Effects of Titanate Coupling Agent on Engineering Properties ... - MDPI

3 downloads 0 Views 3MB Size Report
Jun 24, 2018 - Correspondence: cerosli@usm.my (M.R.M.H.); [email protected] (Z.Y.); Tel. ..... (2) Approximately 20 lbs of each extruded material was produced. ..... (TFI), which represents the densification loading by the traffic during its service life. ... 600. 800. 1000. 1200. 1400. Indirect T ensile Strength, ITS. (kPa). Dry. Wet.
applied sciences Article

Effects of Titanate Coupling Agent on Engineering Properties of Asphalt Binders and Mixtures Incorporating LLDPE-CaCO3 Pellet Mohd Rosli Mohd Hasan 1, *, Zhanping You 2, * ID , Mohd Khairul Idham Mohd Satar 3 , Muhammad Naqiuddin Mohd Warid 3 , Nurul Hidayah Mohd Kamaruddin 4 , Dongdong Ge 2 and Ran Zhang 5 1 2 3 4 5

*

School of Civil Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang, Malaysia Department of Civil and Environmental Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA; [email protected] Department of Geotechnics and Transportation, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia; [email protected] (M.K.I.M.S.); [email protected] (M.N.M.W.) Faculty of Civil and Environmental Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Johor, Malaysia; [email protected] School of Highway, Chang’an University, South Erhuan Middle Section, Xi’an 710064, Shaanxi, China; [email protected] Correspondence: [email protected] (M.R.M.H.); [email protected] (Z.Y.); Tel.: +60-604-599-6288 (M.R.M.H.); +1-906-487-1059 (Z.Y.)

Received: 31 May 2018; Accepted: 21 June 2018; Published: 24 June 2018

 

Abstract: This study was initiated to evaluate the performance of asphalt binders and mixtures incorporating linear low-density polyethylene- calcium carbonate (LLDPE-CaCO3 ) pellet, either with or without titanate coupling agent. The detailed manufacturing process of modifier pellets was displayed. The coupling agent was used to enhance the cross-linking between materials by means of winding up covalent bonds or molecule chains, thus improving the performance of composites. In the preparation of modified bitumen, the preheated asphalt binder was mixed with the modifiers using a high shear mixer at 5000 rpm rotational speed for 45 min. Experimental works were conducted to evaluate the performance of asphalt binders in terms of volatile loss, viscosity, rutting potential, and low temperature cracking. Meanwhile, the asphalt mixtures were tested using the flow number test and tensile strength ratio (TSR) test. The addition of LLDPE-CaCO3 modifiers and coupling agent does not significantly affect the volatile loss of modified asphalt binders. The addition of modifiers and coupling agent has significantly improved the resistance to permanent deformation of asphalt binders. Even though, the addition of LLDPE-CaCO3 modifier and coupling agent remarkably increased the mixture stiffness that contributed to lower rutting potential, the resistance to low temperature cracking of asphalt binder was not adversely affected. The combination of 1% coupling agent with 3% PECC is optimum dosage for asphalt binder to have satisfactory performance in resistance to moisture damage and rutting. Keywords: asphalt modification; coupling agent; rheological behavior; plastic; calcium carbonate powder

1. Introduction Over decades, a wide range of modification at macro, meso-, micro- and nano-scales have been conducted to improve the performance of asphalt pavement [1]. This is essential to design durable, Appl. Sci. 2018, 8, 1029; doi:10.3390/app8071029

www.mdpi.com/journal/applsci

Appl. Sci. 2018, 8, 1029

2 of 15

safe and efficient asphalt pavement that can function efficiently across a wide range of temperatures and distresses. Polymer modified binders have got increasing use on improving the resistance to thermal cracking and permanent deformation, as well as reducing the fatigue cracking potential of asphalt pavement [2,3]. Brown et al. [4] mentioned that an ideal asphalt condition should exhibit both: (a) Relatively high stiffness at high temperature to prevent rutting and shoving and; (b) great adhesion between asphalt binder and aggregates matrices in the presence of water to reduce moisture induced damage, for example stripping. Additionally, Chen et al. [5] mentioned that the asphalt is continuously exposed to a wide range of climates, loading rate and time, but it does not have essential engineering properties to sustain those situations, where the binder is soft under hot summer days and brittle in the freezing condition. Various types of polymer have been used to chemically or mechanically improve the properties of asphalt binder, which can be classified into three different categories: elastomer, plastomer and reactive polymers [4,6,7]. The application of polymers in the asphalt pavement has been growing rapidly since the early 1970s. Based on previous studies, modifications of asphalt binder using polymer materials can significantly improve the properties of asphalt material, such as reducing the temperature susceptibility, providing better rheological characteristics, as well as enhancing the material durability [3,8,9]. Polyethylene (PE) and polyethylene-based copolymers (new or recycled) has been used to modify the performance of asphalt binder and mixture over many years [2,10]. The PE and polypropylene (PP) are categorized as plastomers which can bring a high rigidity to the material and improve the resistance to permanent deformation under traffic load [11,12]. A study was performed by Habib et al. [13] to evaluate the rheological properties and interaction of asphalt binder with different thermoplastics, such as high density polyethylene (HDPE), linear low density polyethylene (LLDPE) and PP. Based on their study, the viscoelastic behavior of asphalt binder was significantly affected by the modifier concentration, bitumen grade and the temperature. In addition, based on the overall studies, the best results occurred when the polymer concentration was limited to 3%, which resulted from the thermodynamically stable structure condition. This had significantly improved the resistance to rutting, fatigue, and temperature susceptibility. Limestone (CaCO3 ) is an inert material which has been used as an additive in asphalt mixture for more than 100 years. However, the hydrated lime came into regular use only just in the 1980s. Several states including Georgia, Nevada, Texas, Virginia, and Utah used lime to solve the water susceptibility issue on asphalt pavement [14]. CaCO3 is the most widely used filler in thermoplastics because of its low cost and superior mechanical properties. Much effort has been focused to increase mechanical properties such as tensile and flexural strength, impact resistance of CaCO3 -filled PP, HDPE, LDPE, and LLDPE composites [15]. The term “lime” is used referring to either quicklime or hydrated lime which comes originally from limestone. Calcinations process of limestone dissociated the calcium from carbon dioxide, leaving calcium oxide. This is known as quicklime, it is then combined with water to form hydrated lime. In the asphalt industry, the lime generally refers to hydrated lime or calcium hydroxide [16]. The fineness and high surface area of hydrated lime contributes to a high speed of chemical reaction. Hydrated lime is the only form of lime which has been shown to be useful in controlling stripping. Many aggregates are quite acidic and the asphalt binder also contains acids, the ions present at the interface of both materials repelled each other electrically. The presence of lime could neutralize the acidic aggregates and asphalt binder, which provide opposite-charge ions to enhance adhesion [16]. Thus, lime in asphalt mixture is not only used as an anti-stripping agent, but it may improve mixture stiffness, reduce plasticity index when clays are present and reduce the oxidation rate [14,16]. Lu and Isacsson [17] revealed that, even though the thermoplastic modifiers had improved the viscosity and stiffness of asphalt binder, it did not significantly help in terms of elastic behavior. The embrittlement makes asphalt susceptible to fracture, especially when subjected to high levels of stress [18]. The polymer should be homogeneously dispersed into asphalt to ensure proper adhesion of the asphalt binder. However, incompatibility between the binder and the polymer is sometimes

Appl. Sci. 2018, 8, 1029

3 of 15

inevitable. As a result, it is difficult to establish the bond, either in terms of a physical or chemical manner [18,19]. Prior to gaining a better performance, an application of coupling agent in organic materials or treating inorganic fillers has been used. This enhances the materials cross-linking by means of winding up covalent bonds or molecule chains, thus improving the performance of composites [20,21]. It was found that a small amount of coupling agent could increase shear resistance in mechanical properties [20]. There are various types of coupling agents that have been used to improve the bonding of composite materials such as: Silane, zirconate, dicarboxylic anhydry-dem, titanate and phosphate ester. However, the most important commercial coupling agents are formed by silane and titanate [22]. A titanate coupling agent has been used in enhancing the bonding in CaCO3 –thermoplastic composites [23]. A study conducted by Atikler et al. [15] showed that a silane coupling agent had significantly ameliorated the mechanical properties of the HDPE–fly ash composites. Sae-oui et al. [24] reported that excessive use of a silane coupling agent could cause a negative effect on certain properties such as modulus and hardness due to plasticizing effect. Additionally, Chen et al. [25] also concluded that too much of a titanate coupling agent resulted in polymer bridging, and reduced the phase boundary condition. It would also influence the economic aspect, whereby the excess of a coupling agent could increase the cost of production. Former studies [26–28] had recommended using the titanate-coupling agent in a range of 0.1 wt % to 0.5 wt % to attain the best performance based on the adhesion test. Even though various types of polymers have been used to enhance the performance of asphalt composite, only a few of them are considered as satisfactory based on the performance and economic standpoints [29,30]. In this study, newly manufactured asphalt modifiers that comprised of LLDPE and CaCO3 with or without titanate coupling agent was used to enhance the engineering properties of asphalt binder and asphalt mixture durability towards various distresses. 2. Materials and Methods 2.1. Materials 2.1.1. Asphalt Binder and Aggregate The basic materials that used in this study were obtained from a local source in Hancock, Michigan. The PG 58-28 was used as a control binder. The aggregate gradation used was based on Michigan Department of Transportation (MDOT) specifications for Upper Peninsula region. The nominal maximum aggregate size of the gradation is 9.5 mm and the designed traffic level is less than three million equivalent single axles loads (ESALs) based on the Superpave asphalt mixture design procedure. 2.1.2. Coupling Agent For this project the coupling agent Ken-React® CAPS® L® 12/L was used [31]. Ken-React® CAPS® L® 12/L is a neoalkoxy titanate, with a specific gravity of 0.95, and is in the form of an off-white/beige solid pellet. Ken-React® CAPS® L® 12/L was used as-received. Figure 1 shows the chemical structure of the Ken-React® LICA® 12 (20% Active Portion of CAPS® L® 12/L). The chemical name for Ken-React® CAPS® L® 12/L is titanium IV 2,2 (bis-2-propenolatomethyl) butanolato, tris(dioctyl) phosphate-O [32]. Figure 2 shows the appearance of coupling agent.

For this project the coupling agent Ken‐React  CAPS  L  12/L was used [31]. Ken‐React  CAPS   L® 12/L is a neoalkoxy titanate, with a specific gravity of 0.95, and is in the form of an off‐white/beige  solid pellet. Ken‐React® CAPS® L® 12/L was used as‐received. Figure 1 shows the chemical structure  of  the  Ken‐React®  LICA®  12  (20%  Active  Portion  of  CAPS®  L®  12/L).  The  chemical  name  for  Ken‐ React®  CAPS®  L®  12/L  is  titanium  IV  2,2  (bis‐2‐propenolatomethyl)  butanolato,  tris(dioctyl)  Appl. Sci. 2018, 8, 1029 4 of 15 phosphate‐O [32]. Figure 2 shows the appearance of coupling agent. 

Figure 1. Chemical structure of Ken-React® LICA® 12 (20% active portion of CAPS® L® 12/L).

Appl. Sci. 2018, 8, x FOR PEER REVIEW   

Figure 1. Chemical structure of Ken‐React® LICA® 12 (20% active portion of CAPS® L® 12/L). 

 

4 of 15

  Figure 2. Titanate coupling agent (shown in red circle) mixed with LLDPE pellets.  Figure 2. Titanate coupling agent (shown in red circle) mixed with LLDPE pellets.

2.1.3. Manufacturing Process of Modifier Pellets  2.1.3. Manufacturing Process of Modifier Pellets A V‐cone mixer was used operating at 24 rpm for four minutes to mix the Ken‐React® CAPS® L®  A V-cone mixer was used operating at 24 rpm for four minutes to mix the Ken-React® CAPS® 12/L  and  LLDPE  pellets.  The  modifier  pellets  were  prepared  using  extrusion  equipment  in  the  L® 12/L and LLDPE pellets. The modifier pellets were prepared using extrusion equipment in the Chemical  Engineering  Department  at  Michigan  Technological  University.  An  American  Leistritz  Chemical Engineering Department at Michigan Technological University. An American Leistritz Extruder Corporation, model ZSE 27 has a 27 mm co‐rotating intermeshing twin‐screw extruder with  Extruder Corporation, model ZSE 27 has a 27 mm co-rotating intermeshing twin-screw extruder with ten heating zones, a length/diameter ratio of 40 and two stuffers was used to produce the modifier  ten heating zones, a length/diameter ratio of 40 and two stuffers was used to produce the modifier pellets. Two Schenck AccuRate gravimetric feeders were used to accurately control the amount of  pellets. Two Schenck AccuRate gravimetric feeders were used to accurately control the amount of LLDPE,  CaCO3  and  the  coupling  agent  supplied  into  the  extruder.  Figure  3  illustrates  the  screw  LLDPE, CaCO3 and the coupling agent supplied into the extruder. Figure 3 illustrates the screw design® design that used during manufacturing of pellet modifiers [33]. The LLDPE and LLDPE/Ken‐React   that used during manufacturing of pellet modifiers [33]. The LLDPE and LLDPE/Ken-React® CAPS® ® ® CAPS  L  12/L coupling agent was added to zone 1. Meanwhile, CaCO3 was added in Zone 5.  L® 12/L coupling agent was added to zone 1. Meanwhile, CaCO3 was added in Zone 5. After passing through the extruder, the polymer strands (3 mm in diameter) enter a 3 m long water bath (Sterling Blower model WT-1008-10) and then a pelletizer (Accu-grind Conair Model 304) produced nominally 3 mm diameter by 3 mm long pellets. The final product of the manufacturing process is shown in Figure 4. After compounding, the pelletized composite resin was dried in an indirect heated dehumidifying oven (Bry Air RD-20) at 60 ◦ C for 7 h. It was then stored in sealed moisture barrier bags prior to mixing with asphalt binder [34]. The extrusion conditions for different modifiers are shown in Table 1. Three different formulations were extruded. The first was called PECC, which contained 70 wt % LLDPE and 30 wt % CaCO3 . The second was called PECC-1CA, which contained 69.3 wt % LLDPE, 29.7 wt % CaCO3, and 1 wt % Ken-React® CAPS® L® 12/L coupling agent. The third was called PECC-2CA, which contained 29.4 wt % CaCO3, 68.6 wt % LLDPE, and 2 wt % Ken-React® CAPS® L® 12/L coupling agent.

  Figure 3. Extruder screw design. 

Chemical  Engineering  Department  at  Michigan  Technological  University.  An  American  Leistritz  Extruder Corporation, model ZSE 27 has a 27 mm co‐rotating intermeshing twin‐screw extruder with  ten heating zones, a length/diameter ratio of 40 and two stuffers was used to produce the modifier  pellets. Two Schenck AccuRate gravimetric feeders were used to accurately control the amount of  LLDPE,  CaCO3  and  the  coupling  agent  supplied  into  the  extruder.  Figure  3  illustrates  the  screw  ®  design that used during manufacturing of pellet modifiers [33]. The LLDPE and LLDPE/Ken‐React Appl. Sci. 2018, 8, 1029 5 of 15 ® ® CAPS  L  12/L coupling agent was added to zone 1. Meanwhile, CaCO3 was added in Zone 5. 

  Appl. Sci. 2018, 8, x FOR PEER REVIEW   

Figure 3. Extruder screw design.  Figure 3. Extruder screw design.

5 of 15

After passing through the extruder, the polymer strands (3 mm in diameter) enter a 3 m long  water bath (Sterling Blower model WT‐1008‐10) and then a pelletizer (Accu‐grind Conair Model 304)  produced nominally 3 mm diameter by 3 mm long pellets. The final product of the manufacturing  process  is  shown  in  Figure  4.  After  compounding,  the  pelletized  composite  resin  was  dried  in  an  indirect  heated  dehumidifying  oven  (Bry Air RD‐20) at 60  °C  for  7  h.  It  was  then  stored in  sealed  moisture barrier bags prior to mixing with asphalt binder [34]. 

  Figure 4. Final product of manufactured pellets.  Figure 4. Final product of manufactured pellets.

The  extrusion  conditions  for  different  modifiers  are  shown  in  Table  1.  Three  different  Table 1. Extrusion conditions. formulations were extruded. The first was called PECC, which contained 70 wt % LLDPE and 30 wt  % CaCO3Material . The second was called PECC‐1CA, which contained 69.3 wt % LLDPE, 29.7 wt % CaCO 3,  Number PECC PECC-1CA PECC-2CA ® ® ® and  1  wt  %  Ken‐React   CAPS   L   12/L  coupling  agent.  The  third  was  called  PECC‐2CA,  which  Extrusion Date March 12 2013 March 12 2013 March 12 2013 contained 29.4 wt % CaCO 3, 68.6 wt % LLDPE, and 2 wt % Ken‐React® CAPS® L® 12/L coupling agent.  Extruder, rpm 250 250 250 Motor Amperage, % 27 27 27 Table 1. Extrusion conditions.  Melt Temperature, ◦ C 244 244 244 Melt Pressure, psig 80 80 80 PECC‐1CA  PECC‐2CA  6.0 Material Number  #2 Feeder Setting, lb/h 6.0 PECC  6.0 Extrusion Date  March 12 2013  March 12 2013  March 12 2013  CaCO Material in Feeder #2 CaCO CaCO3 3 3 Extruder, rpm  250  250  250  #3 Feeder Setting, lb/h 14 14 14 Motor Amperage, %  27  27  Material in Feeder #3 LLDPE 27  LLDPE + CAPS LLDPE + CAPS Melt Temperature, °C  244  244  244  Vacuum Port 1 atm 1 atm 1 atm Melt Pressure, psig  80  80  80  Zone 5 Side Stuffer Setting, rpm 300 300 300 #2 Feeder Setting, lb/h  6.0  6.0  6.0  Feeder at Zone 5 CaCO3 CaCO3 CaCO3 CaCO3  CaCO3  Material in Feeder #2  CaCO3  Zone 7 Side Stuffer setting, rpm 300 300 300 #3 Feeder Setting, lb/h  14  14  14  Feeder at Zone 7 none none none Material in Feeder #3  LLDPE  LLDPE + CAPS  LLDPE + CAPS  Feed Section Temperature H2 O Cooled H2 O Cooled H2 O Cooled Vacuum Port  1 atm  1 atm  1 atm  ◦ Zone 1 Temperature, C 175 175 175 Zone 5 Side Stuffer Setting, rpm  300  300  300  Zone 2 Temperature, ◦ C 195 195 195 CaCO3  CaCO3  Feeder at Zone 5  CaCO3  Zone 3 Temperature, ◦ C 210 210 210 Zone 7 Side Stuffer setting, rpm  Feeder at Zone 7  Feed Section Temperature  Zone 1 Temperature, °C  Zone 2 Temperature, °C  Zone 3 Temperature, °C  Zone 4 Temperature, °C  Zone 5 Temperature, °C  Zone 6 Temperature, °C 

300  none  H2O Cooled  175  195  210  220  220  220 

300  none  H2O Cooled  175  195  210  215  220  220 

300  none  H2O Cooled  175  195  210  215  215  215 

Appl. Sci. 2018, 8, 1029

6 of 15

Table 1. Cont. Material Number ◦C

Zone 4 Temperature, Zone 5 Temperature, ◦ C Zone 6 Temperature, ◦ C Zone 7 Temperature, ◦ C Zone 8 Temperature, ◦ C Zone 9 Temperature, ◦ C Zone 10 Temperature, ◦ C Die Type and Gap Pelletizer Setting at 8/Bath Output Rate, lbs/h

PECC

PECC-1CA

PECC-2CA

220 220 220 220 220 220 220 3 × 3 mm H2 O bath 20

215 220 220 220 220 220 220 3 × 3 mm H2 O bath 20

215 215 215 215 215 215 220 3 × 3 mm H2 O bath 20

Notes: (1) LLDPE and Ken-React® CAPS® L® 12/L mixed in V cone blender for 4 min at 24 rpm in 2 lb batches and then placed in Feeder 3. (2) Approximately 20 lbs of each extruded material was produced. (3) Feeder 3 helix: 0.5” open helix with end stub and 0.75” nozzle side discharge. (4) Feeder 3 Toshiba laptop feeder3_VectraA950RX0.5inopen0.75insidedischargejak.par. (5) Feeder 2 helix: 0.75” open helix with 0.75” ID polyliner. (6) Feeder 2 NEC laptop Thermocarb file. (7) Extruder screw 5-14-05 design used from American Leistritz. Extruder screw cleaned in sand bath prior to use. (8) Purged with LLDPE at end of extrusion run to clean out extruder.

2.2. Methods 2.2.1. Preparation of Modified Asphalt Binder The modified asphalt binders were prepared using a high shear mixer. The binder and modifiers were properly mixed to ensure the materials were evenly dispersed in asphalt binder. The temperature that used for the production of modified asphalt binder is at 170 ◦ C. In the asphalt binder preparation process, about 500 g of asphalt binder PG 58-28 was poured into a one liter metal container. Then, an adequate amount of modifier was added to the same container and heated up in an oven for about two hours prior to the mixing process. After two hours of inducing the melting process, the binder and modifier were stirred using a high shear mixer at 5000 rpm rotational speed for 45 min. Based on literature review, LLDPE-related modifiers were used as asphalt modifiers in a range of 2% to 6% based on the weight of asphalt binder [11,13,35–38]. Based on the range, the amounts of modifier incorporated in the asphalt binder were decided at 3% and 5% based on the asphalt binder weight. At least three replicate specimens were used for all the asphalt binder and asphalt mixture tests. 2.2.2. Preparations of Asphalt Mixture Specimen A bucket mixer was used to blend the aggregates and asphalt binder. The sample was compacted using a gyratory compactor at 86 gyrations. Prior to compaction, the mixture was heated in an oven for two hours to simulate the short-term aging condition that occurs during preparation of asphalt mixture in the field. The Superpave specifications [39–41] were referred during the preparation of asphalt mixture. 2.2.3. Asphalt Binder Test Method The rolling thin film oven (RTFO) was used to quantify the volatiles lost (mass loss) during the short-term aging process of asphalt binder. Based on the Superpave Specification, the mass loss of asphalt binder should be less than 1 wt % to ensure the asphalt binder not to lose a significant number of volatiles over its life. The rotational viscometer was used to determine the viscosity of asphalt binders at high temperature. During the sample preparation, about 10.5 g asphalt binder is required for each sample, and spindle #27 was used in this test. This test measures the required torque value to maintain a constant rotational speed (20 rpm) of a cylindrical spindle under a constant temperature. The results were recorded in centipoises (cP) at one-minute intervals for a total of three readings.

Appl. Sci. 2018, 8, 1029

7 of 15

In this study, the multiple stress creep recovery (MSCR) was conducted by introducing the RTFO aged asphalt binder specimen to the repeated creep and recovery process at high temperature. The test has been conducted in accordance with AASHTO TP 70-13 at 58 ◦ C, which is the high temperature grade of selected asphalt binder, PG 58-28. The 25 mm diameter with 1 mm thickness circular disk-shaped asphalt binder sample was used. Two stress levels were introduced to the sample, which were 0.1 kPa and 3.2 kPa at one second loading time and nine seconds recovery time while performing the test [42,43]. The test started with 0.1 kPa stress for ten cycles without time lags, and proceeded with 3.2 kPa stress under the same number of cycles. The new MSCR test, which is conducted based on AASHTO T 350-14, conducted 20 cycles 0.1 kPa stress loading and unloading. The MSCR test result may be different if conducted in accordance with AASHTON T 350 [44,45]. The bending beam rheometer (BBR) test was performed in accordance with AASHTO T 313; a simply supported beam of asphalt binder was subjected to a constant load of 980 mN for four minutes. The test was conducted at −12 ◦ C, −18 ◦ C and −24 ◦ C to define the critical cracking temperature of control and modified binders. 2.2.4. Asphalt Mixture Test Method The flow number test was referred to a dynamic creep or repeated load testing. Basically, a 0.1 s loading followed by a 0.9 s dwell (rest time) was applied to the specimen. Additionally, an effective temperature of 45 ◦ C, often referred to as rutting temperature was used in this test [46,47]. Prior to the testing, the specimens were conditioned at 45 ◦ C. Appl. Sci. 2018, 8, x FOR PEER REVIEW    7 of 15 The tensile strength ratio (TSR) was used to evaluate the moisture susceptibility of asphalt temperature of 45 °C, often referred to as rutting temperature was used in this test [46,47]. Prior to  mixture. The moisture susceptibility was evaluated by comparing the indirect tensile strength (ITS) the testing, the specimens were conditioned at 45 °C.  of asphalt mixtures in dry and wet conditions. The ITS test was performed according to AASHTO The  tensile  strength  ratio  (TSR)  was  used  to  evaluate  the  moisture  susceptibility  of  asphalt  T283. The specimens were tested at the room temperature and constant loading speed, 0.085 mm/s. mixture. The moisture susceptibility was evaluated by comparing the indirect tensile strength (ITS)  The specimen of asphalt mixtures in dry and wet conditions. The ITS test was performed according to AASHTO  was subjected to compression loads which act parallel to the vertical diameter plane. T283. The specimens were tested at the room temperature and constant loading speed, 0.085 mm/s. 

3. Characterization of Asphalt Binder The specimen was subjected to compression loads which act parallel to the vertical diameter plane.  3. Characterization of Asphalt Binder  3.1. Volatile Loss 3.1. Volatile Loss  At elevated temperature, the smaller molecules from asphalt binder are driven off, resulting in an increase of the At elevated temperature, the smaller molecules from asphalt binder are driven off, resulting in  asphalt’s viscosity. The effects of heat and flowing air on a thin film of semi-solid an increase of the asphalt’s viscosity. The effects of heat and flowing air on a thin film of semi‐solid  asphaltic material are considered in this procedure. Figure 5 presents the mean mass loss values of each specimenasphaltic material are considered in this procedure. Figure 5 presents the mean mass loss values of  tested using short-term aging protocol. Based on the test results, incorporation of each  specimen  tested  using  short‐term  aging  protocol.  Based  on  the  test  results,  incorporation  of  modifiers andmodifiers and coupling agent do not significantly affect the volatile loss of modified asphalt binders  coupling agent do not significantly affect the volatile loss of modified asphalt binders compared to control binder PG 58-28. compared to control binder PG 58‐28. 

Mean Mass loss (%)

0.12 0.1 0.08 0.06 0.04 0.02 0

 

Figure 5. Figure 5. Mass loss test results of each asphalt binder.  Mass loss test results of each asphalt binder. 3.2. Rotational Viscosity  Figures  6  and  7  show  the  results  of  asphalt  binders  modified  using  PECC  and  PECC‐CA  modifiers.  Modified  asphalt  binders  have  higher  viscosity  value  compared  to  the  control  asphalt  binder. The addition of a titanate coupling agent has slightly increased the viscosity and consistency  of  asphalt  binders,  except  for  the  specimen  prepared  using  3%  PECC‐1CA.  The  increaments  are  ranging from 4% to 40% depending on the percentage of coupling agent and test temperature. 

Appl. Sci. 2018, 8, 1029

8 of 15

3.2. Rotational Viscosity Figures 6 and 7 show the results of asphalt binders modified using PECC and PECC-CA modifiers. Modified asphalt binders have higher viscosity value compared to the control asphalt binder. The addition of a titanate coupling agent has slightly increased the viscosity and consistency of asphalt binders, except for the specimen prepared using 3% PECC-1CA. The increaments are ranging from 4% to 40% depending on the percentage of coupling agent and test temperature. Hypothetically, the viscosity of asphalt binder could also be used as an early indicator of resistance to permanent deformation. Whereas, higher viscosity could sustain higher temperature before the binder flow or change its physical behavior. In the field, the melting temperature can be related to the atmospheric ambient temperature. In this study, the addition of modifiers and coupling agent has significantly improved the resistance to permanent deformation of asphalt binders. Appl. Sci. 2018, 8, x FOR PEER REVIEW    8 of 15 Appl. Sci. 2018, 8, x FOR PEER REVIEW   

8 of 15

.s).s) Viscosity (Pa Viscosity (Pa

1 1

B B A A

0.1 0.1

0.01 0.01130 130

A : Ideal Viscosity Range for Mixing A :: Ideal Ideal Viscosity Viscosity Range Range for for Compaction Mixing B B : Ideal Viscosity Range for Compaction

150 170 (°C) 150 Temperature 170 Temperature (°C)

3% PECC-2CA 3% PECC PECC-2CA 3% 3% PECC-1CA PECC 3% 3% 58-28 PECC-1CA PG PG 58-28

190 190

Figure 6. Modified Asphalt Binder Viscosity at Low Modifier Percentage.  Figure 6. Modified Asphalt Binder Viscosity at Low Modifier Percentage. Figure 6. Modified Asphalt Binder Viscosity at Low Modifier Percentage. 

   

Viscosity (Pa.s) Viscosity (Pa.s)

1 1

0.1 0.1

B AB A

0.01 0.01130 130

5% PECC-2CA 5% PECC-1CA PECC-2CA 5% 5% PECC PECC-1CA 5% 5% 58-28 PECC PG PG 58-28

A : Ideal Viscosity Range for Mixing A :: Ideal Ideal Viscosity Viscosity Range Range for for Compaction Mixing B B : Ideal Viscosity Range for Compaction

150 170 150 Temperature 170 (°C) Temperature (°C)

190 190

Figure 7. Modified asphalt binder viscosity at high modifier percentage.  Figure 7. Modified asphalt binder viscosity at high modifier percentage. 

   

Figure 7. Modified asphalt binder viscosity at high modifier percentage. 3.3. Multiple Shear Creep Recovery  3.3. Multiple Shear Creep Recovery  3.3. Multiple Shear Creep Recovery The DSR with G*/sin δ (AASHTO M320) is the typical parameter for rutting prediction of asphalt  The DSR with G*/sin δ (AASHTO M320) is the typical parameter for rutting prediction of asphalt  pavement.  However,  this  method  has  been  revised  to  provide  a  better  prediction  on  the  rutting  The DSR with G*/sin this  δ (AASHTO M320) isMSCR.  the typical parameter for rutting prediction of asphalt pavement.  However,  method binder  has  been  to  provide  a  better  prediction  on  the  rutting  performance  of  modified  asphalt  by  revised  This  method  measures  the  permanent  strain  performance  of  modified  asphalt  binder  by  MSCR.  This  method  measures  the  permanent  strain  pavement. However, this method has been revised to provide a better prediction on the rutting accumulated in the binder after designated cycles of shear loading and unloading. In which, lower  accumulated in the binder after designated cycles of shear loading and unloading. In which, lower  performance of modified asphalt binder by MSCR. This method measures the permanent strain permanent shear strain indicates higher rutting resistance of the pavement.  permanent shear strain indicates higher rutting resistance of the pavement.  accumulated in the binder after designated cycles of binder  shear loading and unloading. In which, lower Subsequently,  the  rutting  resistance  of  asphalt  is  characterized  using  non‐recoverable  Subsequently,  the  rutting higher resistance  of  asphalt  binder  compliance (J nr) which is considered as the best approach to replace the current Superpave testing  permanent shear strain indicates rutting resistance of is  thecharacterized  pavement. using  non‐recoverable  compliance (Jnr) which is considered as the best approach to replace the current Superpave testing  method, G*/sin δ (ω = 10 rad/s) [43,48]. Additionally, the percent recovery (R) is also determined in  method, G*/sin δ (ω = 10 rad/s) [43,48]. Additionally, the percent recovery (R) is also determined in  order to understand the high temperature viscoelastic deformation properties [43], where higher R  order to understand the high temperature viscoelastic deformation properties [43], where higher R  value indicates a better resistance to rutting. Meanwhile, a lower J nr value shows a better resistance to  value indicates a better resistance to rutting. Meanwhile, a lower Jnr value shows a better resistance to  permanent deformation (rutting).  permanent deformation (rutting).  The mean recovery percentage (n = 3) of the tested asphalt binders are presented in Figures 8  The mean recovery percentage (n = 3) of the tested asphalt binders are presented in Figures 8  and 9. Based on the non‐recoverable compliance criteria, the results show that the modified binders 

Appl. Sci. 2018, 8, 1029

9 of 15

Subsequently, the rutting resistance of asphalt binder is characterized using non-recoverable compliance (Jnr ) which is considered as the best approach to replace the current Superpave testing method, G*/sin δ (ω = 10 rad/s) [43,48]. Additionally, the percent recovery (R) is also determined in order to understand the high temperature viscoelastic deformation properties [43], where higher R value indicates a better resistance to rutting. Meanwhile, a lower Jnr value shows a better resistance to permanent deformation (rutting). The mean recovery percentage (n = 3) of the tested asphalt binders are presented in Figures 8 and 9. Appl. Sci. 2018, 8, x FOR PEER REVIEW    9 of 15   9 of 15have BasedAppl. Sci. 2018, 8, x FOR PEER REVIEW  on the non-recoverable compliance criteria, the results show that the modified binders lower continuously multiple loading action on the sample. Referring to the specimens prepared using 3%  rutting potential as compared to the control binder, PG 58-28. Additions of newly manufactured pelletscontinuously multiple loading action on the sample. Referring to the specimens prepared using 3%  have significantly increased the resistance to permanent deformation by at least 27% greater PECC‐1CA and 3% PECC‐2CA, application of 1% coupling agent in the PECC material represents  PECC‐1CA and 3% PECC‐2CA, application of 1% coupling agent in the PECC material represents  than PG 58-28 binder. Asphalt binder modified using 5% PECC-1CA has shown nrthe best performance, better elastic response compared to 2% coupling agent, which is consistent to the J  analysis. Samples  better elastic response compared to 2% coupling agent, which is consistent to the Jnr analysis. Samples  tested using lower stress levels have resulted in smaller non‐recoverable compliance and superior in  in terms of non-recoverable compliance criteria and percent recovery after continuously multiple tested using lower stress levels have resulted in smaller non‐recoverable compliance and superior in  terms of percent recovery. This is clearly simulated the condition in the field, where heavy vehicles  loading action on the sample. Referring to the specimens prepared using 3% PECC-1CA and 3% terms of percent recovery. This is clearly simulated the condition in the field, where heavy vehicles  (e.g., lorries and trucks) cause more severe permanent deformation compared to other vehicles, as  PECC-2CA, application of 1% coupling agent in the PECC material represents better elastic response (e.g., lorries and trucks) cause more severe permanent deformation compared to other vehicles, as  we can see the rut depths in the slow lane are typically more severe than the fast lane of a highway.  compared to 2% coupling agent, which is consistent to the Jnr analysis. Samples tested using lower we can see the rut depths in the slow lane are typically more severe than the fast lane of a highway.  Overall, without the presence of coupling agent, asphalt binder modified using 3% PECC has  Overall, without the presence of coupling agent, asphalt binder modified using 3% PECC has  stress levels have resulted in smaller non-recoverable compliance and superior in terms of percent shown a better recovery percentage compared to 5% PECC sample. With the addition of coupling  shown a better recovery percentage compared to 5% PECC sample. With the addition of coupling  recovery. This is clearly simulated the condition in the field, where heavy vehicles (e.g., lorries and agent, a higher percentage could be adopted in the modification process of asphalt binder. However,  agent, a higher percentage could be adopted in the modification process of asphalt binder. However,  trucks) cause more severe permanent deformation compared to other vehicles, as we can see the rut the amount of coupling agent should be limited to 1% to avoid adverse effects on its resistance to  the amount of coupling agent should be limited to 1% to avoid adverse effects on its resistance to  depthsrutting.  in the slow lane are typically more severe than the fast lane of a highway.

Non-recoverable Non-recoverableCompliance, Compliance, JnrJnr(1/kPa) (1/kPa)

rutting. 

33 2.5 2.5

0.1 kPa kPa 0.1 3.2 kPa 3.2 kPa

22 1.5 1.5 11 0.5 0.5 00

 

 

Percent PercentRecovery, Recovery,R(%) R(%)

Figure 8. Non‐recoverable compliance for evaluation of rutting potential.  Figure 8. Non-recoverable compliance for evaluation of rutting potential. Figure 8. Non‐recoverable compliance for evaluation of rutting potential. 

25 25 20 20 15 15 10 10

0.1 kPa kPa 0.1 3.2 kPa 3.2 kPa

55 00

Figure 9. Recovery percentage of the tested asphalt binders. Figure 9. Recovery percentage of the tested asphalt binders.  Figure 9. Recovery percentage of the tested asphalt binders. 

3.4. Low Temperature Cracking Using BBR Test  3.4. Low Temperature Cracking Using BBR Test  The BBR test was conducted to evaluate the low temperature stiffness and relaxation properties  The BBR test was conducted to evaluate the low temperature stiffness and relaxation properties  of asphalt binders, based on the function of load and duration. These parameters give an indication  of asphalt binders, based on the function of load and duration. These parameters give an indication  of an asphalt binder’s ability to resist low temperature cracking.  of an asphalt binder’s ability to resist low temperature cracking.  The data was then analyzed to calculate the critical cracking temperatures (Tcr) of the asphalt  The data was then analyzed to calculate the critical cracking temperatures (Tcr) of the asphalt  binders  based  on  the  measured  creep  stiffness  and  m‐values.  Figure  10  shows  the  limiting  low  binders  based  on  the  measured  creep  stiffness  and  m‐values.  Figure  10  shows  the  limiting  low 

Appl. Sci. 2018, 8, 1029

10 of 15

Overall, without the presence of coupling agent, asphalt binder modified using 3% PECC has shown a better recovery percentage compared to 5% PECC sample. With the addition of coupling agent, a higher percentage could be adopted in the modification process of asphalt binder. However, the amount of coupling agent should be limited to 1% to avoid adverse effects on its resistance to rutting. 3.4. Low Temperature Cracking Using BBR Test

5%PECC-2CA

3%PECC-2CA

5%PECC-1CA

3%PECC-1CA

5% PECC

3% PECC

-25

PG58-28

Critical Cracking Temperature (oC)

The BBR test was conducted to evaluate the low temperature stiffness and relaxation properties of asphalt binders, based on the function of load and duration. These parameters give an indication of an asphalt binder’s ability to resist low temperature cracking. The data was then analyzed to calculate the critical cracking temperatures (Tcr ) of the asphalt Appl. Sci. 2018, 8, x FOR PEER REVIEW    10 of 15 binders based on the measured creep stiffness and m-values. Figure 10 shows the limiting low temperature or Tcrcr for each binder. Overall, all the modified asphalt binders have shown comparable  for each binder. Overall, all the modified asphalt binders have shown comparable temperature or T performance in terms of resistance to low temperature cracking. It was found that incorporating performance in terms of resistance to low temperature cracking. It was found that incorporating 3%  3% PECC-1CA modifier had contributed thelow  lowtemperature  temperatureperformance  performanceof  of the  the asphalt PECC‐1CA  modifier  had  contributed  to to the  asphalt  binder, binder,  ◦ C, compared to the control asphalt binder that where it could resist the thermal cracking at − 33.2 where it could resist the thermal cracking at −33.2 °C, compared to the control asphalt binder that  may only resist the thermal cracking at temperature as low as −30.5 ◦ C. may only resist the thermal cracking at temperature as low as −30.5 °C. 

-27 -29 -31 -33 -35

 

Figure 10. 10.  Critical  cracking  temperature  of  PECC‐based  binders  compared  to  control  Figure Critical cracking temperature of PECC-based asphaltasphalt  binders compared to control specimen. specimen. 

4. Performance of Asphalt Mixtures 4. Performance of Asphalt Mixtures  4.1. Resistance to Permanent Deformation 4.1. Resistance to Permanent Deformation  Flow number test was conducted to evaluate the rutting resistance of asphalt pavement. The test Flow number test was conducted to evaluate the rutting resistance of asphalt pavement. The test  was typically used to assess the resistance to permanent deformation for the past several years [49,50]. was typically used to assess the resistance to permanent deformation for the past several years [49,50].  Faheem et al. [51] mentioned that flow number test has a strong correlation to the Traffic Force Index Faheem et al. [51] mentioned that flow number test has a strong correlation to the Traffic Force Index  (TFI), which represents the densification loading by the traffic during its service life. It was also found (TFI), which represents the densification loading by the traffic during its service life. It was also found  that this test has a good correlation with the field rutting performance [52,53]. The test is performed that this test has a good correlation with the field rutting performance [52,53]. The test is performed  by introducing repeated traffic loading (loading and unloading) on the cylindrical asphalt specimen by introducing repeated traffic loading (loading and unloading) on the cylindrical asphalt specimen  and the permanent deformation is recorded as a function of load cycles at the minimum permanent and the permanent deformation is recorded as a function of load cycles at the minimum permanent  strain rate. strain rate.  Figure 11 shows the flow number test result. The specimens prepared using modified asphalt Figure 11 shows the flow number test result. The specimens prepared using modified asphalt  binders have significantly higher resistance to rutting compared to the control sample. Greater amount binders  have  significantly  higher  resistance  to  rutting  compared  to  the  control  sample.  Greater  amount  of  modifier  has  resulted  in  a  higher  flow  number,  which  indicated  a  better  resistance  to  rutting.  The  addition  of  coupling  agent  also  has  remarkably  increased  the  mixture  stiffness  that  contributes to lower rutting potential. 

Appl. Sci. 2018, 8, 1029

11 of 15

of modifier has resulted in a higher flow number, which indicated a better resistance to rutting. The addition of coupling agent also has remarkably increased the mixture stiffness that contributes to   11 of 15 lowerAppl. Sci. 2018, 8, x FOR PEER REVIEW  rutting potential.

Flow Number (Cycle) Flow Number (Cycle)

Appl. Sci. 2018, 8, x FOR PEER REVIEW   

11 of 15

350 350 300 300 250 250 200 200 150 150 100 100 50 50 0 0

Sample Sample Figure 11. Flow number test results.  Figure 11. Flow number test results.

   

Figure 11. Flow number test results. 

4.2. Moisture Susceptibility  4.2. Moisture Susceptibility

Indirect Tensile Strength, ITSITS Indirect Tensile Strength, (kPa) (kPa)

4.2. Moisture Susceptibility  Figure 12 shows the ITS values of tested samples. Overall, the addition of modifiers does not  Figure 12 shows the ITS values of tested samples. Overall, the addition of modifiers does not significantly  alter  the  ITS  of  the  sample  in  the  dry  condition,  except  5%  PECC‐2CA.  There  are  no  Figure 12 shows the ITS values of tested samples. Overall, the addition of modifiers does not  significantly alter thethe  ITSITS  ofof  the sample in dryof modifiers and  condition,except  except PECC-2CA. are no significant  effects  of using different  compositions  the  coupling agent  in There terms  of  significantly  alter  the  sample  in the the  dry  condition,  5% 5% PECC‐2CA.  There  are  no  significant effects of using different compositions of modifiers and the coupling agent in terms indirect tensile strength results as indicated by the error bars presented. However, the modifiers help  significant  effects  of using different  compositions  of modifiers and  the  coupling agent  in  terms  of  of indirect tensile strength results as indicated by the error bars presented. However, the modifiers help in enhancing the ITS values of the wet samples. The samples incorporated lower amount of modifiers  indirect tensile strength results as indicated by the error bars presented. However, the modifiers help  (3%) have a better ITS value compared to sample prepared using 5% modifiers. Incorporating 1% and  in enhancing the ITS values of the wet samples. The samples incorporated lower amount of modifiers in enhancing the ITS values of the wet samples. The samples incorporated lower amount of modifiers  2% coupling agents also do not have significant differences between them in term of wet samples’  (3%) (3%) have a better ITS value compared to sample prepared using 5% modifiers. Incorporating 1% and  have a better ITS value compared to sample prepared using 5% modifiers. Incorporating 1% and ITS values.  2% coupling agents also do not have significant differences between them in term of wet samples’  2% coupling agents also do not have significant differences between them in term of wet samples’ ITS values.  ITS values.

1400 1400 1200 1200 1000 1000 800 800 600

Dry Dry Wet Wet

600 400 400 200 2000 0

Figure 12. ITS test results. 

   

Figure 12. ITS test results. Figure 12. ITS test results.  Based  on  Figure  13,  additions  of  modifiers  have  remarkably  improved  the  TSR  of  modified  asphalt  mixtures  compared  to  the  control  mixture, except  specimen  incorporating  5% of  PECC‐2CA.  Based  on  Figure  13,  additions  of  modifiers  have  remarkably  improved  the  TSR  modified  Combination of 3% PECC and coupling agent at 1% and 2% has greatly enhanced the resistance to  asphalt  mixtures  compared  to  the  control  mixture, except  specimen  incorporating  5%  PECC‐2CA.  Combination of 3% PECC and coupling agent at 1% and 2% has greatly enhanced the resistance to 

Appl. Sci. 2018, 8, 1029

12 of 15

Based on Figure 13, additions of modifiers have remarkably improved the TSR of modified asphalt Appl. Sci. 2018, 8, x FOR PEER REVIEW  12 of 15 mixtures compared to the control  mixture, except specimen incorporating 5% PECC-2CA. Combination

Tensile Strength Ratio, TSR

of 3% PECC and coupling agent at 1% and 2% has greatly enhanced the resistance to moisture damage moisture damage of asphalt mixture. However, the combination of the coupling agent with 3% PECC  of asphalt mixture. However, the combination of the coupling agent with 3% PECC is optimum for is optimum for this study in order to avoid adverse due to moisture damage. The combination of 5%  this study in order to avoid adverse due to moisture damage. The combination of 5% PECC and 2% PECC  and  2%  coupling  agent  yield  mixtures  with  worse  moisture  susceptibility  characteristic  as  coupling agent yield mixtures with worse moisture susceptibility characteristic as compared to other compared to other modified mixtures.  modified mixtures.

1.2 1 0.8 0.6 0.4 0.2 0

  Figure 13. Moisture susceptibility of asphalt mixtures. Figure 13. Moisture susceptibility of asphalt mixtures.

5. Conclusions 5. Conclusions  Based on the outcome of this study, several conclusions can be made as follows: Based on the outcome of this study, several conclusions can be made as follows: 

1. 1. 2. 2.

3. 3.

4. 4. 5. 5.

6. 6.

Addition of LLDPE‐CaCO Addition of LLDPE-CaCO3 modifiers and coupling agent do not significantly affect the volatile  3 modifiers and coupling agent do not significantly affect the volatile loss of modified asphalt binders.  loss of modified asphalt binders. Modified asphalt binders have higher viscosity value compared to the control asphalt binder.  Modified asphalt binders have higher viscosity value compared to the control asphalt binder. The addition of a titanate‐coupling agent has slightly increased the viscosity and consistency of  The addition of a titanate-coupling agent has slightly increased the viscosity and consistency asphalt  binders  depending  on  the  of  coupling  agent agent and  test  The  of asphalt binders depending on percentage  the percentage of coupling and temperature.  test temperature. viscosity of asphalt binder could also be used as an early indicator of resistance to permanent  The viscosity of asphalt binder could also be used as an early indicator of resistance to permanent deformation.  deformation.The  Theaddition  additionof  ofmodifiers  modifiersand  andcoupling  couplingagent  agent has  has significantly  significantly improved  improved the  the resistance to permanent deformation of asphalt binders.  resistance to permanent deformation of asphalt binders. With the addition of coupling agent, a higher percentage could be adopted in the modification  With the addition of coupling agent, a higher percentage could be adopted in the modification process of asphalt binder. However, the amount of coupling agent should be limit to 1% to avoid  process of asphalt binder. However, the amount of coupling agent should be limit to 1% to avoid adverse effects on its resistance to rutting.  adverse effects on its resistance to rutting. Overall,  Overall,all  all the  the modified  modified asphalt  asphalt binders  binders have  have shown  shown comparable  comparable performance  performance in  in terms  terms of  of resistance to low temperature cracking.  resistance to low temperature cracking. A greater amount of modifier has resulted in a higher flow number, which indicated a better  A greater amount of modifier has resulted in a higher flow number, which indicated a better resistance to rutting. The addition of coupling agent also has remarkably increased the mixture  resistance to rutting. The addition of coupling agent also has remarkably increased the mixture stiffness that contributes to lower rutting potential.  stiffness that contributes to lower rutting potential. The  modifiers  help  in  enhancing  the  ITS  values  of  the  wet  samples.  The  combination  of  the  The modifiers help in enhancing the ITS values of the wet samples. The combination of the coupling  agent  with  3%  PECC  is  optimum  for  this  study  to  avoid  adverse  due  to  moisture  coupling agent with 3% PECC is optimum for this study to avoid adverse due to moisture damage. damage. 

Author Contributions: Rosli Mohd Hasan (Data(Data  curation, Writingoriginaloriginal  draft, Methodology) Zhanping Author  Contributions: Mohd Mohd  Rosli  Mohd  Hasan  curation,  Writing‐  draft,  Methodology)  You (Supervision, Project administration, Writing- review & editing), Mohd Khairul Idham Mohd Satar (Formal Zhanping  You  (Supervision,  Project  administration,  Writing‐  review  &  editing),  Mohd  Khairul  Idham  Mohd  analysis, Writing- review & editing), Muhammad Naqiuddin Mohd Warid (Formal analysis, Writing- review & Satar  (Formal  analysis,  Writing‐  review  &  editing),  Muhammad  Naqiuddin  Mohd  Warid  (Formal  analysis,  Writing‐ review & editing), Nurul Hidayah Mohd Kamaruddin (Formal analysis, Writing‐ review & editing),  Dongdong  Ge  (Formal  analysis,  Writing‐  review  &  editing),  Ran  Zhang  (Formal  analysis,  Writing‐  review  &  editing) 

Appl. Sci. 2018, 8, 1029

13 of 15

editing), Nurul Hidayah Mohd Kamaruddin (Formal analysis, Writing- review & editing), Dongdong Ge (Formal analysis, Writing- review & editing), Ran Zhang (Formal analysis, Writing- review & editing). Acknowledgments: The authors grateful to express their appreciation to Kenrich Petrochemicals, Inc. (Bayonne, NJ, USA), Specialty Minerals Inc. (Bethlehem, PA, USA), Payne & Dolan Inc. (Waukesha, WI, USA), and Dow Chemical Company (Midland, MI, USA) for donating test materials. The authors would like to acknowledge the research assistantships to Mohd Rosli Mohd Hasan, Mohd Khairul Idham Mohd Satar, Muhammad Naqiuddin Mohd Warid, Nurul Hidayah Mohd Kamaruddin, Ran Zhang, and Dongdong Ge. The authors also want to acknowledge Julia A. King from Department of Chemical Engineering of Michigan Technological University for her significant contributions in materials preparation, test design, and paper revision. It is impossible for the authors to complete the work without her effort. Any opinions, findings and conclusions expressed in this paper are those of the authors’ and do not necessarily reflect the views of the official views and policies of any institution or company. Conflicts of Interest: The authors declare no conflict of interest.

References 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

11. 12. 13. 14. 15. 16. 17. 18. 19.

You, Z.; Mills-Beale, J.; Foley, J.M.; Roy, S.; Odegard, G.M.; Dai, Q.; Goh, S.W. Nanoclay-modified asphalt materials: Preparation and characterization. Constr. Build. Mater. 2011, 25, 1072–1078. [CrossRef] Ge, D.; Yan, K.; You, Z.; Xu, H. Modification mechanism of asphalt binder with waste tire rubber and recycled polyethylene. Constr. Build. Mater. 2016, 126, 66–76. [CrossRef] Diab, A.; You, Z. Small and large strain rheological characterizations of polymer-and crumb rubber-modified asphalt binders. Constr. Build. Mater. 2017, 144, 168–177. [CrossRef] Brown, E.R.; Kandhal, P.S.; Roberts, F.L.; Kim, Y.R.; Lee, D.Y.; Kennedy, T.W. Hot Mix Asphalt Materials, Mixture Design, and Construction; NAPA Research and Education Foundation: Auburn, AL, USA, 2009. Chen, J.-S.; Liao, M.-C.; Shiah, M.-S. Asphalt modified by styrene-butadiene-styrene triblock copolymer: Morphology and model. J. Mater. Civ. Eng. 2002, 14, 224–229. [CrossRef] Polacco, G.; Stastna, J.; Biondi, D.; Zanzotto, L. Relation between polymer architecture and nonlinear viscoelastic behavior of modified asphalts. Curr. Opin. Colloid Interface Sci. 2006, 11, 230–245. [CrossRef] Kalantar, Z.N.; Karim, M.R.; Mahrez, A. A review of using waste and virgin polymer in pavement. Constr. Build. Mater. 2012, 33, 55–62. [CrossRef] Munera, J.; Ossa, E. Polymer modified bitumen: Optimization and selection. Mater. Des. 2014, 62, 91–97. [CrossRef] Jan, H.; Aman, M.Y.; Tawab, M.; Ali, K.; Ali, B. Performance Evaluation of Hot Mix Asphalt Concrete by Using Polymeric Waste Polyethylene, Modeling, Simulation, and Optimization; Springer: Newyork, NY, USA, 2018. Nakhaei, M.; Naderi, K.; Nasrekani, A.A.; Timm, D.H. Chemical, Rheological, and Moisture Resistance Properties of Warm Mix Asphalt Modified with Polyethylene-Way and Ethylene-Bis-Stearamide Additives; Sage: Washington, DC, USA, 2018. Polacco, G.; Berlincioni, S.; Biondi, D.; Stastna, J.; Zanzotto, L. Asphalt modification with different polyethylene-based polymers. Eur. Polym. J. 2005, 41, 2831–2844. [CrossRef] Stastna, J.; Zanzotto, L.; Vacin, O. Viscosity function in polymer-modified asphalts. J. Colloid Interface Sci. 2003, 259, 200–207. [CrossRef] Habib, N.Z.; Kamaruddin, I.; Napiah, M.; Tan, I.M. Rheological properties of polyethylene and polypropylene modified bitumen. Int. J. Civ. Environ. Eng. 2011, 3, 96–100. Little, D.N.; Epps, J.A. The Benefits of Hydrated Lime in Hot Mix Asphalt; National Lime Association: Arlington, VA, USA, 2001. Atikler, U.; Basalp, D.; Tihminlioglu, ˘ F. Mechanical and morphological properties of recycled high-density polyethylene, filled with calcium carbonate and fly ash. J. Appl. Polym. Sci. 2006, 102, 4460–4467. [CrossRef] Silva, R.V.; de Brito, J.; Dhir, R.K. Tensile strength behaviour of recycled aggregate concrete. Constr. Build. Mater. 2015, 83, 108–118. [CrossRef] Lu, X.; Isacsson, U. Compatibility and storage stability of styrene-butadiene-styrene copolymer modified bitumens. Mater. Struct. 1997, 30, 618–626. [CrossRef] Estevez, M. Use of coupling agents to stabilize asphalt–rubber–gravel composite to improve its mechanical properties. J. Clean. Product. 2009, 17, 1359–1362. [CrossRef] Marzocchi, A.; Roberts, M.G.; Bolen, H.E.; Harrington, E.R. Chemically modified Asphalt Compositions. Patent US4301051A, 24 February 1978.

Appl. Sci. 2018, 8, 1029

20. 21. 22.

23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42.

43. 44.

45.

14 of 15

Hristov, V.; Vlachopoulos, J. Influence of coupling agents on melt flow behavior of natural fiber composites. Macromol. Mater. Eng. 2007, 292, 608–619. [CrossRef] Yao, H.; You, Z.; Li, L.; Lee, C.H.; Wingard, D.; Yap, Y.K.; Shi, X.; Goh, S.W. Properties and chemical bonding of asphalt and asphalt mixtures modified with nanosilica. J. Mater. Civ. Eng. 2012, 25, 1619–1630. [CrossRef] Martí-Ferrer, F.; Vilaplana, F.; Ribes-Greus, A.; Benedito-Borrás, A.; Sanz-Box, C. Flour rice husk as filler in block copolymer polypropylene: Effect of different coupling agents. J. Appl. Polym. Sci. 2006, 99, 1823–1831. [CrossRef] Albano, C.; Gonzalez, J.; Ichazo, M.; Rosales, C.; de Navarro, C.U.; Parra, C. Mechanical and morphological behavior of polyolefin blends in the presence of CaCO3 . Compos. Struct. 2000, 48, 49–58. [CrossRef] Sae-oui, P.; Sirisinha, C.; Thepsuwan, U.; Hatthapanit, K. Roles of silane coupling agents on properties of silica-filled polychloroprene. Eur. Polym. J. 2006, 42, 479–486. [CrossRef] Chen, W.-S.; Chang, Y.-L.; Hsiang, H.-I.; Hsu, F.-C.; Yen, F.-S. Effects of titanate coupling agent on the dielectric properties of NiZn ferrite powders–epoxy resin coatings. Ceram. Int. 2011, 37, 2347–2352. [CrossRef] Zhang, A.Q.; Wang, Y.M.; Zhuang, C.Y. Discussion the effect on improving granite bituminous mixture performance by adding coupling agent. Appl. Mech. Mater. 2012, 204, 4115–4118. [CrossRef] Zhang, A.Q.; Li, J. Surface modification research for asphalt mixture filler. Appl. Mech. Mater. 2012, 174, 821–825. Zhang, A.; Wang, Y.; Sun, S. Improving water stability of granite-asphalt interface by adding titanate ester coupling agent. Int. Conf. Transp. Eng. 2009. [CrossRef] Pinnavaia, T.J.; Beall, G.W. Polymer-Clay Nanocomposites; Wiley Online Library: Indianapolis, IN, USA, 2000. Jahromi, S.G.; Khodaii, A. Effects of nanoclay on rheological properties of bitumen binder. Constr. Build. Mater. 2009, 23, 2894–2904. [CrossRef] Sugerman, G.; Monte, S.J. Neoalkoxy Organo-Titanates and Organo-Zirconates Useful As Coupling and Polymer Processing Agents. U.S. Patent 4623738, 1986. Kenrich Petrochemicals, Inc. Product Data Sheet: Ken-React® CAPS® L® 12/L-Titanate Coupling Agent; Kenrich Petrochemicals, Inc.: Bayonne, NJ, USA, 2011. Krueger, Q.J.; King, J.A. Synergistic effects of carbon fillers on shielding effectiveness in conductive nylon 6, 6-and polycarbonate-based resins. Adv. Polym. Technol. 2003, 22, 96–111. [CrossRef] Clingerman, M.L. Development and Modelling of Electrically Conductive Composite Materials; Michigan Technological University: Houghton, MI, USA, 2001. Al-Abdul Wahhab, H.I. Effect of modifiers and additives on fatigue behavior of asphalt concrete mixes in the gulf. Int. J. Pavement Res. Technol. 2012, 5, 326–332. Wahhab, H.A.-A.; Abaker, I. Performance modification of asphalt binders using thermoplastic polymers. J. Eng. Res. 2004, 1, 19–28. [CrossRef] Fang, C.; Li, T.; Zhou, S.; Wang, X.; Heiliger, L. Study on the modification mechanism of asphalt with waste packaging polymer. Transp. Dev. Innov. Best Pract. 2008. [CrossRef] Yousefi, A.A. Rubber-polyethylene modified bitumens. Iran. Polym. J. 2004, 13, 101–112. Asphalt Institute. Superpave Performance Graded Asphalt Binder Specification and Testing, 3rd ed.; Asphalt Institute: Lexington, KY, USA, 2003. Asphalt Institute. Superpave Performance Graded Asphalt Binder Specification and Testing; Asphalt Institute: Lexington, KY, USA, 1995. Asphalt Institute. Superpave; Asphalt Institute: Lexington, KY, USA, 1996. Greene, J.; Choubane, B.; Chun, S. Evaluation of a heavy polymer modified binder through accelerated pavement testing. In Proceedings of the Transportation Research Board 92nd Annual Meeting, Washington, DC, USA, 13–17 January 2013. Wang, C.; Zhang, J.X.; Song, P.P. Short-term ageing influence on the creep and recovery characteristics of asphalt binders. Appl. Mech. Mater. 2013, 275, 2045–2050. [CrossRef] Behnood, A.; Olek, J. Rheological properties of asphalt binders modified with styrene-butadiene-styrene (SBS), ground tire rubber (GTR), or polyphosphoric acid (PPA). Constr. Build. Mater. 2017, 151, 464–478. [CrossRef] Behnood, A.; Olek, J. Stress-dependent behavior and rutting resistance of modified asphalt binders: An MSCR approach. Constr. Build. Mater. 2017, 157, 635–646. [CrossRef]

Appl. Sci. 2018, 8, 1029

46.

47. 48. 49. 50. 51. 52. 53.

15 of 15

Witczak, M.W.; Kaloush, K.; Pellinen, T.; El-Basyouny, M.; Quintus, H.V. Simple performance test for superpave mix design. In National Cooperative Highway Research Program; NCHRP Report 465; National Academy Press: Washington, DC, USA, 2002. Carpenter, S.H.; Vavrik, W.R. Repeated triaxial testing during mix design for performance characterization. Transp. Res. Rec. 2001, 1767, 76–84. [CrossRef] D’Angelo, J.A. The relationship of the MSCR test to rutting. Road Mater. Pavement Des. 2009, 10, 61–80. [CrossRef] Zhou, F.; Scullion, T.; Sun, L. Verification and modeling of three-stage permanent deformation behavior of asphalt mixes. Am. Soc. Civ. Eng. 2004. [CrossRef] Monismith, C.L.; Ogawa, N.; Freeme, C.R. Permanent deformation characteristics of subgrade soils due to repeated loading. Transp. Res. Rec. 1975, 537, 1–17. Faheem, A.F.; Bahia, H.U.; Ajideh, H. Estimating results of a proposed simple performance test for hot-mix asphalt from superpave gyratory compactor results. Transp. Res. Rec. 2005, 1929, 104–113. [CrossRef] Witczak, M.W. Specification criteria for simple performance tests for rutting. In National Cooperative Highway Research Program; NCHRP Report 580; Transporation research board: Washington, DC, USA, 2007. Dongre, R.; D’Angelo, J.; Copeland, A. Refinement of flow number as determined by asphalt mixture performance. J. Transp. Res. Rec. 2009, 2, 127–136. [CrossRef] © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Suggest Documents