Produced by F i r s t A e r o b i c B i o s t a b i l i z a t i o n o f Leachate

17

18

42 Stage 43

Effluent Characteristics of Biological P o l i s h i n g Treatment

44

19

Data f o r D e t e r m i n a t i o n o f K i n e t i c Parameters

59

20

K i n e t i c Parameters Based on S o l u b l e BOD^ C o n c e n t r a t i o n s a t Room Temperature

59

(vii) LIST OF TABLES

(Continued)

21

F i r s t Stage E f f l u e n t C o n c e n t r a t i o n s

62

22

Mixed-Liquor BOD,., mg/L,

62

23

Mixed-Liquor COD,

24

Average Metal Removals by F i r s t - s t a g e

Versus D i l u t i o n

TC and TOC i n mg/L

63 Reactors . . . .

64

(viii) LIST OF FIGURES

F i g u r e No.

Title

Page

1

L a b o r a t o r y Reactor Design

2

MLVSS and MLVSS/MLSS d u r i n g the Acclimatizing

. . . .

19

Period

. . . .

3

MLVSS Versus MCRT a t Room Temperature

4

Removal o f COD by Reactor A, B, and C a t Room Temperature

35

Removal o f COD f o r Reactor A, B, and C a t Temperatures Ranging from 9-25 C

39

5

. . . . . .

22

6

Range o f S e t t l i n g Performance

7

Mixed-Liquor V o l a t i l e Suspended S o l i d s , D i s s o l v e d Oxygen and pH Between Leachate A d d i t i o n s o f Reactor B a t 9°C

47

S o l u b l e E f f l u e n t COD and B0D Feedings o f Reactor B a t 9°C

48

8

9

10

D e t e r m i n a t i o n o f k and K BOD,. C o n c e n t r a t i o n s

o f Reactor A

5

46

Between

Based on S o l u b l e

D e t e r m i n a t i o n o f Y and k . Based on S o l u b l e a B0D C o n c e n t r a t i o n r

. . .

30

60

rn

ol

(ix)

ACKNOWLEDGEMENTS

The Mavinic

f o r h i s guidance and u n d e r s t a n d i n g d u r i n g t h i s

He and Mrs. the

author wishes t o express h i s g r a t i t u d e t o Dr. D.S. study.

a l s o wishes t o thank Dr. R.D. Cameron, Dr. W.K. Oldham,

E.C. McDonald f o r t h e i r k i n d a s s i s t a n c e on v a r i o u s a s p e c t s o f

research.

T h i s r e s e a r c h was supported w i t h Research C o u n c i l o f Canada.

funds p r o v i d e d by t h e N a t i o n a l

-1-

CHAPTER 1 INTRODUCTION

Any method used f o r d i s p o s a l o f our waste p r o d u c t s s h o u l d minimize c h e m i c a l and b i o l o g i c a l h a z a r d s and be e n v i r o n m e n t a l l y s a f e . landfills

are s t i l l

Sanitary

c o n s i d e r e d one o f the s a f e s t and l e a s t e x p e n s i v e

methods o f s o l i d waste d i s p o s a l .

However, poor s i t e s e l e c t i o n

and

improper d e s i g n and o p e r a t i o n , c o u p l e d w i t h h i g h p r e c i p i t a t i o n , have c r e a t e d s e r i o u s groundwater

p o l l u t i o n by l a n d f i l l l e a c h a t e .

Leachate i s generated by seepage o f water t h r o u g h the f i l l .

The

water

d i s s o l v e s o r i g i n a l components and decomposition p r o d u c t s ; thus r e s u l t i n g i n a f i n a l p r o d u c t h a v i n g h i g h o r g a n i c matter and i n o r g a n i c i o n • c o n c e n t r a t i o n s . S e v e r a l i n c i d e n c e s have been r e p o r t e d where l e a c h a t e has the

s u r r o u n d i n g s o i l and p o l l u t e d nearby ground and

contaminated

s u r f a c e waters.

A

garbage dump i n K r e f e l d , Germany, contaminated w e l l s a s f a r a s 8 k i l o m e t e r s away f o r more than 18 y e a r s . 1

In a more r e c e n t c a s e , p r i v a t e w e l l s

300 meters downstream from L l a n g o l l o n l a n d f i l l Delaware,

i n New

Castle

located

County,

U.S.A., were h e a v i l y p o l l u t e d and s u b s e q u e n t l y abandoned . 2

To reduce t h e l e a c h a t e p o l l u t i o n hazard, t h r e e approaches

are

p r a c t i s e d today; p r e v e n t i o n o f l e a c h a t e p r o d u c t i o n , r e c i r c u l a t i o n o f l e a c h a t e t o the l a n d f i l l , and c o l l e c t i o n and t r e a t m e n t o f l e a c h a t e . 3

Leachate p r o d u c t i o n may

be m i n i m i z e d by i n s t a l l i n g a low p e r m e a b i l i t y

c o v e r t o p r e v e n t the p e n e t r a t i o n o f r a i n f a l l , s u r f a c e r u n o f f , and by l o c a t i n g the f i l l

by d i v e r t i n g

upstream

above the ground water

One d i s a d v a n t a g e o f t h i s approach i s the reduced r a t e o f s o l i d

table. waste

s t a b i l i z a t i o n caused by t h e absence o f water. The

second a l t e r n a t i v e i n v o l v e s s u r f a c e i r r i g a t i o n o f l e a c h a t e

on t o p o f l a n d f i l l s .

T h i s presumably

m a i n t a i n s the m o i s t u r e c o n t e n t o f

-2-

t h e s o l i d waste a t an optimum l e v e l f o r a n a e r o b i c b i o l o g i c a l d e g r a d a t i o n . The r e f u s e then f u n c t i o n s a s an a n a e r o b i c f i l t e r

s t a b i l i z i n g the

leachate. The most e f f i c i e n t method i n v o l v e s the c o l l e c t i o n o f generated l e a c h a t e f o r subsequent

b i o l o g i c a l and/or p h y s i c a l - c h e m i c a l t r e a t m e n t .

The

q u a n t i t y o f l e a c h a t e produced depends m a i n l y on p r e c i p i t a t i o n and c o v e r m a t e r i a l , whereas t h e q u a l i t y i s a f u n c t i o n o f r e f u s e c o m p o s i t i o n and l a n d f i l l age.

B i o l o g i c a l treatment has been found t o be s u p e r i o r i n

t r e a t i n g h i g h - s t r e n g t h l e a c h a t e from r e c e n t l y d e p o s i t e d r e f u s e , w h i l e p h y s i c a l - c h e m i c a l methods y i e l d b e t t e r r e s u l t s t r e a t i n g the l o w e r - s t r e n g t h leachate

(produced by more s t a b i l i z e d

fills) . 2

N e a r l y a l l l e a c h a t e t r e a t a b i l i t y s t u d i e s have so f a r been performed a t room t e m p e r a t u r e s .

In s i t u , a l e a c h a t e temperature o f 10-15°C i s

more l i k e l y t o be observed; hence, i t i s o f g r e a t importance t o determine the e f f e c t s t h e s e c o l d e r c o n d i t i o n s have on the b i o l o g i c a l

treatment

process. The purpose o f t h i s i n v e s t i g a t i o n was

t o e v a l u a t e the

treatability

o f h i g h - s t r e n g t h l e a c h a t e s from domestic l a n d f i l l s by a e r o b i c b i o l o g i c a l r e a c t o r s a t temperatures r a n g i n g from 10-25°C.

Due

t o the h i g h i n f l u e n t

c o n c e n t r a t i o n o f p o l l u t a n t s , t h e e f f l u e n t was n o t expected t o s a t i s f y the l o c a l wastewater d i s c h a r g e g u i d e l i n e s ; hence the performance 4

b i o l o g i c a l p o l i s h i n g r e a c t o r s was a l s o o f To a c c o m p l i s h t h e s e o b j e c t i v e s ,

of

interest.

semi-continuous,

fill-and-draw,

bench-scale r e a c t o r s were o p e r a t e d a t v a r i o u s l o a d i n g s and

temperatures.

-3-

CHAPTER 2 BACKGROUND

2.1

Sanitary L a n d f i l l

Leachates

Seepage o f water through a l a n d f i l l produces a l i q u i d c a l l e d l e a c h a t e . The name r e f e r s t o the f a c t t h a t water d i s s o l v e s o r i g i n a l components and composition p r o d u c t s as i t e n t e r s the f i l l . moisture a b s o r p t i o n c a p a c i t y , l e a c h a t e may or

When the f i l l

de-

has reached i t s

move i n t o the s u r r o u n d i n g s o i l

s u r f a c e as a s p r i n g , depending on the g e o l o g i c a l c h a r a c t e r i s t i c s o f the The q u a n t i t y o f l e a c h a t e produced

m i l l i o n g a l l o n s per day,

may

depending on such f a c t o r s as l a n d f i l l

any

i t s vegetation.

Although

composition

some l a n d f i l l s may

not

final

generate

l e a c h a t e , i t i s important t o r e c o g n i z e the p o t e n t i a l f o r d o i n g so i f

c o n d i t i o n s a r e changed through,

f o r example, f u t u r e development.

The c o m p o s i t i o n o f l e a c h a t e s from d i f f e r e n t l a n d f i l l s v a r i e s as shown i n T a b l e l may

site.

range from z e r o t o s e v e r a l

and geometry, h y d r o l o g i c a l c o n d i t i o n s and the c h a r a c t e r i s t i c s o f the s o i l c o v e r and

strata

range from

5

.

The Chemical

Oxygen Demand (COD)

"not d e t e c t a b l e " t o 90,000 mg/L.

The

widely

concentration

s t r e n g t h o f the

l e a c h a t e depends, among o t h e r f a c t o r s , on the degree o f s o l i d waste s t a b i l i z a t i o n within the f i l l .

The main s t a b i l i z a t i o n p r o c e s s i s

anaerobic b i o l o g i c a l degradation.

T h i s p r o c e s s i s dependent on

the

a v a i l a b i l i t y o f water; hence, l a n d f i l l s i n wet c l i m a t e s s t a b i l i z e fast

relatively

(10-20 y e a r s ) , and c o n c o m i t a n t l y produce l a r g e volumes o f l e a c h a t e .

the o t h e r hand, f i l l s

i n a r i d r e g i o n s may

Chian and D e W a l l e and age of f i l l method.

2

remain e s s e n t i a l l y unchanged f o r decades.

suggest the use of COD,

t o determine

COD/TOC, BOD /COD, 5

t h e most e f f e c t i v e o r g a n i c removal

treatment

Table 2 shows t h e c h a r a c t e r i s t i c s of young, medium and o l d

l a n d f i l l s a s suggested

by Chian and

On

DeWalle . 2

-4-

TABLE 1 COMPOSITION OF TYPICAL LEACHATES

Range o f V a l u e s o r C o n c e n t r a t i o n s * ( L a n d f i l l s and T e s t L y s i m e t e r s )

Parameter BOD

5

COD T o t a l Carbon T o t a l Organic Carbon Total Solids Total V o l a t i l e Solids Total Dissolved Solids Acidity Alkalinity

- 55 000

0

- 90 000

715 715

3

0 0 0 0 5 0 34 0 0 0.2 0 165 0.06 0 0 0 0 0.01 0 2.8 0 1 0 0 0 0 3.7

PH Tannin-like

compounds

(chloroplatinate)

Odour * A l l values



-

22 350 22 350

1 000 _ 45 000 1 000 - 23 157 0 - 42 300 0 0

Aluminum Arsenic Barium Beryllium Calcium Cadmium Chloride Chromium Copper Iron Lead Magnesium Manganese Mercury Molybdenum Nitrogen - t o t a l - NH Nickel Phosphorus - t o t a l Potassium Sodium Sulphates Sulphides Titanium Vanadium Zinc

Colour

9

78 0

- 9 560 - 20 900 _

--

-

-

----

-

-

-

--

122 11.6 5.4 0.3 4 000 0.19 2 800 33.4 10 5 500 5.0 15 600 1 400 0.064 0.52 2 406 1 106 0.80 154 3 770 7 700 1 826 0.13 5.0 1.4 1 000

- 8.5

-

1 278

- 12 000

not d e t e c t a b l e

to terrible

except those f o r pH, c o l o u r and odour a r e i n mg/L.

TABLE 2 PROPOSED RELATIONSHIP BETWEEN COD/TOC,.BOD^/COD, ABSOLUTE COD, AND AGE OF F I L L TO EXPECTED EFFICIENCIES OF ORGANIC REMOVAL FROM LEACHATE

COD/TOC

BODv/COD

Age o f F i l l

COD, i n milligrams per l i t r e

Biological Treatment

Chemical precipitation Cmass l i m e dose)

Chemical Oxidation Ca (C10)

2

°3

Reverse Osmosis

Activated Carbon

Ion e x change resins

2

>2.8

>0.5

Young (10,000

Good

Poor

Poor

Poor

Fair

Poor

Poor

2.0-2.8

0.1-0.5

Medium (5 yr-10 y r )

500-10,000

Fair

Fair

Fair

Fair

Good

Fair

Fair

» o

i

cn O

I