Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 14, no. 1, pp. 53–74 (2010)
Efficient, Proximity-Preserving Node Overlap Removal Emden R. Gansner Yifan Hu AT&T Labs, Shannon Laboratory, 180 Park Ave., Florham Park, NJ 07932.
Abstract When drawing graphs whose nodes contain text or graphics, the nontrivial node sizes must be taken into account, either as part of the initial layout or as a post-processing step. The core problem in avoiding or removing overlaps is to retain the structural information inherent in a layout while minimizing the additional area required. This paper presents a new node overlap removal algorithm that does well at retaining a graph’s shape while using little additional area and time. As part of the analysis, we consider and evaluate two measures of dissimilarity for two layouts of the same graph.
Submitted: November 2008
Reviewed: March 2009 Final: November 2009 Article type: Regular paper
Revised: Accepted: May 2009 November 2009 Published: January 2010 Communicated by: I. G. Tollis and M. Patrignani
E-mail addresses:
[email protected] (Emden R. Gansner)
[email protected] (Yifan Hu)
54
Gansner and Hu Efficient Node Overlap Removal
1
Introduction
Most existing symmetric graph layout algorithms treat nodes as points. In practice, nodes usually contain labels or graphics that need to be displayed. Naively incorporating this can lead to nodes that overlap, causing information of one node to occlude that of others. If we assume that the original layout conveys significant aggregate information such as clusters, the goal of any layout that avoids overlaps should be to retain the “shape” of the layout based on point nodes. The simplest and, in some sense, the best solution is to scale up the drawing while preserving the node size until the nodes no longer overlap [30]. This has the advantage of preserving the shape of the layout exactly, but can lead to inconveniently large drawings. In general, overlap removal is typically a tradeoff between preserving the shape and limiting the area, with scaling at one extreme. Many techniques to avoid overlapping nodes have been devised. One approach is to make the node size part of the model of the layout algorithm. It is assumed that whatever structure that would have been exposed using point nodes will still be evident in these more general layouts. For hierarchical layouts, the node size can be naturally incorporated into the algorithm [11, 35]. For symmetric layouts, various authors [3, 19, 28, 37] have extended the springelectrical model [7, 12] to take into account node sizes, usually as increased repulsive forces. Node overlap removal can also be built into the stress model [26] by specifying the ideal edge length to avoid overlap along the graph edges. Such heuristics, however, cannot guarantee all overlaps will be removed, so they typically rely on overly large repulsive forces, or the type of post-processing step considered below. This problem was addressed by Dwyer et al. [5], who showed how to encode overlap avoidance, as well as many other layout features, as linear constraints in a stress function, and then optimize the stress function using stress majorization [13]. An alternative approach is to remove node overlaps as a post-processing step after the graph is laid out. Here the trade-off between layout size and preserving the graph’s shape is more explicit. In addition to many of the algorithms mentioned above that can be adapted for this use, a number of other algorithms have been proposed. For example, the Voronoi cluster busting algorithm [15, 29] works by iteratively forming a Voronoi diagram from the current layout and moving each node to the center of its Voronoi cell until no overlaps remain. The idea is that restricting each node to its corresponding Voronoi cell should preserve the relative positions of the nodes. In practice, because of the number of iterations often required and the use of a rectangular bounding box,1 the nodes in the final drawing can be homogeneously distributed within a rectangle, the graph bearing little resemblance to the original layout. Another group of post-processing algorithms is based on setting up pairwise node constraints to remove overlaps and then performing some procedure to 1 The latter might be improved by using something like α-shapes [8] to provide a more accurate boundary.
JGAA, 14(1) 53–74 (2010)
55
generate a feasible solution. The force scan algorithm [31] and its later variants [20, 24] proceed along these lines. More recently, Marriott et al. [30, 31] have presented quadratic programming algorithms which remove node overlaps while, if desired, minimizing node displacement. All of these techniques rely on solving separate horizontal and vertical problems. They behave differently if the layout is rotated by a degree that is not a multiple of π/2. We have also found that, in practice, this asymmetry often results in a layout with a distorted aspect ratio (e.g., Figure 4, bottom right). One desideratum proposed [31] for overlap removal is the preservation of orthogonal ordering, i.e., the relative ordering of the x and y coordinates of two nodes should be the same in the original layout and the one with overlaps removed. Thus, if a node is above and to the left of another node in the original layout, it is above and to the left in the derived one. The idea is that, in this manner, a user’s “mental map” of the graph is better preserved. Many of the algorithms described above either inherently preserve orthogonal ordering, or have simple variations that do. While preserving orthogonal ordering can be important, it alone cannot ensure that the relative proximity relations [23] between nodes are preserved. At other times, it is too restrictive, causing two highly-related nodes to be moved far apart due to some largely unrelated third node. For these reasons, our approach is to concentrate on proximity relations and not deal with orthogonal ordering. In this paper, we focus on the problem of removing overlaps rather than avoiding them. To this end, we discuss (Section 3) metrics for the similarity between two layouts which we believe better quantify the desired outcome of overlap removal than minimized displacement or such simpler measures as aspect ratio or edge ratio (the ratio of the longest and the shortest edge lengths). We then present (Section 4) a node overlap removal algorithm based on a proximity graph of the nodes in the original layout. Using this graph as a guide, it iteratively moves the nodes, particularly those that overlap, while keeping the relative positions between them as close to those in the original layout as possible. The algorithm is similar to the stress model [26] used for graph layout, except that the stress function involves only a sparse selection of all possible node pairs. Because of this sparse stress function, the algorithm is efficient and is able to handle very large graphs. In Section 5, we evaluate our algorithm and others using the proposed similarity measures. Finally, Section 6 presents a summary and topics for further study.
2
Background
We use G = (V, E) to denote an undirected graph, with V the set of nodes (vertices) and E edges. We use |V | and |E| for the number of vertices and edges, respectively. We let xi represent the current coordinates of vertex i in Euclidean space. For this paper we are interested in 2D layout, therefore xi ∈ R2 . The aim of graph drawing is to find xi for all i ∈ V so that the resulting
56
Gansner and Hu Efficient Node Overlap Removal
drawing gives a good visual representation of the information in the graph. Two popular methods, the spring-electrical model [7, 12], and the stress model [26], both convert the problem of finding an optimal layout to that of finding a minimal energy configuration of a physical system. We shall describe the stress model in more detail since we will use a similar model for the purpose of node overlap removal in Section 4. The stress model assumes that there are springs connecting all nodes of the graph, with the ideal spring length equal to the graph theoretical distance between nodes. The energy of this spring system is X wij (kxi − xj k − dij ) 2 , (1) i6=j
where dij is the graph theoretical distance between vertices i and j, and wij is a weight factor, typically 1/dij 2 . The layout that minimizes the above stress energy is an optimal layout of the graph. There are several ways to find a solution of the minimization problem. An iterative approach can be employed. Starting from a random layout, the total spring force on each vertex is calculated, and the vertex is moved along the direction of the force for a certain step length. This process is repeated, with the step length decreasing every iteration, until the layout stabilizes. Alternatively, a stress majorization technique can be employed, where the cost function (1) is bounded by a series of quadratic functions from above, and the process of finding an optimum becomes that of solving a series of linear systems [13]. In the stress model, the graph theoretical distance between all pairs of vertices has to be calculated, leading to quadratic complexity in the number of vertices. There have been attempts (e.g., [2, 13]) to simplify the stress function by considering only a sparse portion of the graph. Our experience, however, with real-life graphs is that these techniques may fail to yield good layouts. Therefore, algorithms based on a spring-electrical model employing a multilevel approach and an efficient approximation scheme for long range repulsive forces [18, 22, 36] are still the most efficient choices to lay out large graphs without consideration of the node size.
3
Measuring Layout Similarity
The outcome of an overlap removal algorithm should be measured in two aspects. The first aspect is the overall bounding box area: we want to minimize the area taken by the drawing after overlap removal. The second aspect is the change in relative positions. Here we want the new drawing to be as “close” to the original as possible. It is this aspect that is hard to quantify. When total node movement is optimized [6, 24], comparison is reduced to measuring the amount of displacement of the vertices in the new layout from those of the original graph. This measurement does not take into account possible shifts, scalings or rotations, nor the importance of maintaining the relative position among vertices.
JGAA, 14(1) 53–74 (2010)
57
As far as we are aware, there is no definitive way to measure similarity of two layouts of the same graph. We adopt two approaches. The first approach is based on measuring changes in lengths of edges. The second approach, which is a modification of the metric of Dwyer et al. [6], is based on measuring the displacement of vertices, after discounting shift, scaling and rotation. Before defining these two measures of similarity, we first introduce the concept of a proximity graph. A proximity graph is a graph derived from a set of points in space: points that are “neighbors” to each other in the space form an edge in the proximity graph. There are many ways to create a proximity graph [25]. In this paper, we shall work with the Delaunay triangulation (DT), which is an approximation to the proximity graph, and has the advantage being rigid. Two points are neighbors in DT if and only if there exists a sphere passing through these two points, and no other points lie in the interior of this sphere. One way to measure the similarity of two layouts is to measure the distance between all pairs of vertices in the original and the new layout. If the two layouts are similar, then these distances should match, subject to scaling. This is known as Frobenius metric in the sensor localization problem [9]. Calculating all pairwise distances is expensive for large graphs, both in CPU time and in the amount of memory. As we want a metric feasible for very large graphs, we instead form a DT of the original graph, then measure the distance between vertices along the edges of the triangulation for the original and new layouts.2 If x0 and x denote the original and the new layout, and EP is the set of edges in the triangulation, we calculate the ratio of the edge length rij =
kxi − xj k , {i, j} ∈ EP , kx0i − x0j k
then define a measure of the dissimilarity as the normalized standard deviation rP (rij −¯ r )2 |EP |
{i,j}∈EP
σdist (x0 , x) =
r¯
,
where r¯ =
1 |EP |
X
rij
{i,j}∈EP
is the mean ratio. The reason we measure the edge length ratio along edges of the proximity graph, rather than along edges of the original graph, is that if the original graph is not rigid, then even if two layouts of the same graph have the same edge lengths, they could be completely different. For example, think of the graph of a square, and a new layout of the same graph in the shape of a nonsquare rhombus. These two layouts may have exactly the same edge lengths, 2 Another possibility would be to sample O(|V |) out of the |V |(|V | − 1)/2 possible vertex pairs. Some care is needed in making sure that the resulting graph is rigid.
58
Gansner and Hu Efficient Node Overlap Removal
4
3 4
1
2
1
3
2
Figure 1: The edge lengths of these two layouts of a non-rigid graph are exactly the same, but the layouts are clearly different.
but are clearly different (see Figure 1). The rigidity of the triangulation avoids this problem. Notice that σdist (x0 , x) is not symmetric with regard to which layout comes first. Furthermore, in theory, this non-symmetric version could class a layout and a foldover of it (e.g., a square grid with one half folded over the other) as the same. We can symmetrize it by defining the dissimilarity between layout x and x0 as (σdist (x0 , x) + σdist (x, x0 ))/2. This also resolves the “foldover problem”. The symmetric version may be more appropriate if we are comparing two unrelated layouts. Since, however, we are comparing a layout derived from an existing layout, we feel that the asymmetric version is adequate. An alternative measure of similarity is to calculate the displacement of vertices of the new layout from the original layout [6]. Clearly a new layout derived from a shift, scaling and rotation should be considered identical. Therefore we modify the straight displacement calculation by discounting the aforementioned transformations. This is achieved by finding the optimal scaling, shift and rotation that minimize the displacement. The optimal displacement is then a measure of dissimilarity. We denote by scalars r and θ the scaling and rotation, cos(θ) sin(θ) T = (2) − sin(θ) cos(θ) the rotation matrix, p ∈ R2 the translation, and define the displacement dissimilarity as X σdisp (x0 , x) = minp∈R2 ,θ,r∈R krT xi + p − x0i k2 , (3) i∈V
This is a known problem in the Procrustes analysis [1, 16] and the solution (the Procrustes statistic) is T
T
1
σdisp (x0 , x) = tr(X 0 X 0 ) − (tr((X T X 0 X 0 X) 2 )2 tr(X T X),
(4)
where tr(A) is the trace of a matrix A, X is a matrix with columns xi − x¯, X 0 is a matrix with columns x0i − x¯0 , and x ¯ and x ¯0 are the centers of gravity of the new and original layout.
JGAA, 14(1) 53–74 (2010)
59
j j
i
i
Figure 2: Nodes i and j overlap (left). The overlap factor, according to (5), is min((2 + 2)/3, (1 + 2)/2) = 1.33. Expanding the edge i − j by 33% removes the overlap (right).
In the above we do not consider shearing, since we believe a layout derived from shearing of the original should not be considered identical to the latter. The quality of an overlap removal algorithm is a combination of how similar the new layout is to the original, and how small an area it occupies. The simplest overlap removal algorithm is that of scaling the layout until all overlaps are removed. This has a dissimilarity of 0, but usually occupies a very large area. The alternative extreme is to pack the nodes as close to each other as possible while ignoring the original layout. This will have the smallest area, but a large dissimilarity. A good solution should be a compromise between these two extremes. We now describe one candidate.
4
A Proximity Stress Model for Node Overlap Removal
Our goal is to remove overlaps while preserving the shape of the initial layout by maintaining the proximity relations [23] among the nodes. To do this, we first set up a rigid “scaffolding” structure so that while vertices can move around, their relative positions are maintained. This scaffolding is constructed using an approximate proximity graph, in the form of a Delaunay triangulation (DT). Once we form a DT, we check every edge in it and see if there are any node overlaps along that edge. Let wi and hi denote the half width and height of the node i, and x0i (1) and x0i (2) the current X and Y coordinates of this node. If i and j form an edge in the DT, we calculate the overlap factor of these two nodes tij = max min
hi + hj wi + wj , |x0i (1) − x0j (1)| |x0i (2) − x0j (2)|
!
!
,1 .
(5)
For nodes that do not overlap, tij = 1. For nodes that do overlap, such overlaps can be removed if we expand the edge by this factor, see Figure 2. Therefore we want to generate a layout such that an edge in the proximity graph has the
60
Gansner and Hu Efficient Node Overlap Removal
ideal edge length close to tij kx0i − x0j k. In other words, we want to minimize the following stress function X wij (kxi − xj k − dij ) 2 . (6) (i,j)∈EP
Here dij = sij kx0i − x0j k is the ideal distance for the edge {i, j}, sij is a scaling factor related to the overlap factor tij (see (7)), wij = 1/kdijk2 is a weighting factor, and EP is the set of edges of the proximity graph. We call (6) the proximity stress model in obvious analogy. Because DT is a planar graph, which has no more than 3|V | − 6 edges, the above stress function has no more than 3|V | − 6 terms. Furthermore, because DT is rigid, it provides a good scaffolding that constrains the relative position of the vertices and helps to preserve the global structure of the original layout. It is important that we do not attempt to remove overlaps in one iteration by using the above model with sij = tij . Imagine the situation of a regular mesh graph, with one node i of particularly large size that overlaps badly with its nearby nodes, but the other nodes do not overlap with each other. Suppose nodes i and j form an edge in the proximity graph, and they overlap. If we try to make the length of the edge equal tij kx0i − x0j k, we will find that tij is a number much larger than 1, and the optimum solution to the stress model is to keep all the other vertices at or close to their current positions, but move the large node i outside of the mesh, at a position that does not cause overlap. This is not desirable because it destroys the original layout. Therefore we damp the overlap factor by setting sij = min(tij , smax )
(7)
and try to remove overlap a little at a time. Here smax > 1 is a number limiting the amount of overlap we are allowed to remove in one iteration. We found that smax = 1.5 works well. After minimizing (6), we arrive at a layout that may still have node overlaps. We then regenerate the proximity graph using DT and calculate the overlap factor along the edges of this graph, and redo the minimization. This forms an iterative process that ends when there are no more overlaps along the edges of the proximity graph. For many graphs, the above algorithm yields a drawing that is free of node overlaps. For some graphs, however, especially those with nodes having extreme aspect ratios, node overlaps may still occur. Such overlaps happen for pairs of nodes that are not near each other, and thus do not constitute edges of the proximity graph. Figure 3(a) shows the drawing of a graph after minimizing (6) iteratively, so that no more node overlap is found along the edges of the Delaunay triangulation. Clearly, node 2 and node 4 still overlap. If we plot the Delaunay triangulation (Figure 3(b)), it is seen that nodes 2 and 4 are not neighbors in the proximity graph, which explains the overlap. To overcome this situation, once the above iterative process has converged so that no more overlaps are detected over the DT edges, we apply a scan-
JGAA, 14(1) 53–74 (2010)
8
7
6
9
8 5
1
2 with a tall label
6
9
5
11 10
7
61
11 4 with an extremely looong label 3
10 1
2 with a tall label
4 with an extremely looong label 3
Figure 3: (a): A graph layout where nodes 2 and 4 overlap. (b): the proximity graph (Delaunay triangulation) of the current layout. No two nodes linked by an edge of the proximity graph overlap.
line algorithm [6] to find all overlaps, and augment the proximity graph with additional edges, where each edge consists of a pair of nodes that overlap. We then re-solve (6). This process is repeated until the scan-line algorithm finds no more overlaps. We call our algorithm PRISM (PRoxImity Stress Model). Algorithm 1 gives a detailed description of this algorithm. Algorithm 1 Proximity stress model based overlap removal algorithm (PRISM) Input: coordinates for each vertex, x0i , and bounding box width and height {wi , hi }, i = 1, 2, . . . , |V |. repeat Form a proximity graph GP of x0 by Delaunay triangulation. Find the overlap factors (5) along all edges in GP . Solve the proximity stress model (6) for x. Set x0 = x. until (no more overlaps along edges of GP ) repeat Form a proximity graph GP of x0 by Delaunay triangulation. Find all node overlaps using a scan-line algorithm. Augment GP with edges from node pairs that overlap. Find the overlap factor (5) along all edges of GP . Solve the proximity stress model (6) for x. Set x0 = x. until (no more overlaps) We now discuss some of the main computational steps in the above algorithm. Delaunay triangulation can be computed in O(|V | log |V |) time [10, 17, 27]. We used the mesh generator Triangle [33, 34] for this purpose. The scan-line algorithm can be implemented to find all the overlaps in O(l|V |(log |V | + l)) time [6], where l is the number of overlaps. Because we only apply the scan-line algorithm after no more node overlaps are found along edges of the proximity graph, l is usually a very small number, hence this step can be considered as taking time O(|V | log |V |). The proximity stress model (6), like the spring model (1), can be solved
62
Gansner and Hu Efficient Node Overlap Removal
using the stress majorization technique [13] which is known to be a robust process for finding the minimum of (1). The technique works by bounding (6) with a series of quadratic functions from above, and the process of finding an optimum becomes that of finding the optimum of the series of quadratic functions, which involves solving linear systems with a weighted Laplacian of the proximity graph. We solve each linear system using a preconditioned conjugate gradient algorithm. Because we use DT as our proximity graph and it has no more than 3|V | − 6 edges, each iteration of the conjugate gradient algorithm takes a time of O(|V |). Overall, therefore, Algorithm 1 takes O(t(mk|V | + |V | log |V |)) time, where t is the total number of iterations in the two main loops in Algorithm 1, m is the average number of stress majorization iterations, and k the average number of iterations for the conjugate gradient algorithm. In practice, we found that the majority of CPU time is spent in repeatedly solving the linear systems (which takes a total time of O(tmk|V |)). We terminate the conjugate gradient algorithm if the relative 2-norm residual for the linear system involved in the stress majorization process is less than 0.01. A tighter tolerance is not necessary because the solution of each linear system constitutes an intermediate step of the stress majorization. Furthermore, solution of the proximity stress model (6) is an intermediate step itself in Algorithm 1, so we do not need to solve (6) accurately either. Hence we set a limit of mmax iterations. By experimentation, we found that a smaller value mmax gives a faster algorithm, and that, in terms of quality, a smaller mmax is often just as good as, if not better than, a larger value of mmax . Therefore, we set mmax = 1.
5
Numerical Results
To evaluate the PRISM algorithm and other overlap removal algorithms, we apply them as a post-processing step to a selection of graphs from the Graphviz [14] test suite. This suite, part of the Graphviz source distribution, contains many graphs from users. As such, these are good examples of the kind of graphs actually being drawn. Our baseline algorithm is Scalable Force Directed Placement (SFDP) [22], a multilevel, spring-electrical algorithm. Using the layout of SFDP, we then apply one of the overlap removal algorithms to get a new layout that has no node overlaps, and compare the new layout with the original in terms of dissimilarity and area. In Table 1, we list the 14 test graphs, the number of vertices and edges, as well as CPU time3 for PRISM and three other overlap removal algorithms. The graphs are selected randomly with the criteria that a graph chosen should be connected, and is of relatively large size. We compared PRISM with an implementation of the solve VPSC algorithm [6] provided by its authors. We also evaluated the companion algorithm satisfy VPSC. This offered, at best, a 2% 3 All timings were derived on a 4 processor, 3.2 GHz Intel Xeon CPU, with 8.16 GB of memory, running Linux.
JGAA, 14(1) 53–74 (2010)
63
Table 1: Comparing the CPU time (in seconds) of several overlap removal algorithms. Initially the layout is scaled to an average edge length of 1 inch. Graph b100 b102 b124 b143 badvoro mode ngk10 4 NaN dpd root rowe size unix xx
|V | 1463 302 79 135 1235 213 50 76 36 1054 43 47 41 302
|E| 5806 611 281 366 1616 269 100 121 108 1083 68 55 49 611
PRISM 1.44 0.14 0.03 0.04 0.54 0.09 0.01 0.01 0.01 0.89 0.00 0.01 0.01 0.13
VPSC 14.85 0.10 0.01 0.01 71.15 0.09 0.00 0.01 0.01 7.81 0.00 0.00 0.00 0.10
VORO 350.7 4.36 0.02 0.47 351.51 2.15 0.02 0.11 0.02 398.49 0.04 0.06 0.04 8.19
ODNLS 258.9 5.7 0.5 1.3 73.6 2.1 0.14 0.27 0.1 46.9 0.1 0.09 0.07 5.67
reduction in time, while producing almost identical results concerning displacement, dissimilarity and area. For this reason, in the sequel, we only consider the solve VPSC algorithm, hereafter denoted as VPSC.4 We also evaluated the Voronoi cluster busting algorithm [15, 29], denoted by VORO, as well as the ODNLS algorithm of Li et al. [28], which relies on varied edge lengths in a spring embedder. We note, in passing, that we also tested scaling using the algorithm of Marriott et al. [30]. As expected, it outperformed all other algorithms in terms of speed and dissimilarity, but at an unacceptably high cost in area. For example, on the b143 graph, the time and dissimilarity were essentially 0 but the area was 82.2. Overall, scaling produced areas at least 4.5 times larger than PRISM and, more typically, at least an order of magnitude larger. We therefore remove scaling from further consideration. The initial layout by SFDP is scaled so that the average edge length is 1 inch. From the table, it is seen that PRISM is usually faster, particularly for large graphs on which it scales much better. The others are slow for large graphs, with VORO the slowest. Table 2 compares the dissimilarities and drawing area of the four overlap removal algorithms. The smaller the dissimilarities and area, the better. The ODNLS algorithm performs best in terms of smaller dissimilarity, followed by PRISM, VPSC and VORO. In terms of area, PRISM and VPSC are pretty close, and both are better than ODNLS and VORO, which can give ex4 Both versions of the VPSC algorithm can be extended to support the preservation of orthogonal ordering. We did not have an opportunity to check these versions.
64
Gansner and Hu Efficient Node Overlap Removal
tremely large drawings. Indeed, in terms of area, scaling outperformed ODNLS and VORO in 20%-30% of the examples. Comparing PRISM with VPSC, Table 2 shows that PRISM gives smaller dissimilarities most of the time. The two dissimilarity measures, σdist and σdisp , are generally correlated, except for ngk10 4 and root. Based on σdist , VPSC is better for these two graphs, while based on σdisp , PRISM is better. The first row in Figure 4 shows the original layout of ngk10 4, as well as the result after applying PRISM and VPSC. Through visual inspection, we can see that PRISM preserved the proximity relations of the original layout well. VPSC “packed” the labels more tightly, but it tends to line up vertices horizontally and vertically, and also produces a layout with aspect ratio quite different from the original graph. It seems that σdist is not as sensitive in detecting differences in aspect ratio. This is evident in drawings of the root graph (Figure 4, second row): VPSC clearly produced a drawing that is overly stretched in the vertical direction, but its σdist is actually smaller! Consequently, we conclude that σdisp may be a better dissimilarity measure. The fact that VPSC can produce very tall and thin, or very short and wide, layouts is not surprising, and has been observed often in practice. VPSC works in the vertical and horizontal directions alternatively, each time trying to remove overlaps while minimizing displacement. As a result, when starting from a layout with severe node overlaps, it may move vertices significantly along one direction to resolve the overlaps, creating drawings with extreme aspect ratios. In fact, for 9 out of 14 test graphs, VPSC produces layouts with extreme aspect ratios. PRISM does not suffer from this problem. When starting from a layout that is scaled sufficiently so that relative fewer nodes overlap, VPSC’s performance can be improved. Table 3 compares the four overlap removal algorithms, starting from layouts that are scaled to give an average edge length that equals 4 times the average node size. Here the size of a node is calculated as the average of its width and height. From the table, we can see that in terms of dissimilarity, PRISM and VPSC are now similar, closer to the better performing ODNLS. In terms of drawing area, PRISM is better than VPSC, with VORO and ODNLS much larger. When visually inspected, VPSC again suffers from extreme aspect ratio issue on at least 5 out of the 14 graphs (b100, b143, badvoro, mode, root). Figure 5 shows the layout of badvoro (first row), on which VPSC performed badly based on the two similarity measures. In the same figure, we also show b124 (second row), on which PRISM is rated worse than VPSC based on the same measures. On badvoro it is clear that VPSC performed badly, as the similarity measures suggest. On the other hand, if we look at b124, VPSC perhaps performed better than PRISM, but not as clearly as the similarity measures suggest. Overall, visual inspection of the drawings of these 14 graphs, as well as drawings for graphs in the complete Graphviz test suite (a total of 204 graphs in March 2008), shows that PRISM performs very well, and is overall better and faster than VPSC and VORO. The ODNLS algorithm preserves similarity somewhat better than PRISM, but at much higher costs in term of speed and area. Considering a larger collection of graphs, Table 4 compares PRISM with
JGAA, 14(1) 53–74 (2010)
65
Table 2: Comparing the dissimilarities and area of overlap removal algorithms. Results shown are σdist , σdisp and area. Area is measured with a unit of 106 square points. Initially the layout is scaled to an average length of 1 inch. Graph b100 b102 b124 b143 badvoro mode ngk10 4 NaN dpd root rowe size unix xx Graph b100 b102 b124 b143 badvoro mode ngk10 4 NaN dpd root rowe size unix xx
σdist 0.74 0.44 0.65 0.59 0.34 0.59 0.41 0.4 0.34 0.71 0.33 0.37 0.39 0.42 σdist 0.8 0.86 0.99 2.29 0.97 0.48 0.56 0.48 4.09 0.49 0.62 0.6 0.97
PRISM σdisp area 0.38 14.05 0.25 2.45 0.37 1.04 0.35 1.5 0.15 12.58 0.37 0.79 0.16 0.33 0.2 0.72 0.18 0.25 0.3 16.99 0.14 0.22 0.2 0.47 0.23 0.39 0.25 3.96 VORO σdisp area 0.3 31.79 0.39 13.42 0.45 22.91 0.65 3.01E3 0.54 10.84 0.26 0.52 0.28 5.04 0.32 0.45 0.94 6.93E9 0.26 0.95 0.35 1.27 0.35 0.85 0.34 58.83
σdist 0.76 0.58 0.78 0.78 0.61 1.02 0.39 0.54 0.51 0.6 0.44 0.77 0.51 0.57 σdist 0.33 0.30 0.33 0.49 0.31 0.38 0.22 0.26 0.37 0.29 0.27 0.32 0.26 0.29
VPSC σdisp area 0.72 18.91 0.8 2.71 0.73 0.91 0.83 2.16 0.75 13.85 0.77 1.29 0.3 0.25 0.65 0.71 0.4 0.18 0.75 17.68 0.31 0.19 0.74 0.4 0.67 0.36 0.82 3.9 ODNLS σdisp area 0.20 1.02E3 0.16 53.13 0.19 14.79 0.34 23.79 0.26 318.66 0.27 49.45 0.13 2.30 0.15 5.10 0.29 1.30 0.22 950.01 0.12 2.10 0.20 4.14 0.13 2.35 0.14 74.00
66
Gansner and Hu Efficient Node Overlap Removal
26
37 44 42
22
26 1
13 49
26
40
22 29 2 31 32
37
22
3
30
13
47
28
31
2
2
47
38
24
39
3
8 32
13
9
38
24 18
30
41
40 29
20 28 8 933 16 10 6 39 11 46 35 25 48 43 14 15 45 7 1250 19 27 34 17 4 36 21 5 23 47 38
42
44
1
44 42 3741
30
41
40
1
49
20
18
35
14
7
10 16
11
39
33
6
31
29
11
32
25
16
50
46
24 49
14
48 43
50
7 12
34
34
15
15
48
6
45
27 19
45
36 17
4
5
4
17
5
21
36
23
21
ngk10 4
33
19
27
23
3 9
10
20
43
12
46
25
35 18
28
8
ngk10 4+PRISM
ngk10 4+VPSC 3ef07ae75d29a707
805004328dad9d315d
3d475ea3aeca51b60212dd
5838586c293d455
f4c69e5e212f89348122e8
6b3f3fa236bb90592d23a
678bf739c344b9ad41da1
dd12f26f8d9bb55
6fb7a84e370ef70feac5cb
30d9d350943c0e3ff7594b50
6d4a4a5a5af91b895272c30
4280833ef80172 4280833ef80172 4280833ef80172 83c397b8bf7f 396b16a892fe 396b16a892fe 83c397b8bf7f 83c397b8bf7f 396b16a892fe
5d69639a5e3bdd3d
e0ad365c2fb444358201
3124d3a6ed3381a6341c6
293a225dc56dd1e0564e6bb
b5e86c73d1198f
d550a7f392c787661aadd48
b07bbdc8cca5985d4c4
b5e86c73d1198f
fe4e848cb5291ee59a2
0b8694c9ef9b27b9c3d8
e7a887d88c2318beba51
81e20155999fa64e0ae6fd
284f14a259991806654e74
46125fcc583c0f494a3a1d3
6139fa6adc88d 236E bbe0a8f93dc1 e3aefac763 bb5e89c8963 e3aefac763 278E 358E 50023f6f88
df5dba74c75b228de48c
e3aefac763 2342b759c03 9d8988c0945d6 4280833ef80172 4280833ef80172 db6c4213a717bc 398E
71512ec7d43f958f2b6da
7e493ee44b28 3f0a2b4eb62f 552E 214E 634E 438E 402E 400E 406E 768E 448E 408E 504E 476E 404E 216E
efe092824916a5637ee35d439589
da24f74aad2ff519009d1f38c
16da5f1301b36df4df0f
1c07453d584f3d14b1876fdb
4a36db80f1ab1e97
460aed10cc9 460aed10cc9 460aed10cc9 51e045ca826077ae765
460aed10cc9
8fa622d9f842c5572a545ed72982
666f11bb45c3a8dcf26e1ed79
34c8c8dc0f6e41c7e7b2
c4d32527b670afb370d643
d93a80739fc1edb41a11b7294
86569bffb49adf6b3d0ebac
69fdd1a1f4768c5efe7
c4f31ea3844e12da27ad47c6
383db224d7508ef072bea21d0
17dafa5ebaafd48440e3
d378760b814eaecb6efe636e0efc4
e842
b69e426d974e1907e88
412E
30c3f3bf8463d3843dc57d8e98
4dccb e851f5ddd920
c90f755c8b6612d
48398d080dfcccced48da1980
2832ed5cea6
e153c6e676c7369b285b4e9033a
3f16509139c7dad5163b91799
e03b8bc0435a 660ffeb76fc59 35b8742610 fb16636aae 975fedfb64df b5f038f79a3 81bcc35f82891
fe6be3206549f5b5564acde84783
3089106e3b
00cbeb87c182ca0785f
663E 3089106e3b
731857fe189fb398e80a0594 e842
317E
b5c747cc9
3089106e3b
56292d076643
3711
866808df
82a65ed4b69
431430c49
bf 0bc7f8f513e0e74b270
9be88247
23dc3a52fed9c119610b5e8
e1e4c23db39d8bd633c3a
6331b3f 244E f3c4311de0e931f08c232b 1a830d9f c71aa521578164debd0c5 8b092 b4ce21e0a3df1d097277d6
ce 51ec95518d1b3 3089106e3b
ff07977fca5513098d220d1eb3a
05fed5e
3b6b2c549de670d7bf5fc0ee
664E
d13da6273c9b4da
e1fa7f549e5a0893bb42da5
c5255d 010957669f3770aac 1ed5d7f63b8c6 84907547f36d0ff7 318E 155d892827c33ed3cae3
c3bbf4
a9497e0757b0969bde707ed5
681E
a849f9d352e
bbb13dc62adf2de2a42b6
5c6a2
a3b6df27179b175c88fa4c9cf9f
aff6d7896e0e142bbc3e78
71e6b a849f9d352e 78 4f05b
a849f9d352e
ad9142a65f5eab78b4ca5e
8292af691429f8d9ed481ff71ffd
6282bc21f6
3db761b596844f133c
916c686a1e82dba72524a
682E
3ef07ae75d29a707 f4c69e5e212f89348122e8 3d475ea3aeca51b60212dd 805004328dad9d315d 5838586c293d455 6fb7a84e370ef70feac5cb 678bf739c344b9ad41da1 6b3f3fa236bb90592d23a dd12f26f8d9bb55 30d9d350943c0e3ff7594b50 6d4a4a5a5af91b895272c30 4280833ef80172 4280833ef80172 396b16a892fe 396b16a892fe 83c397b8bf7f 83c397b8bf7f d550a7f392c787661aadd48 b07bbdc8cca5985d4c4 293a225dc56dd1e0564e6bb e0ad365c2fb444358201 3124d3a6ed3381a6341c6 5d69639a5e3bdd3d b5e86c73d1198f fe4e848cb5291ee59a2 e7a887d88c2318beba51 81e20155999fa64e0ae6fd 0b8694c9ef9b27b9c3d8 284f14a259991806654e74 46125fcc583c0f494a3a1d3 6139fa6adc88d 236E e3aefac763 50023f6f88 bb5e89c8963 bbe0a8f93dc1 e3aefac763 358E 278E df5dba74c75b228de48c 9d8988c0945d6 4280833ef80172 e3aefac763 2342b759c03 4280833ef80172 71512ec7d43f958f2b6da db6c4213a717bc 398E 7e493ee44b28 3f0a2b4eb62f 552E 438E 402E 768E 400E 634E 214E 406E 504E 448E 408E 476E 404E 216E efe092824916a5637ee35d439589 1c07453d584f3d14b1876fdb da24f74aad2ff519009d1f38c 16da5f1301b36df4df0f 4a36db80f1ab1e97 460aed10cc9 460aed10cc9 8fa622d9f842c5572a545ed72982 51e045ca826077ae765 666f11bb45c3a8dcf26e1ed79 34c8c8dc0f6e41c7e7b2 c4d32527b670afb370d643 d93a80739fc1edb41a11b7294 86569bffb49adf6b3d0ebac 69fdd1a1f4768c5efe7 383db224d7508ef072bea21d0 c4f31ea3844e12da27ad47c6 17dafa5ebaafd48440e3 e842 d378760b814eaecb6efe636e0efc4 412E b69e426d974e1907e88 30c3f3bf8463d3843dc57d8e98 4dccb e851f5ddd920 e153c6e676c7369b285b4e9033a 3f16509139c7dad5163b91799 c90f755c8b6612d 2832ed5cea6 48398d080dfcccced48da1980 e842 e03b8bc0435a 660ffeb76fc59 975fedfb64df 35b8742610 b5f038f79a3 fb16636aae 81bcc35f82891 b5c747cc9 fe6be3206549f5b5564acde84783 00cbeb87c182ca0785f 56292d076643 866808df 3089106e3b 663E 431430c49 731857fe189fb398e80a0594 3089106e3b 82a65ed4b69 317E 3711 bf 0bc7f8f513e0e74b270 e1e4c23db39d8bd633c3a 51ec95518d1b3 9be88247 1a830d9f 6331b3f 8b092 244E ce 23dc3a52fed9c119610b5e8 c71aa521578164debd0c5 f3c4311de0e931f08c232b b4ce21e0a3df1d097277d6 3b6b2c549de670d7bf5fc0ee 05fed5e e1fa7f549e5a0893bb42da5 ff07977fca5513098d220d1eb3a d13da6273c9b4da 1ed5d7f63b8c6 c5255d 664E 010957669f3770aac a9497e0757b0969bde707ed5 681E c3bbf4 318E 155d892827c33ed3cae3 84907547f36d0ff7 a3b6df27179b175c88fa4c9cf9f aff6d7896e0e142bbc3e78 bbb13dc62adf2de2a42b6 5c6a2 a849f9d352e 71e6b 8292af691429f8d9ed481ff71ffd ad9142a65f5eab78b4ca5e 4f05b 682E 3db761b596844f133c a849f9d352e 78 6282bc21f6 c10cb9baf4dcb43e24 916c686a1e82dba72524a 6a3c6921b0aeceda3 a97ef281eafc34b1630d450a1df 7816c3ae29c0bc713 4856000a6802ddfc121ef40432297 876d120b38b0e88817 a141a557a60912051f3c135 71e6b de34214b4c258c9333ec3 460aed10cc9 69ce90c9b2 541ab86a2e 6577 be233fafa38d931d894 dd84fe6a65cfac7bca03ebd 0f5db6ce12751ddcc64e f36cce089 d2498 212af4 f33ec11db496f7bfcb024f e920b915087 89a36b13f8c344b ac6e99186 a5a f2a57e4d4f0cec516891e3 e5 587E 8a9eb2806b0aa 247e407f45b353f8 a849f9d352e b701e7 f2e7cc 648E 454E cbce cfdf1932665dcb4cd3c bb828f1a326 297E 380E 462E 71e6b 9652ab8b55fdb2a36d1f3fe020 74e86 4ff4e275c710c3b 459E e9 964b86fc1bba0e bd2484 9dd5bf47f 7ab64a969 a4c7d0 4f6f7f 28533c cf49E 360E 588E 69 66c0220688a999aaf7f1702d1 316E 8e24e9b4e 298E 67513d 460E 71a48d11b2e7e56b1df128bd 418E 72cbb37db85ed3c6eda5dcf8 8cd4d 70815f0352b43dc1562133ab6eb 0f6784e49852c0be0da23b16 67b6a4dca3a6d ef8b68bb5772f3 6bce02baf91781a831e1b95 3e814305b42beb41b8c706 6c541cad8de1b15 90cc275011c2013c61eb11 6236a67933a619a6a3d48 31f2f9aef958979f9f3532b9b f52a45620969f0df4e6ae1dcd7 c935c7f4d1090ac 33ff9e43d5ab 4f2e020854dfacce46a12 03716a2c341e5edaa31 4cc20a0b7651e486 d4f958b03a98 50962c93b4cb293f5beb59eb 1c08373 f66fe4df3d189e69ce10c9c 383f5c65cc6c25aa0a0e6dbb 5256925081c812 b5c747cc9 5f2592b20f13356b7fc8b42 1c08373 1322fb0818783e6f9a4f173d47c52 41a8b095c7fd3 5ce1fcfb042b 151E 171192dc1f8e6ea551548a910c00 be8f4199f 375E 531806429433 1ff8ff951ee9 eccfe5ff0af70fe9fbec8b2360f90 21407f8a6d7 e079d2c e079d2c 9696c0950295d8cb5 f22c27c0f0a54e 01db23a60422ba93a68611cc0 f490de272a7f6e4af346d40 629e42 483E 21407f8a6d7 1f5df34ad75a55a76ef4afa0a47 151bcc2a8de7ea634 d285240b89cb be8f4199f c6b5321a 248df40dae 26a185dde9a93dd 08769f73d31c1a99be2d9363f 473E 00265 376E aeb8 b1ffbabb24d71f67d1e0ce23c51 22bd92e302816 8d0d8314d211d80 05d4b1ed6a6135eec3abd3f2 f0d99f16 04767 5c609b12c 629e42 199E 484E 04904a458422a5b9 3089106e3b 761e0f72f95 15d44ab97 7e494b c29ce10bb8d19b498355aa04 2e53009d4a375 474E 78b2d75d00166 a6a196a504c3a7657d1fa41 1c08373 cd856f 6e186b 200E dea1d1 d382 a7167d5eb5408b3839903 230cc6bbc66b24eae94fa03d 97c9d726e27304311901a52ce 335E 6c89dc59ee7aaebbbd6bb64 5a0b4b906a 336E bb828f1a326 459236f07c73814faf5 4f8c642b53c349c687534bda35db 46969c4 a7a7f3681dad1250b01cf80bc17 ef2d4636934472 8c8b5bde6 8c8b5bde6 5f865c374cb3fe976dd376b8 47cd70f 18083a711d 3eca1f94dc181 30cc206b1878485 428E b9ae94e6935503603341ecf4 aa868f65c34cdb64f1fad19a f496bcf0889b301d77819c ddfeabe456a9de5f5784 699e3db878047 c54f0fc1e05 23ad1 b630e1af6ae1997f0e8ba750 792fd6f9df1fa1e33 60d0128bdb61ae40e98638bd1391 9ab6c66dc 23ad1 a7c99ccf6ddf6f5ebbe 391256c872 78cc16f965adc5f712ea2372c6 5c81103c751345d0ee0f4bd 14a3c17f3d 162E c4fd8 aac615ae78 f29dfb9 23ad1 7528dd86b f8ff39eab120851f143bf19 40f253cd228f7ac2d0aee 4d22e1 b23526044 427E d6125ef42bd9958 bdbdb31bd777fb65dd6dd2d0e7 550E 6f578c5128 4e3cfd27a a3ff993 d8f4a9e463a1e89217f 1112164c2f7a a9012b7bb5 78c8463ea 2c514b0cd8f7d3 3dafb9a29c00 8d5137b16a e65185ca 3b63cdc0f c110ba7 3b566eaa70ed401479d43a9 4c6c8c 6b1bb9b0e 499f6985db294c 4c6c8c 2ced414a91575a48f2dd29a b46b0756dba915943839e90a55 97a7eea3f 4dbf4395236fb03ed 4c6c8c 5be631dff7b97697be7dc0a2f07f2 4a9d79c960b8d33e39251e5f66 3dcf8f454 4b683 a164d9f60fbbdd 1aaaab063 6c998bf2a5edd 2d886da042b5384b4 3bec1c012b498 3e048573fd f28b78d4803c b36e0be6f67fc25286127456 a54d477232 87a7e69a72412 c3c93c700edc0cb4f95f03c04 c5acd20cad2 85221d5e9e d7c27cc6f7b02a31eb64d 062fc905b9eb35 73d12 5fdf 1e1fbbe14ac24e0518 330342f283ef2 c8fc17180bea86 00d0dd018fe879f96 421 a5520019b8a73bc141b5fd416a 4c6c8c deb3089920548bf1ecb23f0d 87a7e69a72412 73e6ed83012 bc4824f07a9d2bba6 3219b6b71443 e06cc38155ff6781cf944d745 af4a1fac3e2076 73ca543bf1 837ebf4bde22e1f1535cb662 6b5aaa4bdf44b2c898854 dd2ba36 c0b727 38f162cf917ce7298663a1f1c607 09e64744536c5e1 62f36ea98a d0eb84 99237fce1358 b354cd9e9dbb0bfa 0a185946ee443342b07d8e1 238805e2194c3 87a7e69a72412 3828a2c682419423cf 784E ebd8ffc2ac3a90efb8af9 351dd0aefe480c a9058241db5b6b6c25569acdf5 3a0ff0 c471b6fdbfb852661 252126553e52385d16 be6b73bd46a7a5183e8c91a 444189d179b5db71fe 56e1a896 a031c9192ae8e75 d4b2 76889f7d35e 593caebf2037317648bb451aa79 f4bef37b6a94bfd00 fcbd9ad14139718bc6fcc8b4 23c1ec53358d237c1 32979f8cf86 a54092a3033f7d5e41e0a76c1 baba65f670ee34a88 b2babf3244213 ca3d67754cf62fdafbf0a1e0 f2c7b3bb4d44f977d0ab8a42351 8606837526d81cdec b3cadc253f7 675E b4dfef6 1ebeec 5ba4693031 4c82921f4ad3f07066540 a7fe7 3b4fdad8e0429d112 ad1dd724f1c3e e7ef998 79b69c612 1467f017b74e 964cb56d8f69ff058 75b14f1719d e3a76d31ca59a fb58e11 403126 02f5daf56e299b8a8ecea892 a7e89580 9fe65061641 724dabdce9744d061 4f0cbd3fbf0cb1e8c 16c508ab98483d430bbe 3c2a62e0e5e9f7 cab04b7c14a 12fcb26b3de00ef98719c2ca a84844dfd0052b3b5 8e2d970b2f820ee35 2e1313c ef13d45b1277ac9a0444adb a7fe7 00880e6f50c765ebc1f85d3e9 cab04b7c14a ee91c97828 585E c2f32e2cf9 cab04b7c14a ae32701 ca5af2 4348f3abcb7716 825c7994d5da13afe519861818 cd6 2ef949c4a39b e7ef998 340E 254E 11180ae7706510211bc4 fd28c194a46fde909b019c52f 90dccb18c0 052bb6e3 aebb7b91b b082f7a5ff a472a156cf2b55f f5807acd8d58e006f43 536264e787cf70469 34d06d1ed6 cc3f63d e17fea65 affb2d716803a2d3e e4dba079d5fcb1f165920a3bf eccf7c722ddf 617809d979f a7d2 296E 672E e49aaa5cc4e44355d6a0 713db1c1 57f7fd2eecec93c8b 3acbf8a1537e4e1a1 df61d5f5fc 319E 07283 332E 647 285E 4f2de229621272 8896166adc0 3bbfc7bfdbbb1ba1bfad7517 626E 320E 96325ea 4f35e206816c3bd22 6bbd5b422edb8e358dcc20eecf9 96deede0c6b44119 f20f7f513e 644f112bb0aa452ee7040a 52f247fc3b 637E 93ea0 638E 793E 15b3ad672cd2f713a 75eea05672a5 8593dcf973b110d00cecdc1e756 1b34fb150 e8ebe1bf5f421c1223 3aeb78ea51020a44f2d2615436dae b473716 d495de0b35f6 09847696ae a96e47ff37983425a3e452095 cab04b7c14a 66abc181ac4 f72564578be 73ba1714ee 1d792d81 6505e29f4a11d9530 89a2505da6179a80202d4a6c3 5782807b5f575e0a8 40b49a5a9bb256c7a3286e56 e2a5d11499b7e 262E e8b bba6e6e194ccf d 3b0c08dd2ca e618df70814a 1f4f0fdf 27709106 1ed67841 97284d4c3a5d499853f0e 8d6e6e0cd9b842a47 45ba4d4c61c9601a26d59e47e0260 47e0067f4d853afd2012f04daa8 6ba0776fc8e fa90ddf10bd574 e8386a8e1c8a 99bd3e7feeb710 92fb5d4a0805 cab04b7c14a e4e2f4e6d 644E 294E 8a 51e74bec5513083bb e3e284d0cc803d98d674f9c3f6d a3781072b 3ba7afb0e48ae1 69f2611acc42c36ed7cc b12441ecff15fa12c 256E 654E 548c0081a62132b44 e4ae306d9bd669c70 086 9f 800422ab81d804eef3e7b91dfba91 290907417e13 952316a1a5a785 94da691e20e3 f55670 226E 274E 508E 63a3d4fb9d38a0182be6e39e76 88d8b220746882d f787d827958c 1927c743a0d440a5a0 cab04b7c14a 6a80cbe 2a9caef7 319bc900218b 30417faf916 63b079bd5847 4e8259973f1f 2dd8cc4d693415f93c0f8fc cab04b7c14a af4abb0d6a99 d2647f8b6d8661d08 e343cea291b79a2ed4e b79798b186d6b82288e8be4017d f95344b0ae31693f3a2746597d4 966d271c22e75c7538 4379b5ed 6a80cbe 3b0a8a1c2e5050bd 64ef1d545 ef6361295eba07 815cc0b83d733 d7203571944b 11f088bfd8 bfc6564cbdeeffac00a141 4e4a79111d 01938827 6a91 d17f8f4eeb8e63d 1a220eb692c 8e69341faa4489 617809d979f a49284e9 52f247fc3b ca5af2 7c13bf753da 7c1767485953d9c2 99b6c f2b6201774de40a29b504b1f716 668d636002 2573e1bf51f1b307f4640 84e4ede82074 d58478d9c273ad4f4b2e091324 a9a36ef02f ee91c97828 4ad5d68f07981a 2759e82e30d6d 4f04c39708f 8ea965ab6ee8dedb6c3333e9 7c7c 76E cca7040e47789 fbba7215e7c13173a60206 c32d2697e8 8be752bc95d436a90493bec9 84e4ede82074 ff9d64ddf49a20f 53069e384a2 450d3a2d49cbfd 6a91 20949455f573f 969a58db14386cb9d2f51ec 10a7d61c201c67a5e78542807cd 19398d3cd6b9c674f 549fa15d68f0b3bee6192f888cd8 c8a6c26d4fd9f f722890f70a32dce3baff371a 44cbb41a9cfc15497eacd294 ac34ec0f0488b17ec 9fe716e738eaea34e 609E 5997cb0c083422 2a47a6a27 eff3468631dd4 a8f0fe2eb7bc1471 cfff3acd8e9d 57948adb5dead f6e6236b48bc3 cf5a6049ad 47ebc3f17 0a49c95f107c0aa57c9b5748 06209 2e31175cbd52fcd08360fe86d20 efb52b499303115c33fd 58e3dcc618 b656f0ed2202b8e46eb 32c958c9997 3aa0ce5efcf79bc3ecced1886e89 eee44624da 817 65fd8495 6819fd5a6cdd280dd f5d636e14a6cd716362158d f7b22b9640 65fd8495 6bf214d9e7fa5f2df a387210a27b 69f4ecb77d 7c0ab977f5a3c4ab6d625f5033 8be0efdd94a6383e87fbfded4f 558d8534f92fddfe 51192117f9b4 2f43cba12702078b4e0d3bfdae2bc 9c1305d59c37e9be9f13d7d049c 908f9ad506eae9ab6ada185e3 81 658d208447d8ec5d6de8 842bc5775657c1e0d67 3c1edc8de4795936 af9c489df53 71cf45dd4e91bcca945137b40e 1de26f6b12b0d292f94184 f841118350a27b7ea29a9c9d 32fe7eee5283 a2984b7a11e49440420058c1d80 ea920d9f5b295119 ef42184297591d b074e 32b98f11f3d01d6 8f7c875500073 32fe7eee5283 615cd6b5e3d21c ab48d1f65812bc0f8ab6941c3b5 6c93f24516f01d 5e80f85274 35b941379e1af658078cffb83a2 345d26b3f821fe 331675c046693f 37f57e81ebed95 0efbd e1e8c c338481d79773 b7b899dc8bc6a32b28cb098fa16 8cbae42a3900 5e80f85274 8304a439f91fc90b3fe8dd35be8 7e0b91491c8c8566892cd9a0889 c71043819b6a79 de9efa12873949 88ebe2e8782c 65694ca6d575 34d7bb6af4fcd8d630de72500c8 c4507c22d19 e1d01ef89f 102f1 632E fc73 f9df653b86fb8df 1333074979f2d0b 357679fea1e2f e4b45b7a2f884d3734bfd5985656 020df871874cd 50f4d9b97aefe 4995c71223c9f6067324d387a2 39d025b265f9790490781cb201 0668 85fc23f1c88b4 32c4684b55361 731E c0174bbe7ae8 bac77c3f414a 57c77c341f94afddef07e6 6a8f5bafb1 d4f7b7fba7afcf7a72397353ec 8b98c3ddbe0b336 e84330eef281284a d9f4abac731a9e 084d4bfa5853e acacfc83af504 da0d7bbcf30 6a8f5bafb1 8c932e1e502dca ff5c9b242337c 275a0407e33e9b8aa9cdd051 2601085bde1b2450d64509f36 901b2105a902ee7791 a153512d982 d12bd75c24b110ef90cdd35d3 af0268dddd af0268dddd 6a8f5bafb1 f603819d560c5603259aa05dca 02c2ba83680ab57f236a33d702 4c52fdd8e396692 ee3b6be71d59b 4e12f7ff0918 f1b0d754353a6 89ced1a7906d58d687d5a04 881d373 c96782ef56711c5d6a3f69 af0268dddd 6d52dd1b198bb eedc819a68add6 88a4f0337c2189c3fc7b31 04390dec6f1779353c07f5 c21eb96fe100a1efaa128181b7 ccceeef40edda78 8fb60d769e4c387 8d52f183ec e33792703 bdec8c86db51b9 16a795a1d63f30df 4399cf78123dedd0dfe9776104 ac284d73563 665b76844ff78fc2cf66ca2 26fa7360ab81be9d4434a 8066f87a88f4e be7d637c50c 1562abef0d8241 a738ba39 cef12b6 a2c4b1d72e2da483a86ae0c62e5 8f95518f48528 38fa61352f5086d2cb51 7204950f6233bf9c9e1f00d4a870 49704867bee95 2ef209509e2a 8a46e6 bb92d1da1f38d52f8ff 06eff1db45cdf 2043b477ac0393676a4309514d0 8462bb2eec1a62d19a15865e57c92 28f7bfc40c88e6a be9c5958196ed 9e650e89bb 653ae44d45dcadeb481b53027d 4727c415d06bcbef 53069e384a2 f62b136b2171 1727041c622518c9dd24f7c211 d66f542ef1ce4d02c59bec65e 797E 801E b9 855d26296eda4eb7 21dff35936370ae5f 3703059dbc5a8 38b3b0d9 f9d09 1172dca23 08500a6044 fff03efcd 597E 9ccd974150a18260b207b6584caa 31055116421c96b37f72a262bb 85a34bc9616ff cd1e9af3dec2 8e307415fb435445ced7 53069e384a2 d 67219ef689f0146b544 d886e4b76537a99bc71b8a9331c94 3dafe1619016463f521f 21dff35936370ae5f 52a6c2063bccd83110c32 c72df69b40156a3254 8bdb6a91c6dee925b557c705b3 c360aaeb167487c9578a8f 8df ff b38049e0086633c26be93ada8b20f234fdcd0e1fc50261ce8 275afb2b215b966d9fac51b96b9 23f94655294d3ff537f2915fa a77622f2ff77ffeeb2 4869e993f2bb10f bf65cfddeb00ff847feae0c 3eecb304bab2136a76deda ffd1b1af3b6864078f3 7e74e1587f3a4d208 8f9cdc26798117dd3e9ee4a8770 a2eab7c9fa641e5f 0a963fef9 8b06a67a 9937ccba1469 582E 1d4ea80c7194689d69f9592186 616d8a7b 630E 91ecbe29a71f00ed5a3 342E 354E 1b13908a9f0763c0ae54af9062080 8c7cd9b93b1cbe48e1 382E 620E 684E 696E 300E 370E 444E e287d497450664a4c0f4efc338 503737b64d432c60d6ac557e0e6 a78eb40ae56aaa9 a8e9 422E 234E 3cfae 07 82d201 341E 6472c2861e0e0dd681 bd7aca295ca 46e412a3 dcc5d5e9d6c4e a8e9 95e93c4a13 24dfe1a997a 3a8173d6c 86e9b0428 65a1 1d529eb4 3f9ddf1ffbc0d38b b62cd1d0a0 381E 369E a8e9 5a7a610a8a 8f143077e f0f45e707 33e1de 99da1f8a5 e3fd0c7b3 47b2da3d a0befe6dd1ca7b165786835 619E 683E a8e9 0759a8b435ccd c0f34a600 0da9135 0fabab47 1b82200 534E 676bbe7d1c1fb71742df534ce8 233E 01 2d7b7fb6c9ad6821752651f7 bf141dbce 30d6138b63eb e64f22a31 0f167280 fe821bce c96cb3 8cbcf5cb5 37d80ae421dba4a70730338860 ffccaa9e3 81dabfaba8 162d8039483d8 3b1563a23eb9 c5d5be3942 e82f47b8d4949ba4af69b38cbc19 9f24ba80192c339a64c0 f8128d574c356631b8a9 0acc5bb8ca4 fbdc3ca37406f66635c8b226e f713a8b311ffa05ce3683ad10 eb8 eb8 81dabfaba8 6448451ac2ceade90715378b 5eea496cc301b2a9721 b06bbfa920aa95dd ac487676a04e4 45827dbdd8 eb8 eb8 d370c12dbc 6aae8d25951 5e9156098c064 46f754ea06f070dbc023e571a876 0acc5bb8ca4 45827dbdd8 910b00285f11bb90d0a15641 81dabfaba8 80874aa8 bf01c8a262 c1c30f30d40c4f1f84924622f fa2afbd869 533E 11bb8ed3ae227d3acefc 08dade990b2282 3b2f08d52e4bca3f9ca7bbbd6 81dabfaba8 0f940646 81dabfaba8 f0bd1521 1d163eac141def176461c 6c632ad9c42228bb337 f78e145a127014eb43345a0c 84e4f1c582427a98d7b ea890ccca2f7c2107351 dca32af03698c988b22 18115fa32ff1cb99 cd0d985a366cad7e 173fd00917644f0f1f3e3 0c72a426929600000f5 3cdc90c57243373efaba65a fb039d7a2a9fe73b5f468eba9 a27037332d9fa5c43bcfe94c0 24431c3eb075102f07cc2c1be 75ba8d840070942eb4e737849 e3bdbca0e2256fffa8a59018 07f8a9e55a16beddb3c9153b0 4a38abc630c82b0c48dfbf5271 86276bb1e23f2c7ffcbe82a0 9c9e2e0f2da8758e436c
6a3c6921b0aeceda3
c10cb9baf4dcb43e24
78
a97ef281eafc34b1630d450a1df
e920b915087 de34214b4c258c9333ec3
a141a557a60912051f3c135
4856000a6802ddfc121ef40432297
876d120b38b0e88817
541ab86a2e 69ce90c9b2
71e6b
be233fafa38d931d894
460aed10cc9 6577 d2498
0f5db6ce12751ddcc64e
e920b915087 a849f9d352e
f33ec11db496f7bfcb024f
212af4 f36cce089
dd84fe6a65cfac7bca03ebd
3ef07ae75d29a707
89a36b13f8c344b a5a b701e7
5838586c293d455
3d475ea3aeca51b60212dd
ac6e99186
c
587E
f2e7cc
49E
648E
e5
a849f9d352e
f2a57e4d4f0cec516891e3
16c3ae29c0bc713
cfdf1932665dcb4cd3c
8a9eb2806b0aa
247e407f45b353f8
454E 71e6b 462E
805004328dad9d315d
380E
6b3f3fa236bb90592d23a
30d9d350943c0e3ff7594b50
4ff4e275c710c3b 74e86 bb828f1a326
e9
297E
459E
964b86fc1bba0e
9652ab8b55fdb2a36d1f3fe020
9dd5bf47f a4c7d0 bd2484 4f6f7f cf
678bf739c344b9ad41da1
7ab64a969 28533c
f4c69e5e212f89348122e8
bce
69
4280833ef80172
316E
66c0220688a999aaf7f1702d1
588E
6d4a4a5a5af91b895272c30
dd12f26f8d9bb55
360E 67513d 298E
460E
8e24e9b4e
72cbb37db85ed3c6eda5dcf8
418E
71a48d11b2e7e56b1df128bd
6fb7a84e370ef70feac5cb
70815f0352b43dc1562133ab6eb
396b16a892fe
396b16a892fe
4280833ef80172
0f6784e49852c0be0da23b16
4280833ef80172
ef8b68bb5772f3 8cd4d 67b6a4dca3a6d 6bce02baf91781a831e1b95 6c541cad8de1b15 3e814305b42beb41b8c706
83c397b8bf7f
33ff9e43d5ab 6236a67933a619a6a3d48
83c397b8bf7f
f52a45620969f0df4e6ae1dcd7
90cc275011c2013c61eb11
c935c7f4d1090ac
31f2f9aef958979f9f3532b9b
4f2e020854dfacce46a12
396b16a892fe
d4f958b03a98
5d69639a5e3bdd3d
03716a2c341e5edaa31
4cc20a0b7651e486
5256925081c812 be8f4199f 383f5c65cc6c25aa0a0e6dbb 50962c93b4cb293f5beb59eb b5c747cc9
83c397b8bf7f
f66fe4df3d189e69ce10c9c
1c08373
151E
41a8b095c7fd3
5f2592b20f13356b7fc8b42
5ce1fcfb042b
1c08373
1322fb0818783e6f9a4f173d47c52
375E
b07bbdc8cca5985d4c4
d550a7f392c787661aadd48
8fa622d9f842c5572a545ed72982
666f11bb45c3a8dcf26e1ed79
171192dc1f8e6ea551548a910c00
be8f4199f
e0ad365c2fb444358201
e079d2c
eccfe5ff0af70fe9fbec8b2360f90
21407f8a6d7 be8f4199f
e079d2c 1ff8ff951ee9
483E
293a225dc56dd1e0564e6bb
b5e86c73d1198f
21407f8a6d7 531806429433
01db23a60422ba93a68611cc0 f22c27c0f0a54e f490de272a7f6e4af346d40 9696c0950295d8cb5 629e42 d285240b89cb c6b5321a 1f5df34ad75a55a76ef4afa0a47
d93a80739fc1edb41a11b7294
fe4e848cb5291ee59a2
e7a887d88c2318beba51
34c8c8dc0f6e41c7e7b2
86569bffb49adf6b3d0ebac
3124d3a6ed3381a6341c6
6139fa6adc88d
be8f4199f 151bcc2a8de7ea634 00265 26a185dde9a93dd aeb8 248df40dae
8d0d8314d211d80
473E
b5e86c73d1198f
236E
b1ffbabb24d71f67d1e0ce23c51
376E
08769f73d31c1a99be2d9363f
04767
05d4b1ed6a6135eec3abd3f2
f0d99f16 484E 04904a458422a5b9 5c609b12c
383db224d7508ef072bea21d0
e3aefac763
284f14a259991806654e74
c4f31ea3844e12da27ad47c6
69fdd1a1f4768c5efe7
50023f6f88
358E
0b8694c9ef9b27b9c3d8
81e20155999fa64e0ae6fd
bb5e89c8963
22bd92e302816
629e42
761e0f72f95
199E
3089106e3b
15d44ab97
2e53009d4a375
7e494b
474E
78b2d75d00166
c29ce10bb8d19b498355aa04
a6a196a504c3a7657d1fa41
6e186b 1c08373 200E
d378760b814eaecb6efe636e0efc4
4280833ef80172
30c3f3bf8463d3843dc57d8e98
9d8988c0945d6
cd856f a7167d5eb5408b3839903 dea1d1
e3aefac763
17dafa5ebaafd48440e3
278E
6c89dc59ee7aaebbbd6bb64
d382
e3aefac763
230cc6bbc66b24eae94fa03d
46125fcc583c0f494a3a1d3
bbe0a8f93dc1
97c9d726e27304311901a52ce
335E 336E 459236f07c73814faf5
5a0b4b906a 46969c4
bb828f1a326
4f8c642b53c349c687534bda35db
e153c6e676c7369b285b4e9033a
da24f74aad2ff519009d1f38c
4dccb
c90f755c8b6612d e03b8bc0435a
c5255d
296E e4dba079d5fcb1f165920a3bf
3bbfc7bfdbbb1ba1bfad7517
b2babf3244213
75b14f1719d
affb2d716803a2d3e e17fea65 536264e787cf70469 cc3f63d 57f7fd2eecec93c8b
3acbf8a1537e4e1a1
a7d2
713db1c1 647
4f2de229621272
285E
8896166adc0
5807acd8d58e006f43
4f35e206816c3bd22 472a156cf2b55f
96deede0c6b44119
332E 6bbd5b422edb8e358dcc20eecf9 626E f20f7f513e 320E 75eea05672a5
96325ea 793E 15b3ad672cd2f713a
644f112bb0aa452ee7040a
d495de0b35f6
b473716
09847696ae
52f247fc3b
e8ebe1bf5f421c1223
638E 93ea0
8593dcf973b110d00cecdc1e756
1b34fb150
3aeb78ea51020a44f2d2615436dae
1d792d81 cab04b7c14a 73ba1714ee
a96e47ff37983425a3e452095
f72564578be
6505e29f4a11d9530
66abc181ac4
89a2505da6179a80202d4a6c3
e2a5d11499b7e
5782807b5f575e0a8
262E
d
e8b
bba6e6e194ccf
27709106
97284d4c3a5d499853f0e
1ed67841
45ba4d4c61c9601a26d59e47e0260
47e0067f4d853afd2012f04daa8
99bd3e7feeb710 8a 92fb5d4a0805 294E fa90ddf10bd574 644E 6ba0776fc8e e4e2f4e6d 8d6e6e0cd9b842a47 e8386a8e1c8a
6a91
086
952316a1a5a785
9f
290907417e13
88d8b220746882d 2a9caef7 319bc900218b
2dd8cc4d693415f93c0f8fc
4c82921f4ad3f07066540
e343cea291b79a2ed4e
815cc0b83d733 d7203571944b
d17f8f4eeb8e63d
4e4a79111d
4379b5ed
1a220eb692c
01938827 6a91
11f088bfd8
bfc6564cbdeeffac00a141
ca5af2
84e4ede82074
a49284e9
9
8e69341faa4489
f2b6201774de40a29b504b1f716
617809d979f
7c1767485953d9c2
52f247fc3b
7c13bf753da
2573e1bf51f1b307f4640
84e4ede82074
668d636002
45ba4d4c61c9601a26d59e47e0260
d58478d9c273ad4f4b2e091324
ee91c97828
2f43cba12702078b4e0d3bfdae2bc
4ad5d68f07981a
a9a36ef02f 7c7c
76E
cca7040e47789
4f04c39708f
2759e82e30d6d
3c1edc8de4795936
47e0067f4d853afd2012f04daa8
8ea965ab6ee8dedb6c3333e9
ff9d64ddf49a20f
fbba7215e7c13173a60206
8be752bc95d436a90493bec9
84e4ede82074
c32d2697e8
450d3a2d49cbfd 53069e384a2
20949455f573f 6a91
ea920d9f5b295119
19398d3cd6b9c674f c8a6c26d4fd9f
ef42184297591d
969a58db14386cb9d2f51ec
10a7d61c201c67a5e78542807cd
9b6c
800422ab81d804eef3e7b91dfba91
549fa15d68f0b3bee6192f888cd8
f722890f70a32dce3baff371a
a2984b7a11e49440420058c1d80
615cd6b5e3d21c
92fb5d4a0805
ac34ec0f0488b17ec
44cbb41a9cfc15497eacd294
9fe716e738eaea34e 609E
5997cb0c083422 2a47a6a27
331675c046693f
de9efa12873949 fa90ddf10bd574
eff3468631dd4 a8f0fe2eb7bc1471 06209
57948adb5dead cfff3acd8e9d
47ebc3f17
35b941379e1af658078cffb83a2
0a49c95f107c0aa57c9b5748
2e31175cbd52fcd08360fe86d20
58e3dcc618
efb52b499303115c33fd 32c958c9997
7e0b91491c8c8566892cd9a0889
345d26b3f821fe
c71043819b6a79
b656f0ed2202b8e46eb
3aa0ce5efcf79bc3ecced1886e89
eee44624da 817
f7b22b9640
65fd8495
f5d636e14a6cd716362158d
63b079bd5847
f787d827958c
4e8259973f1f
1333074979f2d0b
b79798b186d6b82288e8be4017d
6819fd5a6cdd280dd 65fd8495
a387210a27b
6bf214d9e7fa5f2df 69f4ecb77d
7c0ab977f5a3c4ab6d625f5033
f9df653b86fb8df
558d8534f92fddfe
e4b45b7a2f884d3734bfd5985656
8be0efdd94a6383e87fbfded4f
81
2f43cba12702078b4e0d3bfdae2bc
51192117f9b4
32c4684b55361
9c1305d59c37e9be9f13d7d049c
658d208447d8ec5d6de8
842bc5775657c1e0d67
a2984b7a11e49440420058c1d80
32fe7eee5283
b074e
f841118350a27b7ea29a9c9d
32fe7eee5283 32b98f11f3d01d6
597E
08500a6044
de9efa12873949
c71043819b6a79
632E
34d7bb6af4fcd8d630de72500c8
102f1
f9df653b86fb8df
c4507c22d19 65694ca6d575
357679fea1e2f
e1d01ef89f
88ebe2e8782c
1333074979f2d0b
fc73
50f4d9b97aefe
e4b45b7a2f884d3734bfd5985656
020df871874cd 32c4684b55361
02c2ba83680ab57f236a33d702
39d025b265f9790490781cb201
0668
4995c71223c9f6067324d387a2
85fc23f1c88b4
da0d7bbcf30
57c77c341f94afddef07e6
c0174bbe7ae8
8b98c3ddbe0b336
d4f7b7fba7afcf7a72397353ec
bac77c3f414a
eedc819a68add6
d9f4abac731a9e
6a8f5bafb1
acacfc83af504
6a8f5bafb1
084d4bfa5853e 8b98c3ddbe0b336
c21eb96fe100a1efaa128181b7
ccceeef40edda78
e84330eef281284a 8c932e1e502dca ff5c9b242337c
f603819d560c5603259aa05dca
af0268dddd
ff5c9b242337c
901b2105a902ee7791
ee3b6be71d59b
6a8f5bafb1
4e12f7ff0918
02c2ba83680ab57f236a33d702
16a795a1d63f30df
f1b0d754353a6
275a0407e33e9b8aa9cdd051
a153512d982
4c52fdd8e396692
af0268dddd
2601085bde1b2450d64509f36
d12bd75c24b110ef90cdd35d3
ee3b6be71d59b 4e12f7ff0918
bdec8c86db51b9
a2c4b1d72e2da483a86ae0c62e5
881d373
6a8f5bafb1
6d52dd1b198bb
af0268dddd
c96782ef56711c5d6a3f69
8f95518f48528
eedc819a68add6
89ced1a7906d58d687d5a04
88a4f0337c2189c3fc7b31
8462bb2eec1a62d19a15865e57c92
04390dec6f1779353c07f5
ccceeef40edda78
c21eb96fe100a1efaa128181b7
16a795a1d63f30df
e33792703
bdec8c86db51b9
4c52fdd8e396692
6d52dd1b198bb
49704867bee95
2ef209509e2a
842bc5775657c1e0d67
39d025b265f9790490781cb201
7204950f6233bf9c9e1f00d4a870 2043b477ac0393676a4309514d0
be9c5958196ed 46e412a3
8f95518f48528
8fb60d769e4c387
8d52f183ec
665b76844ff78fc2cf66ca2
ac284d73563
a2c4b1d72e2da483a86ae0c62e5
cef12b6
85a34bc9616ff
be7d637c50c a738ba39
67219ef689f0146b544
8066f87a88f4e
26fa7360ab81be9d4434a
4399cf78123dedd0dfe9776104
8a46e6
1562abef0d8241
49704867bee95
653ae44d45dcadeb481b53027d
1727041c622518c9dd24f7c211
28f7bfc40c88e6a
bd7aca295ca
2ef209509e2a
7204950f6233bf9c9e1f00d4a870
28f7bfc40c88e6a
38fa61352f5086d2cb51
bb92d1da1f38d52f8ff
2043b477ac0393676a4309514d0
53069e384a2 8462bb2eec1a62d19a15865e57c92 f62b136b2171 653ae44d45dcadeb481b53027d 4727c415d06bcbef 1727041c622518c9dd24f7c211
801E
21dff35936370ae5f
b9
d66f542ef1ce4d02c59bec65e
597E
38b3b0d9
855d26296eda4eb7
85a34bc9616ff
9ccd974150a18260b207b6584caa
3703059dbc5a8
d66f542ef1ce4d02c59bec65e
be9c5958196ed
06eff1db45cdf
9e650e89bb
20f234fdcd0e1fc50261ce8
47b2da3d 1d529eb4
08500a6044
f9d09cd1e9af3dec2 1172dca23
fff03efcd
31055116421c96b37f72a262bb 8e307415fb435445ced7
d
67219ef689f0146b544
3dafe1619016463f521f
53069e384a2 20f234fdcd0e1fc50261ce8 d886e4b76537a99bc71b8a9331c94
e3fd0c7b3 e287d497450664a4c0f4efc338
e33792703
8cbcf5cb5
30d6138b63eb
21dff35936370ae5f
52a6c2063bccd83110c32
9ccd974150a18260b207b6584caa
99da1f8a5 06eff1db45cdf
1562abef0d8241
fff03efcd
2d7b7fb6c9ad6821752651f7
c72df69b40156a3254
86633c26be93ada8b
31055116421c96b37f72a262bb
c360aaeb167487c9578a8f
8bdb6a91c6dee925b557c705b3
ff 8df
275afb2b215b966d9fac51b96b9
8df
23f94655294d3ff537f2915fa
a77622f2ff77ffeeb2
c0f34a600
4869e993f2bb10f
81dabfaba8
bf65cfddeb00ff847feae0c
3eecb304bab2136a76deda
b38049e00 ffd1b1af3b6864078f3 7e74e1587f3a4d208
8f9cdc26798117dd3e9ee4a8770
bb92d1da1f38d52f8ff a8e9
dcc5d5e9d6c4e 1172dca23
422E
381E
234E
0da9135
52a6c2063bccd83110c32
86633c26be93ada8b
fe821bce
534E
1b82200
c5d5be3942
fbdc3ca37406f66635c8b226e
f713a8b311ffa05ce3683ad10
a2eab7c9fa641e5f 0a963fef9
582E
8b06a67a 9937ccba1469 630E
3dafe1619016463f521f
b62cd1d0a0
1d4ea80c7194689d69f9592186
616d8a7b
91ecbe29a71f00ed5a3
342E
a8e9
619E 3f9ddf1ffbc0d38b
07
369E
bf141dbce
a8e9 1d4ea80c7194689d69f9592186
683E 01
a0befe6dd1ca7b165786835
e64f22a31
0f167280
354E
81dabfaba8
444E 382E
910b00285f11bb90d0a15641
8c7cd9b93b1cbe48e1 370E 696E 300E
d370c12dbc
c96cb3
c72df69b40156a3254
1b13908a9f0763c0ae54af9062080
a78eb40ae56aaa9
620E
e287d497450664a4c0f4efc338
684E
81dabfaba8
233E
82d201
234E 422E
503737b64d432c60d6ac557e0e6
95e93c4a13 37d80ae421dba4a70730338860
a8e9
24dfe1a997a
3b1563a23eb9
65a1
6472c2861e0e0dd681
533E
fa2afbd869
81dabfaba8
c1c30f30d40c4f1f84924622f
80874aa8
07 3cfae 6472c2861e0e0dd681 341E
65a1
bd7aca295ca 46e412a3
dcc5d5e9d6c4e
a8e9 a8e9
e82f47b8d4949ba4af69b38cbc19
381E
95e93c4a13 86e9b0428 24dfe1a997a 3a8173d6c
1d529eb4
8f143077e
23f94655294d3ff537f2915fa
345d26b3f821fe
7e0b91491c8c8566892cd9a0889
8304a439f91fc90b3fe8dd35be8
5e80f85274 c338481d79773
f1b0d754353a6
731E
57c77c341f94afddef07e6
c96782ef56711c5d6a3f69 8fb60d769e4c387
b9
0fabab47
444E
370E
331675c046693f
35b941379e1af658078cffb83a2
5e80f85274 8cbae42a3900
b7b899dc8bc6a32b28cb098fa16
37f57e81ebed95
e1e8c
e84330eef281284a d9f4abac731a9e
8c932e1e502dca f5d636e14a6cd716362158d
658d208447d8ec5d6de8 f841118350a27b7ea29a9c9d
34d7bb6af4fcd8d630de72500c8
82d201 6a8f5bafb1
6a8f5bafb1
797E
300E
615cd6b5e3d21c
8f7c875500073 6c93f24516f01d
ab48d1f65812bc0f8ab6941c3b5
0efbd
6a8f5bafb1
f603819d560c5603259aa05dca
85fc23f1c88b4 8304a439f91fc90b3fe8dd35be8 b656f0ed2202b8e46eb
a387210a27b b7b899dc8bc6a32b28cb098fa16
5e80f85274
6a8f5bafb1
be7d637c50c 04390dec6f1779353c07f5 8066f87a88f4e 696E 684E
620E
ea920d9f5b295119
1de26f6b12b0d292f94184
d4f7b7fba7afcf7a72397353ec
084d4bfa5853e
020df871874cd
d58478d9c273ad4f4b2e091324
5997cb0c083422 32c958c9997
69f4ecb77d
32fe7eee5283
5e80f85274
fc73
a738ba39 cef12b6
89ced1a7906d58d687d5a04
38fa61352f5086d2cb51
26fa7360ab81be9d4434a
8c7cd9b93b1cbe48e1 382E
354E 341E
ef42184297591d
71cf45dd4e91bcca945137b40e
af9c489df53
acacfc83af504 50f4d9b97aefe
1a220eb692c f6e6236b48bc3
f7b22b9640
47ebc3f17 efb52b499303115c33fd
8cbae42a3900 632E
102f1
8d52f183ec d12bd75c24b110ef90cdd35d3
665b76844ff78fc2cf66ca2
8f9cdc26798117dd3e9ee4a8770 630E 342E 07 3cfae
3c1edc8de4795936
908f9ad506eae9ab6ada185e3
357679fea1e2f
f2b6201774de40a29b504b1f716
d7203571944b 319bc900218b 30417faf916
cf5a6049ad 32fe7eee5283
8be0efdd94a6383e87fbfded4f
4995c71223c9f6067324d387a2 0668
bac77c3f414a
af0268dddd
582E 616d8a7b
a8e9 2601085bde1b2450d64509f36
cf5a6049ad f6e6236b48bc3
f95344b0ae31693f3a2746597d4
952316a1a5a785
3ba7afb0e48ae1
290907417e13
6819fd5a6cdd280dd
558d8534f92fddfe 51192117f9b4
57948adb5dead
32b98f11f3d01d6 6c93f24516f01d
8f7c875500073
e1d01ef89f c0174bbe7ae8
ef6361295eba07
6a80cbe
0a185946ee443342b07d8e1
87a7e69a72412
99bd3e7feeb710
c2f32e2cf9 e8386a8e1c8a
815cc0b83d733 cca7040e47789
6bf214d9e7fa5f2df 9fe716e738eaea34e
ac34ec0f0488b17ec
3aa0ce5efcf79bc3ecced1886e89
7c0ab977f5a3c4ab6d625f5033
c338481d79773 c4507c22d19 af0268dddd
f95344b0ae31693f3a2746597d4
b79798b186d6b82288e8be4017d
64ef1d545 3b0a8a1c2e5050bd
966d271c22e75c7538
f2c7b3bb4d44f977d0ab8a42351
ef13d45b1277ac9a0444adb
e3e284d0cc803d98d674f9c3f6d
e343cea291b79a2ed4e
c8a6c26d4fd9f
eff3468631dd4
65fd8495
af0268dddd
63b079bd5847 4e8259973f1f 30417faf916 d2647f8b6d8661d08
549fa15d68f0b3bee6192f888cd8
2e31175cbd52fcd08360fe86d20
2a47a6a27
65fd8495
1de26f6b12b0d292f94184
881d373
e4ae306d9bd669c70
cab04b7c14a
af4abb0d6a99
a7fe7
6ba0776fc8e 88d8b220746882d
2a9caef7 d17f8f4eeb8e63d
d2647f8b6d8661d08 ff9d64ddf49a20f
cfff3acd8e9d 609E
71cf45dd4e91bcca945137b40e
e1e8c 801E
3ba7afb0e48ae1 548c0081a62132b44
508E
3b0c08dd2ca
a3781072b
8d6e6e0cd9b842a47 e4ae306d9bd669c70
51e74bec5513083bb
20949455f573f
10a7d61c201c67a5e78542807cd a8f0fe2eb7bc1471
9b6c
0a49c95f107c0aa57c9b5748 58e3dcc618
81
51e74bec5513083bb
226E
f55670
7528dd86b
e06cc38155ff6781cf944d745
87a7e69a72412
4f0cbd3fbf0cb1e8c
d495de0b35f6 09847696ae
89a2505da6179a80202d4a6c3
75eea05672a5
3aeb78ea51020a44f2d2615436dae
548c0081a62132b44
19398d3cd6b9c674f 450d3a2d49cbfd 6a91
06209 eee44624da
a3781072b 256E 274E
94da691e20e3
f787d827958c
f20f7f513e
6505e29f4a11d9530
ef6361295eba07
7c1767485953d9c2
76E
7c13bf753da
84e4ede82074
44cbb41a9cfc15497eacd294
f722890f70a32dce3baff371a
817
e3e284d0cc803d98d674f9c3f6d
b12441ecff15fa12c
a7c99ccf6ddf6f5ebbe
800422ab81d804eef3e7b91dfba91
403126 6bbd5b422edb8e358dcc20eecf9 4f2de229621272
8896166adc0 3acbf8a1537e4e1a1
96deede0c6b44119
5782807b5f575e0a8
01938827 9
ee91c97828 7c7c
8be752bc95d436a90493bec9
e618df70814a 3b0c08dd2ca
40b49a5a9bb256c7a3286e56
1f4f0fdf cab04b7c14a
c4fd8
40f253cd228f7ac2d0aee
63a3d4fb9d38a0182be6e39e76
e3a76d31ca59a
8e2d970b2f820ee35
affb2d716803a2d3e
57f7fd2eecec93c8b
15b3ad672cd2f713a d 086
63a3d4fb9d38a0182be6e39e76
4ad5d68f07981a 4e4a79111d
84e4ede82074
84e4ede82074
2573e1bf51f1b307f4640
b074e
ab48d1f65812bc0f8ab6941c3b5 0efbd
65694ca6d575
901b2105a902ee7791 ac284d73563
d886e4b76537a99bc71b8a9331c94
aebb7b91b 34d06d1ed6
e4dba079d5fcb1f165920a3bf
296E
07283
3bbfc7bfdbbb1ba1bfad7517
637E
1f5df34ad75a55a76ef4afa0a47
69f2611acc42c36ed7cc
deb3089920548bf1ecb23f0d 87a7e69a72412
fcbd9ad14139718bc6fcc8b4
a7fe7
724dabdce9744d061
825c7994d5da13afe519861818
4f35e206816c3bd22
bba6e6e194ccf b473716
64ef1d545
3b0a8a1c2e5050bd
bfc6564cbdeeffac00a141
969a58db14386cb9d2f51ec
9c1305d59c37e9be9f13d7d049c
37f57e81ebed95 731E
da0d7bbcf30
88a4f0337c2189c3fc7b31
3eecb304bab2136a76deda
c2f32e2cf9
cd6 b082f7a5ff
052bb6e3
e49aaa5cc4e44355d6a0
672E
df61d5f5fc
319E
1322fb0818783e6f9a4f173d47c52
9696c0950295d8cb5
26a185dde9a93dd
af4a1fac3e2076 238805e2194c3
fb58e11
ca3d67754cf62fdafbf0a1e0
964cb56d8f69ff058 a84844dfd0052b3b5
cd6
b082f7a5ff
536264e787cf70469
713db1c1
9f 97284d4c3a5d499853f0e
8ea965ab6ee8dedb6c3333e9
53069e384a2
908f9ad506eae9ab6ada185e3
88ebe2e8782c
275a0407e33e9b8aa9cdd051
8df
a7fe7
ef13d45b1277ac9a0444adb
825c7994d5da13afe519861818
90dccb18c0
fd28c194a46fde909b019c52f
11180ae7706510211bc4
f a 617809d979f
383f5c65cc6c25aa0a0e6dbb
1ff8ff951ee9
151bcc2a8de7ea634 8d0d8314d211d80
87a7e69a72412
b3cadc253f7
5ba4693031
aebb7b91b e17fea65
793E
af4abb0d6a99
274E
52f247fc3b
af9c489df53 a153512d982 3703059dbc5a8
cd1e9af3dec2 8df
797E
4f0cbd3fbf0cb1e8c
8e2d970b2f820ee35
4348f3abcb7716
ca5af2
254E 340E e7ef998
5256925081c812
531806429433 d285240b89cb b36e0be6f67fc25286127456 87a7e69a72412
73e6ed83012 d7c27cc6f7b02a31eb64d
508E
ca5af2
c32d2697e8
4399cf78123dedd0dfe9776104
38b3b0d9 f9d09
e3a76d31ca59a
2e1313c
a84844dfd0052b3b5
585E ee91c97828
00880e6f50c765ebc1f85d3e9
2ef949c4a39b
eccf7c722ddf
151E a3ff993
c110ba7
c8fc17180bea86
73ca543bf1
675E 6a80cbe
2e1313c
34d06d1ed6
285E
96325ea e8ebe1bf5f421c1223
654E
f55670 226E
6a80cbe 617809d979f
a49284e9
2759e82e30d6d fbba7215e7c13173a60206
4727c415d06bcbef
21dff35936370ae5f
403126 75b14f1719d
724dabdce9744d061
9fe65061641
12fcb26b3de00ef98719c2ca
16c508ab98483d430bbe
b5c747cc9
5ce1fcfb042b f22c27c0f0a54e
3e048573fd
062fc905b9eb35
38f162cf917ce7298663a1f1c607
8606837526d81cdec
cab04b7c14a
fd28c194a46fde909b019c52f
90dccb18c0
cc3f63d
472a156cf2b55f 294E
256E
644E
8a
6a80cbe
4379b5ed a9a36ef02f
4f04c39708f
53069e384a2
ff
a77622f2ff77ffeeb2
bf65cfddeb00ff847feae0c
fb58e11
964cb56d8f69ff058
79b69c612
02f5daf56e299b8a8ecea892
3c2a62e0e5e9f7
d4f958b03a98 f8ff39eab120851f143bf19 4e3cfd27a
3b63cdc0f a164d9f60fbbdd
a54d477232
62f36ea98a
f52a45620969f0df4e6ae1dcd7
33ff9e43d5ab
41a8b095c7fd3 b23526044
b46b0756dba915943839e90a55
6b1bb9b0e
97a7eea3f
a031c9192ae8e75
d4b2
52126553e52385d16
e618df70814a
e8b 1ed67841
27709106
94da691e20e3
cab04b7c14a 11f088bfd8
668d636002 8a46e6 9e650e89bb f62b136b2171
1467f017b74e
a7e89580 cab04b7c14a
cab04b7c14a
cab04b7c14a
ae32701
cab04b7c14a
23ad1
e65185ca
5fdf
3219b6b71443
1927c743a0d440a5a0
1467f017b74e 4348f3abcb7716
ee91c97828 052bb6e3
e49aaa5cc4e44355d6a0 8593dcf973b110d00cecdc1e756 5807acd8d58e006f43
cab04b7c14a
cab04b7c14a
8e69341faa4489
d
4869e993f2bb10f
5ba4693031
e7ef998
ad1dd724f1c3e
ef8b68bb5772f3
6c541cad8de1b15
c935c7f4d1090ac
5c81103c751345d0ee0f4bd 6f578c5128
78cc16f965adc5f712ea2372c6
23ad1
a9012b7bb5
73d12
a5520019b8a73bc141b5fd416a
4c82921f4ad3f07066540
1ebeec
72cbb37db85ed3c6eda5dcf8
67b6a4dca3a6d b1ffbabb24d71f67d1e0ce23c51
14a3c17f3d
23ad1
550E
2ced414a91575a48f2dd29a
85221d5e9e b354cd9e9dbb0bfa
a7fe7
3b4fdad8e0429d112
b9ae94e6935503603341ecf4
3eca1f94dc181
30cc206b1878485
60d0128bdb61ae40e98638bd1391
23ad1 4d22e1
bdbdb31bd777fb65dd6dd2d0e7
3bec1c012b498
675E
b3cadc253f7
78c8463ea 2c514b0cd8f7d3
2d886da042b5384b4
11180ae7706510211bc4
1d792d81
73ba1714ee 262E 1f4f0fdf b12441ecff15fa12c
2dd8cc4d693415f93c0f8fc
966d271c22e75c7538
53069e384a2
8606837526d81cdec
09e64744536c5e1
21dff35936370ae5f
8bdb6a91c6dee925b557c705b3
a031c9192ae8e75
fcbd9ad14139718bc6fcc8b4
f2c7b3bb4d44f977d0ab8a42351
b2babf3244213
ca3d67754cf62fdafbf0a1e0
bc4824f07a9d2bba6
a9058241db5b6b6c25569acdf5
d4b2
52126553e52385d16
f4bef37b6a94bfd00
a54092a3033f7d5e41e0a76c1
b4dfef6
18083a711d
9ab6c66dc
3dafb9a29c00
4a9d79c960b8d33e39251e5f66
c471b6fdbfb852661
647 320E
638E
1b34fb150
69f2611acc42c36ed7cc
1927c743a0d440a5a0
87a7e69a72412
87a7e69a72412
56e1a896
23c1ec53358d237c1
baba65f670ee34a88
162E
8c8b5bde6 699e3db878047
f29dfb9
8d5137b16a
f72564578be 66abc181ac4
e4e2f4e6d
8e307415fb435445ced7
73ca543bf1
09e64744536c5e1 62f36ea98a
238805e2194c3
0a185946ee443342b07d8e1
b354cd9e9dbb0bfa
c471b6fdbfb852661 2
a9058241db5b6b6c25569acdf5
32979f8cf86
22bd92e302816
a7167d5eb5408b3839903
8c8b5bde6 c54f0fc1e05
aac615ae78
330342f283ef2
f4bef37b6a94bfd00
a54092a3033f7d5e41e0a76c1
ca5af2 07283
626E
52f247fc3b
40b49a5a9bb256c7a3286e56 e2a5d11499b7e
855d26296eda4eb7
c360aaeb167487c9578a8f
73e6ed83012
af4a1fac3e2076 3219b6b71443
e06cc38155ff6781cf944d745
38f162cf917ce7298663a1f1c607
99237fce1358
d0eb84
351dd0aefe480c 3a0ff0
593caebf2037317648bb451aa79
0f6784e49852c0be0da23b16
654E
672E
332E
93ea0
637E cab04b7c14a
a96e47ff37983425a3e452095
c4fd8
87a7e69a72412
bc4824f07a9d2bba6
dd2ba36
3828a2c682419423cf
ebd8ffc2ac3a90efb8af9
be6b73bd46a7a5183e8c91a
444189d179b5db71fe
76889f7d35e
66c0220688a999aaf7f1702d1
460E
baba65f670ee34a88
585E
12fcb26b3de00ef98719c2ca
7528dd86b
a5520019b8a73bc141b5fd416a
c0b727
8e24e9b4e
4ff4e275c710c3b
71e6b bce 459E
ef2d4636934472
4dbf4395236fb03ed
99237fce1358
56e1a896
593caebf2037317648bb451aa79 9fe65061641 02f5daf56e299b8a8ecea892
87a7e69a72412
deb3089920548bf1ecb23f0d
4c6c8c
00d0dd018fe879f96
6b5aaa4bdf44b2c898854
9652ab8b55fdb2a36d1f3fe020
247e407f45b353f8
74e86
316E 5f865c374cb3fe976dd376b8
c3c93c700edc0cb4f95f03c04
00d0dd018fe879f96
2
1ebeec
79b69c612
254E 340E
df61d5f5fc 644f112bb0aa452ee7040a
a7a7f3681dad1250b01cf80bc17
f496bcf0889b301d77819c
c5acd20cad2 351dd0aefe480c
3a0ff0
be6b73bd46a7a5183e8c91a
73d12
c8fc17180bea86
330342f283ef2
421
964b86fc1bba0e a849f9d352e
784E
ddfeabe456a9de5f5784
792fd6f9df1fa1e33
4b683 3dcf8f454
f28b78d4803c
444189d179b5db71fe b4dfef6
5fdf 85221d5e9e
c5acd20cad2 1e1fbbe14ac24e0518
cfdf1932665dcb4cd3c
89a36b13f8c344b
e920b915087
e9 70815f0352b43dc1562133ab6eb
78b2d75d00166
6c998bf2a5edd 3828a2c682419423cf d0eb84
cab04b7c14a
a97ef281eafc34b1630d450a1df
be233fafa38d931d894
16c3ae29c0bc713 462E
837ebf4bde22e1f1535cb662
47cd70f 4c6c8c
4c6c8c
837ebf4bde22e1f1535cb662
ebd8ffc2ac3a90efb8af9
a7e89580
f
a7d2
87a7e69a72412
062fc905b9eb35
f33ec11db496f7bfcb024f
a849f9d352e
454E 380E
21407f8a6d7
6c89dc59ee7aaebbbd6bb64
7e494b
31f2f9aef958979f9f3532b9b
4c6c8c
6b5aaa4bdf44b2c898854
dd2ba36 784E
421
e7ef998
cab04b7c14a
ae32701
a
319E
e920b915087
a54d477232
c3c93c700edc0cb4f95f03c04
d7c27cc6f7b02a31eb64d
71e6b
8a9eb2806b0aa f66fe4df3d189e69ce10c9c 21407f8a6d7
e079d2c 15d44ab97
4c6c8c
3b566eaa70ed401479d43a9 1e1fbbe14ac24e0518 c0b727
5be631dff7b97697be7dc0a2f07f2
5a0b4b906a
cab04b7c14a
e7ef998
617809d979f
de34214b4c258c9333ec3
d13da6273c9b4da
648E
03716a2c341e5edaa31 4cc20a0b7651e486 e079d2c
49E
761e0f72f95
d6125ef42bd9958
d8f4a9e463a1e89217f 1aaaab063
427E
d382 336E
76889f7d35e
cab04b7c14a
a3ff993
3e048573fd
b36e0be6f67fc25286127456
3db761b596844f133c
f2e7cc b701e7
c
4f2e020854dfacce46a12 0f5db6ce12751ddcc64e
587E
499f6985db294c
428E
200E
6e186b dea1d1
32979f8cf86
4e3cfd27a
3b63cdc0f
a164d9f60fbbdd
3bec1c012b498
bb828f1a326
67513d 418E
b630e1af6ae1997f0e8ba750
1112164c2f7a
97c9d726e27304311901a52ce
199E
ad1dd724f1c3e
00880e6f50c765ebc1f85d3e9
550E
78c8463eac110ba7
6b1bb9b0e
97a7eea3f
b46b0756dba915943839e90a55
4b683
3dcf8f454 1aaaab063
2d886da042b5384b4
a141a557a60912051f3c135
7ab64a969 28533c 588E
cd856f
46969c4
3c2a62e0e5e9f7
f36cce089
212af4 cf
69 360E
bb828f1a326
335E
3b4fdad8e0429d112
16c508ab98483d430bbe
23ad1
8d5137b16a 2c514b0cd8f7d3
4c6c8c
4c6c8c
4a9d79c960b8d33e39251e5f66
5be631dff7b97697be7dc0a2f07f2
f28b78d4803c
78
459236f07c73814faf5
2e53009d4a375
629e42 1c08373
23c1ec53358d237c1
4f8c642b53c349c687534bda35db
2ef949c4a39b
4d22e1
6f578c5128
3dafb9a29c00
4c6c8c
2ced414a91575a48f2dd29a
298E
474E 05d4b1ed6a6135eec3abd3f2
a6a196a504c3a7657d1fa41
230cc6bbc66b24eae94fa03d
b23526044
40f253cd228f7ac2d0aee
d8f4a9e463a1e89217f
3b566eaa70ed401479d43a9
ff07977fca5513098d220d1eb3a
916c686a1e82dba72524a
6c998bf2a5edd
6a3c6921b0aeceda3
a5a
a4c7d0 4f6f7f
bd2484 04904a458422a5b9
248df40dae
473E 08769f73d31c1a99be2d9363f
162E
23ad1
f8ff39eab120851f143bf19
1112164c2f7a
499f6985db294c
155d892827c33ed3cae3
78 216E
ac6e99186
f2a57e4d4f0cec516891e3
f490de272a7f6e4af346d40
391256c872
a7c99ccf6ddf6f5ebbe
f29dfb9
bdbdb31bd777fb65dd6dd2d0e7
427E
431430c49 6282bc21f6
a849f9d352e
a849f9d352e
71e6b
8292af691429f8d9ed481ff71ffd
ad9142a65f5eab78b4ca5e
404E 9dd5bf47f
8cd4d
3089106e3b
aa868f65c34cdb64f1fad19a
23ad1
14a3c17f3d
5c81103c751345d0ee0f4bd
aac615ae78
d6125ef42bd9958
e842
a9012b7bb5
297E 682E
4f05b
aeb8 04767
484E
23ad1
9ab6c66dc
792fd6f9df1fa1e33
78cc16f965adc5f712ea2372c6
391256c872
84907547f36d0ff7
4dbf4395236fb03ed
541ab86a2e
e5 4856000a6802ddfc121ef40432297
5c6a2
00265
376E f0d99f16 5c609b12c
c29ce10bb8d19b498355aa04
eccf7c722ddf
dd84fe6a65cfac7bca03ebd
318E
c3bbf4
681E c6b5321a
be8f4199f
483E be8f4199f
3eca1f94dc181
699e3db878047
60d0128bdb61ae40e98638bd1391
b69e426d974e1907e88 56292d076643
e65185ca
1c08373
375E be8f4199f 629e42
8c8b5bde6 8c8b5bde6
18083a711d
30cc206b1878485
c54f0fc1e05
ddfeabe456a9de5f5784
b630e1af6ae1997f0e8ba750
e851f5ddd920
b5c747cc9 866808df
e1fa7f549e5a0893bb42da5 a849f9d352e
3f0a2b4eb62f
69ce90c9b2 6577 d2498
1c08373
6236a67933a619a6a3d48
5f2592b20f13356b7fc8b42
eccfe5ff0af70fe9fbec8b2360f90 01db23a60422ba93a68611cc0
ef2d4636934472
5f865c374cb3fe976dd376b8
47cd70f
f496bcf0889b301d77819c
c4d32527b670afb370d643
48398d080dfcccced48da1980
010957669f3770aac
c71aa521578164debd0c5 23dc3a52fed9c119610b5e8
476E a9497e0757b0969bde707ed5
c10cb9baf4dcb43e24 876d120b38b0e88817
1ed5d7f63b8c6 664E
90cc275011c2013c61eb11
50962c93b4cb293f5beb59eb
171192dc1f8e6ea551548a910c00
a7a7f3681dad1250b01cf80bc17
aa868f65c34cdb64f1fad19a
b4ce21e0a3df1d097277d6
f3c4311de0e931f08c232b 7e493ee44b28
aff6d7896e0e142bbc3e78 ce
460aed10cc9
71512ec7d43f958f2b6da
408E efe092824916a5637ee35d439589
a3b6df27179b175c88fa4c9cf9f
412E
8b092
244E
51ec95518d1b3 05fed5e
e842 0bc7f8f513e0e74b270
406E
400E bbb13dc62adf2de2a42b6
460aed10cc9
bf
6331b3f
1a830d9f
df5dba74c75b228de48c
db6c4213a717bc 634E
768E
460aed10cc9
460aed10cc9
214E
552E
402E
448E
460aed10cc9 b5f038f79a3
3711
82a65ed4b69 9be88247
317E 3089106e3b
be8f4199f
438E
504E
fb16636aae
3089106e3b 3089106e3b
3b6b2c549de670d7bf5fc0ee
51e045ca826077ae765
b9ae94e6935503603341ecf4
16da5f1301b36df4df0f 4a36db80f1ab1e97
35b8742610 3089106e3b
663E
e1e4c23db39d8bd633c3a
2342b759c03 428E
2832ed5cea6
660ffeb76fc59 975fedfb64df
81bcc35f82891
fe6be3206549f5b5564acde84783
731857fe189fb398e80a0594
3e814305b42beb41b8c706
4280833ef80172
398E
1c07453d584f3d14b1876fdb
3f16509139c7dad5163b91799 00cbeb87c182ca0785f
71a48d11b2e7e56b1df128bd
6bce02baf91781a831e1b95
275afb2b215b966d9fac51b96b9
b06bbfa920aa95dd 162d8039483d8
f8128d574c356631b8a9
9f24ba80192c339a64c0
8f143077e
3a8173d6c
5a7a610a8a
81dabfaba8
81dabfaba8
f0bd1521
47b2da3d
33e1de
3b2f08d52e4bca3f9ca7bbbd6
99da1f8a5
3f9ddf1ffbc0d38b
b62cd1d0a0 369E
f0f45e707 59a8b435ccd
07
0fabab47
a8e9
0f940646
f0f45e707
5eea496cc301b2a9721
e3fd0c7b3
5a7a610a8a
86e9b0428 33e1de
ac487676a04e4
a2eab7c9fa641e5f
c0f34a600
619E
1b82200
683E
f78e145a127014eb43345a0c
0da9135 534E
a0befe6dd1ca7b165786835
fe821bce 676bbe7d1c1fb71742df534ce8 30d6138b63eb 233E
fb039d7a2a9fe73b5f468eba9
59a8b435ccd
8cbcf5cb5 bf141dbce e64f22a31
2d7b7fb6c9ad6821752651f7
b38049e00
01
5e9156098c064
a78eb40ae56aaa9
6448451ac2ceade90715378b
cd0d985a366cad7e
bf01c8a262
c96cb3 0f167280
37d80ae421dba4a70730338860
0acc5bb8ca4
eb8
eb8
162d8039483d8
ffccaa9e3
81dabfaba8 c5d5be3942
ffccaa9e3
a27037332d9fa5c43bcfe94c0
45827dbdd8
24431c3eb075102f07cc2c1be
3b1563a23eb9
45827dbdd8
f713a8b311ffa05ce3683ad10
e3bdbca0e2256fffa8a59018
9f24ba80192c339a64c0
eb8 eb8
fbdc3ca37406f66635c8b226e
9c9e2e0f2da8758e436c
6aae8d25951
676bbe7d1c1fb71742df534ce8
ffd1b1af3b6864078f3
91ecbe29a71f00ed5a3
eb8
81dabfaba8
f8128d574c356631b8a9
e82f47b8d4949ba4af69b38cbc19
45827dbdd8
45827dbdd8
eb8
b06bbfa920aa95dd
eb8
ac487676a04e4
4a38abc630c82b0c48dfbf5271
75ba8d840070942eb4e737849
6448451ac2ceade90715378b
eb8
d370c12dbc
eb8
5eea496cc301b2a9721
7e74e1587f3a4d208
46f754ea06f070dbc023e571a876
0acc5bb8ca4
11bb8ed3ae227d3acefc
8b06a67a
0acc5bb8ca4
3cdc90c57243373efaba65a
eb8
0a963fef9
1b13908a9f0763c0ae54af9062080
6aae8d25951
45827dbdd8
910b00285f11bb90d0a15641
81dabfaba8 45827dbdd8
1d163eac141def176461c
80874aa8
5e9156098c064
08dade990b2282
07f8a9e55a16beddb3c9153b0
86276bb1e23f2c7ffcbe82a0
46f754ea06f070dbc023e571a876
0acc5bb8ca4
bf01c8a262
fa2afbd869 533E 81dabfaba8
c1c30f30d40c4f1f84924622f
81dabfaba8
9937ccba1469
81dabfaba8
84e4f1c582427a98d7b
ea890ccca2f7c2107351
6c632ad9c42228bb337
dca32af03698c988b22
08dade990b2282
11bb8ed3ae227d3acefc
cd0d985a366cad7e
0f940646 f0bd1521
3b2f08d52e4bca3f9ca7bbbd6
6c632ad9c42228bb337
503737b64d432c60d6ac557e0e6
1d163eac141def176461c
f78e145a127014eb43345a0c
dca32af03698c988b22
18115fa32ff1cb99
84e4f1c582427a98d7b
ea890ccca2f7c2107351
18115fa32ff1cb99
fb039d7a2a9fe73b5f468eba9
0c72a426929600000f5
a27037332d9fa5c43bcfe94c0
0c72a426929600000f5
3cdc90c57243373efaba65a
173fd00917644f0f1f3e3
173fd00917644f0f1f3e3
24431c3eb075102f07cc2c1be
e3bdbca0e2256fffa8a59018
75ba8d840070942eb4e737849
07f8a9e55a16beddb3c9153b0
9c9e2e0f2da8758e436c
4a38abc630c82b0c48dfbf5271
86276bb1e23f2c7ffcbe82a0
root
root+PRISM
root+VPSC
Figure 4: Divergence of dissimilarity measures: for both graphs, σdist estimates that VPSC gives layout closer to the original, while σdisp predicts the opposite.
hstntx72 hstntx75 hstntx73 hstntx70 hstntx71 hstntx74
ftwotx64 ftwotx61 ftwotx62 ftwotx60 ftwotx63 ftwotx65
hstntx82
hstntx67 hstntx69 hstntx16 hstntx23 hstntx68 hstntx17 hstntx22
brhmal71 brhmal67 brhmal68 brhmal66 brhmal70 brhmal69
brhmal72 brhmal73 jcvlfl68 brhmal74 brhmal75 tampfl81 jcvlfl66 brhmal77 hstntx80 brhmal76 jcvlfl67 miamfl80 hstntx65 brhmal60 hstntx64 brhmal81 hstntx60 brhmal63 brhmal62 hstntx61 brhmal64 hstntx63 hstntx62 dllstx24 brhmal65 ftwotx80 dllstx72 brhmal61 austtx61 snantx80 dllstx70 jcvlfl81 wpbhfl80 dllstx71 austtx64 dllstx25 austtx60 brhmal82 ojusfl80 nworla81 austtx65 atlnga33jcvlfl61 austtx63 dllstx67 atlnga32 dllstx22 atlnga76jcvlfl63 dllstx28 austtx62 jcvlfl62 atlnga31 jcvlfl60 dllstx68 hstntx81 atlnga25 dnvrco79 dnvrco66 dllstx29 dnvrco67 dllstx21 atlnga75jcvlfl64 dllstx69 dnvrco77 brhmal80 tampfl80 dllstx80 dnvrco70 atlnga30 jcvlfl65 dnvrco69 dllstx31 atlnga77 dnvrco78 anhmca73 austtx80 chrlnc64 anhmca72 lsvlky81 dnvrco65 anhmca69 clmasc61 anhmca70 dnvrco68 anhmca78 dllstx76 jcvlfl80 chrlnc69 chrlnc71 orlnfl81 atlnga80 dllstx74 atlnga56 chrlnc60 anhmca75 anhmca65 atlnga71 atlnga70 anhmca67 atlnga64 okcyok80 clmasc60chrlnc70 anhmca76 anhmca68 dllstx77 atlnga79 anhmca77 anhmca66 dllstx73atlnga59 atlnga69 atlnga78 chrlnc65 chrlnc61 anhmca71 dllstx78 dllstx81 clmasc62 atlnga65 nsvltn80 atlnga16 atlnga34 dllstx75 atlnga58 anhmca63 chrlnc62 anhmca79 dnvrco81 dllstx55 mmphtn80 anhmca60 anhmca74 anhmca62 atlnga74chrlnc63 hmsqnj61 atlnga57 atlnga63atlnga35 sndgca80 clmasc80 dllstx59 hmsqnj60 anhmca61 dllstx62 anhmca82 dllstx56 atlnga09 stlsmo81 anhmca64 anhmca81 chrlnc66 atlnga36rlghnc80 chrlnc80 tcsnaz80 dllstx58 cncnoh63 atlnga62 hmsqnj62 dllstx57 dllstx61 dllstx79 kscymo21 atlnga83 dllstx83 kscymo18 chrlnc68 atlnga72 cncnoh64 gnbonc60 dllstx65 atlnga73 cncnoh61 atlnga67 dllstx60 kscymo67 dllstx66 anhmca80 atlnga37gnbonc61 atlnga68 chrlnc67 dllstx63 kscymo63 atlnga66 atlnga61atlnga81 gnbonc62 atlnga60 kscymo23 hmsqnj80 tulsok80 kscymo64 dllstx82 cncnoh62 cncnoh60 grdnca62 kscymo71 chrlnc81 grdnca60 shokca80 kscymo65 kscymo61cncnoh81 kscymo68 atlnga82 kscymo62 kscymo73 kscymo69 grdnca61snfpca81 kscymo81 kscymo80 grdnca80 kscymo24 cncnoh69 gnbonc80 kscymo60 dnvrco60 phnxaz81 mmphtn81 dnvrco62 cncnoh73 lsanca80 kscymo22 phlapa82 cncnoh72 kscymo82 kscymo17 dnvrco63 kscymo72 chcgil63 chcgil58 bltmmd66 kscymo83 lsvlky80 snjsca80 dnvrco61 cncnoh71 washdc81 phlapa83 bltmmd64 cncnoh68 chcgil79 cncnoh82 bltmmd68 chcgil08 chcgil60 dnvrco80 cncnoh70 dnvrco64 bltmmd71 chcgil62 kscymo70 chcgil32 nwrknj82bltmmd65 snfcca81 chcgil80 chcgil72 chcgil34 chcgil82 chcgil37 bltmmd63 bltmmd70 slkcut80 lsanca82 bltmmd81 bltmmd69 chcgil59 chcgil81 nycmny82 snfcca82 bltmmd67 chcgil30 phlapa80 phlapa81 bltmmd80 bltmmd62 chcgil33 chcgil64 scrmca80 nybwny80 chcgil09 chcgil70 chcgil65 cmbrma61 dnvrco82lsanca81 chcgil38 snfpca80 chcgil69 chcgil29 chcgil61 washdc82 noc30k80 bltmmd61 cmbrma60 cncnoh80 chcgil71 chcgil35 nwrknj81 rcpknj80 chcgil36 cmbrma81 cmbrma63 dnvrco71 chcgil39 cncnoh14 nycmny81 bltmmd60 dnvrco72 iplsin81 chcgil68 cncnoh13 cmbrma62 waynpa80 dnvrco75 hrbgpa80 washdt80 cmbrma65 chcgil83 cncnoh66chcgil67 hrbgpa62 cmbrma64 cncnoh16 nycmny83 dnvrco76 cncnoh65 cncnoh67 dnvrco73 cncnoh15 pitbpa80 dtrtmi80 cmdnnj80 ptldor81 omahne80 chcgil76 desmia80 cmbrma80cdknnj67 cmbrma69 dnvrco74 slspmd80 iplsin67 cdknnj80 washdc83 cdknnj81 chcgil77 chcgil73 rlmdil80 chcgil74 iplsin66 iplsin68 hrbgpa61 cdknnj66 cmdnnj62cdknnj71 cmbrma13 cmbrma68 chcgil75 dtrtmi81 hrbgpa60 chcgil78 cdknnj61 desmia64 desmia60 cmbrma16whplny81 sttlwa80 dtrtmi61 cdknnj68 desmia62 grcyny80 cdknnj70 clmboh81 hrfrct81 artnva80 cmdnnj61 cmbrma67 cmdnnj60 dtrtmi62clevoh80 dtrtmi64 dtrtmi60 desmia61 cdknnj69 desmia65desmia81 iplsin80 whplny80 cdknnj64 grcyny61 dtrtmi63 cdknnj60 cdknnj62 cmbrma82 grcyny62 cmbrma83 cmbrma58 desmia63 dtrtmi67 cdknnj63cdknnj65 clmboh80 hrfrct66artnva60grcyny63 cmbrma76 dtrtmi65 pitbpa81 dtrtmi68 hrfrct68 grcyny64 cmbrma59 milwwi80 dtrtmi70 clmboh71 artnva67 hrfrct67 clmboh69 artnva65grcyny65 cmbrma72 cmbrma77 okbril80 dtrtmi69 iplsin65 cmbrma53 clevoh60 hrfrct60 artnva66 desmia67 cmbrma73 dtrtmi66iplsin61 clevoh63 cdknnj82 clmboh67 cmbrma79 chcgcg80 artnva62artnva63 grcyny60 cmbrma57 clmboh68 clmboh66hrfrct62 stplmn81 iplsin63clevoh62 clevoh61 clevoh65 cmbrma74 cmbrma52 artnva61 cmbrma71 cmbrma55 desmia68 clmboh70 hrfrct61artnva64 artnva68 clevoh64 desmia66 iplsin60iplsin62 cmbrma56 iplsin64 albyny80 clmboh62 clmboh61bflony80 cmbrma75 cmbrma78 cmbrma70 cmbrma54 milwwi81 clevoh81 chcgcg60 mplsmn81 chcgcg63 clmboh64clmboh63 cdknnj76 hrfrct80 rlmdil81 cdknnj72 clmboh65 cdknnj73 chcgcg61 hrfrct82 clmboh60 cdknnj75 chcgcg64 cdknnj74 albyny63 chcgcg65 dytnoh80 akrnoh80 mplsmn80 cdknnj77 stplmn82 chcgcg62 dtrtmi82 albyny64 hrfrct03 bflony60 albyny60 hrfrct02 albyny65 clevoh66 bflony62 bflony61 albyny62 syrcny80 hrfrct65 clevoh68 albyny61 hrfrct63 hrfrct70 hrfrct64 clevoh67 bflony65 bflony64 bflony63 hrfrct71 hrfrct04 hrfrct72 hrfrct05 chcgcg81 hrfrct73 hrfrct74 dtrtmi71dtrtmi75 dytnoh65 dytnoh60 hrfrct69 dtrtmi74 dtrtmi79 dytnoh64 akrnoh62 dtrtmi72 dytnoh62 dytnoh61 akrnoh61 dtrtmi76 dtrtmi73 dtrtmi77dytnoh63 akrnoh60 dtrtmi78 chcgcg71 chcgcg66chcgcg70 chcgcg68 chcgcg67 chcgcg69
badvoro
badvoro+PRISM
badvoro+VPSC
b124
b124+PRISM
b124+VPSC
F gure 5 Compar ng PRISM and VPSC on two graphs Or g na ayouts are sca ed to have an average edge ength that equa s 4 t mes the abe s ze
JGAA, 14(1) 53–74 (2010)
67
Table 3: Comparing the dissimilarities and area of overlap removal algorithms. Results shown are σdist , σdisp and area. Area is measured with a unit of 106 square points. Initially the layout is scaled to an average edge length that equals 4 times the average label size. Graph b100 b102 b124 b143 badvoro mode ngk10 4 NaN dpd root rowe size unix xx Graph b100 b102 b124 b143 badvoro mode ngk10 4 NaN dpd root rowe size unix xx
σdist 0.74 0.41 0.52 0.5 0.35 0.57 0.25 0.25 0.14 0.73 0.16 0.35 0.25 0.39 σdist 1.18 0.69 0.84 3.8 1.09 0.46 0.49 0.43 4.14 0.41 0.62 0.55 1.13
PRISM σdisp area 0.36 14.59 0.18 2.62 0.12 3.39 0.22 2.59 0.15 11.85 0.35 0.78 0.05 0.54 0.06 1.15 0.03 0.54 0.28 16.02 0.04 0.38 0.11 0.54 0.07 0.6 0.18 4.23 VORO σdisp area 0.47 131.55 0.36 19.09 0.39 19.35 0.9 4.45E5 0.58 20.02 0.2 0.79 0.22 2.28 0.23 0.6 0.94 3.68E8 0.2 0.68 0.34 2.07 0.24 0.64 0.44 185.7
σdist 0.95 0.44 0.28 0.67 0.65 0.84 0.16 0.15 0.1 0.73 0.11 0.28 0.13 0.45 σdist 0.49 0.33 0.43 0.57 0.34 0.44 0.23 0.33 0.38 0.39 0.25 0.28 0.20 0.30
VPSC σdisp area 0.62 25.33 0.33 2.77 0.06 3.04 0.41 4.26 0.58 11.71 0.59 1.45 0.03 0.53 0.04 1.15 0.03 0.53 0.7 25.93 0.03 0.38 0.08 0.57 0.04 0.59 0.34 4.54 ODNLS σdisp area 0.24 1.09E3 0.15 41.01 0.26 14.64 0.36 29.39 0.10 166.53 0.28 45.21 0.12 2.21 0.18 4.86 0.29 1.45 0.14 1.52E3 0.11 2.01 0.16 3.35 0.09 2.01 0.11 45.18
68
Gansner and Hu Efficient Node Overlap Removal
Table 4: Comparing dissimilarity and area of overlap removal algorithms on the Rome suite of test graphs. # stands for the number of graphs within the size range specified.
sizes
#
10–19 20–29 30–39 40–49 50–59 60–69 70–79 80–89 90–99 100–109
1407 839 2036 1800 1045 1172 1008 788 1296 140
PRISM σdisp area 0.009 0.16 0.02 0.27 0.03 0.36 0.035 0.43 0.042 0.51 0.046 0.58 0.051 0.64 0.05 0.71 0.054 0.78 0.055 0.82
VPSC σdisp area 0.09 0.061 0.11 0.12 0.13 0.19 0.14 0.25 0.15 0.32 0.17 0.39 0.17 0.46 0.17 0.52 0.18 0.59 0.18 0.61
VORO σdisp area 0.14 0.069 0.14 0.15 0.13 0.26 0.12 0.36 0.11 0.53 0.11 0.70 0.11 0.94 0.10 1.20 0.10 1.49 0.10 1.7
ODNLS σdisp area 0.07 0.34 0.078 0.92 0.078 1.85 0.074 2.71 0.074 4.53 0.074 6.18 0.073 8.44 0.07 9.99 0.069 13.26 0.068 14.14
VPSC, VORO and ODNLS on the Rome test suite of graphs [4]. This suite has a total of 11534 graphs5 of relatively small size. Due to space limitation, we only give the similarity measure σdisp and the area, and we average the results over graphs of similar sizes. Again, PRISM achieves the best compromise between being close to the original drawing, and having a smaller drawing area. We note that while there is no theoretical result guaranteeing that PRISM algorithm converges to an overlap free layout in a finite number of iterations, in practice, out of thousands of graphs tested, some as large as tens of thousands of vertices, PRISM always converges within a few hundred total number of iterations in the two main loops in Algorithm 1. In our implementation we set a limit of 1000 iterations, even though this limit has never been observed to be reached. Table 5 gives the number of iterations taken for the 14 test cases in Tables 2-3. As can be seen, for these graphs, the maximum number of iterations is 122. As a demonstration of the scalability of PRISM, we consider its application to a large graph. This is a tree from the Mathematics Genealogy Project [32]. Each node is a mathematician, and an edge from node i to node j means that j is the first supervisor of i. The graph is disconnected and consists of thousands of components. Here we consider the second largest component with 11766 vertices. This graph took 31 seconds to lay out using SFDP, and 15 seconds post-processing using PRISM for overlap removal. PRISM converges in 81 iterations. Important mathematicians (those with the most offspring) and important edges (those that lead to the largest subtrees) are highlighted with larger nodes 5 Three
graphs were dropped from the test because they were disconnected.
JGAA, 14(1) 53–74 (2010)
69
Table 5: Number of iterations taken in the two main loops in Algorithm 1. A: initially the layout is scaled to an average edge length of 1 inch. B: initially the layout is scaled to an average edge length that equals 4 times the average label size. Graph b100 b102 b124 b143 badvoro mode ngk10 4 NaN dpd root rowe size unix xx
|V | 1463 302 79 135 1235 213 50 76 36 1054 43 47 41 302
|E| 5806 611 281 366 1616 269 100 121 108 1083 68 55 49 611
A 122 66 43 46 53 43 29 34 26 103 28 29 32 53
B 75 44 19 26 32 26 8 9 6 119 7 14 8 46
and thicker edges. Figure 6(top) gives the overall layout, which shows that PRISM preserved the tree structure of the layout very well after node overlap removal. Figure 6(bottom) gives a close up view of the details of a small area in the center-left part of Figure 6(top) with many famous mathematicians of early generations. Additional drawings of this and other components of the Mathematics Genealogy Project graph, including that of the largest component, are available [21].
6
Conclusions and Future Work
A number of algorithms have been proposed for removing node overlaps in undirected graph drawings. For graphs that are relatively large with nontrivial connectivities, these algorithms often fail to produce satisfactory results, either because the resulting drawing is too large (e.g., scaling, VORO, ODNLS), or the drawing becomes highly skewed (e.g., VPSC). In addition, many of them do not scale well with the size of the graph in terms of computational costs. The main contributions of this paper is a new algorithm for removing overlaps that is both highly effective and efficient. The algorithm is shown to produce layouts that preserve the proximity relations between vertices, and scales well with the size of the graph. It has been applied to graphs of tens of thousands of vertices, and is able to give aesthetic, overlap-free drawings with compact area
70
Gansner and Hu Efficient Node Overlap Removal
in seconds, which is not feasible with any algorithm known to us. It is possible that algorithms such as VPSC, which rely on separate passes in the X and Y directions, might be improved by randomizing which overlaps are removed in which pass or by gradually removing overlaps using many alternating X and Y passes. This would, however, further increase their computational cost, which is already much higher than the algorithm proposed in this paper. For future work, we would like to extend the overlap removal algorithm to deal with edge-node overlaps. We would also like to explore the possibility of using the proximity stress model for packing disconnected components.
Acknowledgments We would like to thank Tim Dwyer and Wanchun Li for making their implementations of VPSC and ODNLS, respectively, available to us. We would like to thank Yehuda Koren and Stephen North for helpful discussions, and Stephen Kobourov for bringing our attention to the term “Frobenius metric”. Finally, the reviewers’ comments were very helpful, especially in making the exposition clearer and more accurate.
JGAA, 14(1) 53–74 (2010)
71
Karagrigoriou Winnicki Guo
Lee
Feng Chan
Bendsøe
Park
Chan
Rabinowitz Yu
Wang
Nielsen
Sigal Teng
Betensky
Amirdjanova
Tanaydin SunJin
ZhangYen Beissinger
Chaubell Nesi Firoozye
Grabovsky
Sternberg ConnellLowe Tepedino
Hagen
Girao Redondo
Gordon
Blanchette
Sell
Bouwsma
Pitts
Solomon
Denne Brown Meier
Johnson Wicklin Meloon Richeson Iturriaga Rovella Ruggiero Craizer Barandarián Castro
Asher Frank
Araújo Mañé
Rodriguez Sambarino
Viana Horita Muniz Abdenur
Lopes
Rios
Costa
Rocha Reis
Metzger
Sad
Camacho
Kitchens
Young
Fahlberg Hu Liu
Boisdefre
Topuzu Cornet Bonnisseau Benoist
Medecin
Yildiz
Nussbaumer
Chang
Sawyer Sun
Byers
Sessions Oehsen Costes
Edwards
WisniewskiGottlieb
Friedman
Shub Miller
Lopez
Munoz Lacomba
Tai Tang
Kostlan
Conlon Brooks
Huang
III
Ling
Chiang
Block
Han
Lin Liu
Winter
Dippolito
Cogswell
Rice
Morris
Feng
Wilding Yu
Duffin
Lin
Wimelaratna Kruse
Rogak Lee
Espina Zhou
Hopper
Kelly Flinn
Chidume
Bragg
Oh
Morse Peterson
Mena Ketchum
Starcher
Sigley Udinski
Mott Ferraro
Reis
Hood
Samaratunga
WoodwardSastry
Megginson
Smith Dobbie
Anderson
Vasudevan
Fairchild Jenkins
Bardwell
Cholewinski TauswortheLiang
Lang
Kent
Stiffler Cheng Golomb Gaal
Imhof
HurdSherman Bunn
Locke
Krahn
Coe
Hinrichsen
Verde
Overdeck
Birkhoff
Street Brink
Hedrick Crosby RubelHartfiel
Kabak
Ma
Milnes
Lam GardnerLiu
Kadison
Krishnan
Larsen
Cho
Tan Park
Rho
Sneyd
Nam Lam
Weinberger
Wilson
Fulkerson
Keenan Haber Ryser
Andree
Thurber
Nelson Goodman
Kangas
Mitchell
Robinson
Darragh
Mosley McLeish Johnson Macpherson
Moore
Lazier Osborn Koepp SchaferTomber Hathway Mitchell
Bobo Camburn Paige
Allen
Ward
Stroud
Stanek
Price
Moore
Sagen
Kearns
Bai
Hoffman Lee Ye Lam
Rayburn
Feil HoPark
Greenwell
Bhattacharjee
Spencer
Cooper
Dowd Johnson
Mathas
Umland
Barreto
McIsaac
Blackburn
Barton Garren Ozmutlu
SmithYun Turnbull
Waller
Grady Spencer
Tierney Hamilton
Winston
Bose
Kuruc
Fong
Parent Lieberman
Gregory
Brundan
Tsai Wallenius
Schaffer
Mukhopadhyay
Shui Dass
Lee
Liu
Shyamalkumar
Lele
Sun
Cutler Dey
Miller Coster
Bresenham
Yang
Berger Perez
Wang Kipnis
Kujawa
Albert
Varshavsky
Matthews Altman Johnstone Adak
Konnerth
Chen
Beattie Berliner
Gavin Crato
Kovacs
Preston
Campbell
Conlon
Sweitzer III Haran
Sanghvi
Bulutoglu
Brown
Birmiwal Zhang
Müller Notz
Resnikoff
Atkins Ture Stroud
Cheng Levins
Kleidman Purvis
Li
Patra Molitor Tra
Liebeck
Audu
Goodwin Tulley ApineJoseph
Kojima
Ozsvath
Vauhkonen
Steiner Rudolph
Lloyd
Hines Howie
Lu
Mira
Law
Bamberg
Lischka
McSorleyBuczak
Naegel
AtkinsonBoos Bamblett
Guwal Momoh
Dolan
Gray
Pantano Lamy Agnus
Venkataraman
Cook
Britnell Cohen Sin
Klerlein
Stokes
Nuebling Rashwan
Jones Ahmed
Tryer Ronse
Tompson Behrendt
Roney Whelan
Pinneri Williams Gasquoine Shareef
Wells
Evans
Neumann Atkinson
McNab Lataille
Menon
Giudici
Cameron
Teague
Armanios
Brydon
Möller
Eaton
Hasson Robinson
Lund
Oehmke Randolph
Myung Divinsky
Bruyns McIver
Langworthy Li Yu Dean
Hemminger
Sharp Ramsay Pantelidakis
Bhattacharya
Husband Nimmo Bondari
Rall
Langroodi Oktac
Iranmanesh
Cauchie Penttila
Gomes Gilbey
Covington Tarzi Peile
Fang Pasechnik Emmens
Greenhill
Mellor Pipinos
Rutherford
Gamble
Praeger Li Raposa
Zhou Saxl
Myers Kosier
Wu
Wichman
Lander Andreou
Cohen Maund
LimCuaresma Royle Alejandro
Rodgers
Hegedüs Lawther
Wang
Hentzel Kovach Ritchie Whitt
Statton Perlis
Vaughan
Qian Heisterkamp
Bending
Hartley Khayaty
Whiston Inglis
Cartwright
Hungenahally
Liu
Maharjan
Nochefranca McKay
Schneider
Groves Quick HaighMann
Yu
Xiao
Sanderson
Camina
Traustason
Inyang
Devine Yang
Baddeley
Clifton
Carlson Peng
Young
Schiller Knudson
Kambayashi Sardinas
Weinblatt
Stewart Sim
May
Callahan
Patterson
Petalcorin Danielson
Lee
Shapiro
Boyle Lau Rao Camillo
CaldwellCozzens Faith Smith
Hinson
Zelinsky Gerstenhaber
Giaquinto
Helzer Rosset
Fraser
Levine
Jain
Ornstein Kuhn
Zhang
Reisel
Zaroodny
Lawver Weston Jeon Smith
Cropper
Demas Daugulis
Zaromp Whitney Coll
Rockoff Penico
Smith
Feinberg Morgan
McDougal
Schack
Osofsky
Ritchey
Jones Sherman Kullmann
Zhou
Purcell
HwangKim Adams Hamm Rivera
Pringle
Dorner Pond Leahy Lipman
Chen
Viola Bahrampour
Adkins
Hamaker
Magid Ludington Curtis Brown Song
Goldwasser
Tsaur
Rodriguez Gibson
Schirmer
Roark
Nakao
Yuan
Rees Halpenny
Payne
Eballe
Doraiswamy Naylor
Dahlberg Juan
Jamison
Brown Salter
Huthnance
Bridges
Birgoren Aungst Murthy
WakefieldBarbina
Harkins
Recoder Raczkowski
Kao
Bagley
Ponomarenko
Mellendorf
Shao Scheick
Patenaude Nikolai
Lester Robinson
Tu
Bousbouras
Ulmer Davenport
Waiveris O
Ota
Lister
Dinolt
Gardner
Huang
Anthony
Umoh
Kosler
Boyer
Foregger Jung
Son
Cho Tinsley
Lisan Terry
Archer
Zhao
Suwilo
Brualdi Michael
Mason Chavey
Johnsen Solheid Anstee
Henderson Houghton
Foregger
Ross Pritikin
Tannenbaum
BlandShallcross
Ko Willard
Quinn
Kuchenbrod
Lee Deretsky Putnam
Jensen
Felouzis Smith Hindman
TrigosFerreiraRetta
Kirby
Poet Shader
Hsieh
Skipper
Bender
Wilson
Eilers
Shpigel
Lawrence
Scobee Dietrich
Schneider Wachsmuth Metzger
Petrovic
Deliyanni
ElManshad
Phillips
Miles Zitarelli Downey
TischerHeiman Tseng
Weiner Monico
Liu
Childress Bedford Kwon
Squires
Park
Hopenwasser Brenken
Plachy
Han
Kweon
PanLevenberg
Hantler Taylor Li
Seidel Luecking Gaer Fenceroy
Rosenthal Allen
Vanaja
Kellogg Lu
Williams Suchan Timoney
Hessler
Limperis
ChildMalone Phillips Tsui
Wilson
Cope Miller
WilliamsGarabedian GravalosGuenther Robbins Pekara Gautier
Shimanski
Wymore
Marathe
Muoneke
DeMar
Guelzow Strenk Chang
Zhang Steen
Betz O Batchelder
Conkwright
Gurwood
Knappenberger Meush
Matagrano
Murray Slepian Belbahri Liu Pairman Quackenbush
Clippinger Lancaster
Mayhew Fredricksen
Kruskal Wilson Hoover
Steimley
Smith
Eberlein Linden
Daly
Kitto
Runnion
Baloglou
Noble Widman Tang Comisky Zhou Comfort
MacLean Moore Stromberg Lee FergusonVeiler Erlebach Peterson Hawley Butler Austin Baartz Argabright McKennon Grubb Hart Simmons Gage Griffin Dearden Jewett Gan Novak
Smarandache
Yan Cifuentes
Bund
Hewitt
Lang
Jacobs
Chaney Chen
MacNeille Michelson Donoghue
Koranyi Resnikoff
Hughes Sinkhorn Roberts
Roberts Dauns
Galbraith Unnithan Pinkham Holley
Hestenes
Cohen
Thoene
Gaffney
Stone Finch
Achilles Burghduff
Ruchte Haimo
Taylor Yovanof Trachtenberg Aswad Waksman Song
Scheffé
Suzuki
BuckMather Hintzman
Ginsburg Broverman
Browder
Vrem Petrich
Keeler
Coury
Kong
Buehler
Cardan Bartelt
Todd
McCann Zhang
WalkerRutan Bloom
Albert Crow
Rechard
Peinado HosfordEnersen
Liu
Argyros
Negrepontis
Ross Davies Wu
Lichtman Roush
Putney
York
Byrnes
Woods Sovereign
Harper Parr
Peters Hollingsed Hanes Wilcox Saks Masaveu
LaDuke Al
Ndakbo Frey Vakil Swift
Andre
Forster
Stuck Lin Lopez Itzkowitz Parker
Anderson Dudley
Munoz
Froderberg
Asmar Ghosh Nenadic
Mozzochi
Mann
Gao
Diamond Dow
Gutschera
Sutton Lewis
Kannappan
McMullen
Yap Ögren
Gefeller
Metzger Heo Newman Feinerman
Jeang
Hernandez
Capozzoli Fisher
Spatzier Adams Payne
Wilson
Zhu
Alexander Wolk Hawkins
Xu Passow
Lafont
Thayer
Hutchinson Thompson
McKibben
Koopman
Vogt
Zimmer
Hitchman Corwin
Bloch Rehbinder Egerstedt
Calkin
Seltzer
Tang
Cole Taylor
Smith
Moskovitz Yen
Sarma Guilford
Griswold
Adams
Chu
Widder
Ruiz
Benveniste Sanje
Hagerty Koelling
Lehmacher Jacobs
Li Infante Schach
Wu
Przebinda Allali
Quiroga
Szaro
Pergler
Spiteri Oliveira
Qian
Zhu
Manderscheid Wong
Wong
Kim
Kowalsky
Pardalos
Gorman Huang
Fiske
Urenko
Gonzalez
Unni Akutowicz
Garder
Hirschman
Phillips
Ascher Daniels Lin
Xue
Lin Butterworth
Kinukawa Porter
Saari Tien
Zhang
Chou
Shen
Milojevic Conjura
Jones Hulkower
Protsak
Lin
Johnson TaoOmori
Huang Kim Howe
Brown Sivaramakrishnan
Mackey
LaRiccia
Sim
Mouhab
Willson
RatcliffHerman Lee
Plastiras
Scull Fox BewleyBlackadar
Garraway
Laubenfels
Chernoff Ramsay
Murray
Yeo
Wehrly
Lu Haunsperger
Quint
Insel Erceg Seifert Moore
Potter
Arvin
Carlton
Carter
Kühl
Kaiser Papageorgiou Meaney Burrell
Ragozin
Zilber Haynor
LaDue Mathews
Misaghian
Petryshyn
Wang Baek Yu Yang Tataru
Khadivi Green
Busby Weissler
Warner
Rosen
YangFitzpatrick
Williamson
BennettYan
Pollard Marut
Guy
JenkinsLeavittBruning AthanasopoulosFuzak Bailey
Stevenson
Patnaik
Cline
Prather
Saenger Boas
Hughes
Hoffman
Graesser
Ark Rosen
Mugler
Imoru
Chun Greene Tangeman
Smith Gao
Prins Goodner
Leech TrembinskaSaltz
Schwid
Colvin
Mosbo
McDonald
Song
CastlefrancoHethcote
Arnold
McMinnLeipnik
Obersnel
Ghosechowdhury DeBranges
Dhavakodi
Senge
Anders
Che
Xia
Stromquist
Vaysleb Webster
Cohen Lucke
Packer Glenn
Jiang
AlladiReti
Wasserman Koschorke Dahlmeier
Hales
Winkler
Anderson
BrandsteinJones
Fabec
Chin
Motzkin O Brizolis
Shipman Mesirov Ault Turyn
Gleason
Clanahan Effros Voichick Poon
O
Wadhwa O Curole
Reyes
Ritt
Cayford
Soule
Testa Tucker
Steward
Northcutt
Pederson
Vass Erickson
Langer Smith
ArmendarizShirley
Wayment
Sato Straus
Kittaneh Anderson
Kulkarni
Lautzenheiser Deal Lebow
Sherman
Ewell
Finch Kinyon Easton Lafferriere
Dupree
Edwards
Stewart Baskervill
Smith
SparkmanChen Williams Newenhizen Schwingendorf
Yang Bolstein Eidswick Li
Schrot Frady
SmithCole
Macon
Abraham Whitmore Sturtevant
Mitchell Barron Cashwell Booth
Johnson Ziebur
Hummel
Hopper
Hinds
Pellicciaro Manougian
Ettlinger
Lumberg Culwell Kowalik
Klopfenstein Shulman Seitelman
Davis
White
Lee
Wermer Gajendragadkar
Stampfli
Dondoshansky
Balogun
Kasdan
Brennan
Wang Ivanovski
Martin
Masiello
Krakowski HillikerGross
Gaddis
Kenschaft Zarikian Nikshych
Basener
Dawson
Fan
Robinson
Falley
Fraenkel Mor Schatten III
Neidleman Dorn
Ott
Uherka
Tucker Bryan
Pignani
Drucker
Williams Walston
Falbo
Al
Deaton Streit
Borosh Tassa Klein
Goodrich
French
Shen
Dupre
Ng Kamowitz
Andreano
Crofts
Chi
Khavinson
Kumagai
Thomas Benndorf
Dubinsky
Wild
Kurtz
Levasseur
Lewis Stead
Mabizela Wilhelmsen
Bunyan Chandapillai Lowney Newell Hartung
Haltiner
Stone
Kazarinoff Koo Liu
Liu
Leader
Li
Meddin McKelvey
Kowalski
Davis Hale SongMoore
Marshall
IV Chou Shults Hines McPhee
Ferrucci
Weinberger
Alspach
Sajna Varga
Zhao
Elliott
Bressler
BeesleyStenberg
Boyer
DurisPatrick
Kodeih Rogers
BlumenthalHatcher
Zhang Luo
Weihe
Chang
Goldberg
Karney Lobb Morley Boyce OsbornYun
Lazarev
Gaspari
Wilks
Garza
Bledsoe Karlovitz
Mangrad
Kellum
Hasting Meyer
Tse
Shahshahani
Sanches
Withers
Bennett
Porsching
Tran Goodman Banerjee
Saunders
Wan
Bowen
Wong
Peterson
Dinkel Chou
Shields
Bott Teleman Holzsager
Benardete Perez
Ales
Morris
Cleveland Li Pfaff Sion
Marinov
Hundal Faulkner
Whyburn
Showalter
Clarkson
Dolan
Valentin
Boyd Bolano
Shonkwiler
Herwitz Ross
Hunt
Cecil
Shannon MillerChang
Najfeld Deutsch
Kuai
Shotwell Modeer Tsolomitis Chinn
ZhanHare
Kenyon
Ulrich
Luft
TurrittinRang
Qin Lin
Zhong
Leeds
Blondeau Glynn
Woods
Whitfield Wilson
Birnbaum Apaloo
Faires
Durnberger Liu
Ho
Darrah Schedler Koidan
MooresDemers
Szenes
Kim Quenell
Tolman Priest
Dowling Schneider
Hansen Eloe
Federer Wang Hardt Freilich
Pace
Taliaferro Aslan
Hamilton Tabor
HallGlover
Waters
Gibson
Nuzman Ford
Nyberg
Vidakovic
Rhoades
Woo
Bales
Yang Lauer Saltsman
Ochoa Deal
Lewis
Hilt
Raines Norris
Limber
Lin Fitzpatrick
Dawson Huff
LawTong
Shaki FelzenbaumNurlu
Wu Wang Poulin Haskins Hernandez McShine Bierstone O Guilfoyle Wilkin Lockhart Bradlow Hyeon Wang Wang Xian Saber Tetali Graff Wu Uhlenbeck Daskalopoulos McDonald Ossowski Hsu LeePark Nowak Bloom Dolan Lamport Råde SchmidtDragerSedlacek Oliveira Alho Aigner MuthukrishnanKao Bulancea Palais Terng Spencer Subramaniam Eck Basu Simen Sung
Sidney Shieh
Dadarlat
Safari
Vasas
Joe Li
Vardi
Bowker
Suciu Ajoodanian
Langmead
Doyle
Matei
Ju Feighn Lisca
Kiefer
Shor Kaufman
Lorden Huffman
Carmichael Mech Muddana Jacobs Anderson Martineau Bardoe Kuntz Leness Ward Ha Zhang Clingher Solel Pedersen Kaiser Bower Heinicke Chivukula Lopes Batigne Palmer Bristow Wolfowitz Dribin Renshaw Rees Bannon Morgan Wiorkowski Gupta May Fisher Hsu Everett Wilde Harris Harper Reinsch Hensler Kropp Boyce Merriell Fuller Miller Walker Collins Lim Yang Trampus Sezinando Lewis Rogers Dahlin Malone Cudia Luthar Jenkins Foreman Sealander Strehler Borden Beveridge Calvert ShefferBrinkmann Smith Ge BensonLinfield JacobsBhandari Heckman Hampton Lok Hjelmborg Sharpe Rinehart Bryant Landvoy Lawson Kennedy Goldhaber Day Fulman MohammedStephens Moore Nkwanta Biggs Sheung Cooper Block Hamilton Liggonah Carman BullockZielinski Lee Mayer Aarnes Jennings Bailey Deloup Albert Jensen Chuan Ernest Archer Owens Purdy Shapiro Brown Bari Kahn Calhoun Latremoliere Moore Larkin Hachmeister Martin Weiner Anderson Bird Munroe Luttinger Hasssani Zapata Crosby Truitt Gordon Camm Gibbon Clapham Peach Tsau Brannon Blincoe Mortensen Shaikh Tyrer Brown Stockton Pearl Campbell Katz Woodard Lofaro LaTorre Lee Jastrzebowski Kokoris Chaffer Beyer Koch Silverman Amin Jessup Killen Nail Taylor Weintraub Rowlinson Simpson Frohman Jones Oakley Bell Kannowski Ferguson Wang McConnell Brady Kaplan Hansen TzungGuglielmi Shafer O Gunnells Portman Rørdam MacDuffee Marston Morrey Ayres McKayle Trautwein Yagi Lai Jr Sandler Burdette Hill Maqsood III Lewis Rodabaugh Amrine Lee Shepard Dushane Xu Rowley Jackson Beer Wang Green Kahng Carter Xin Fung Rickman Miller Morrel Winslow Manseur Davidson Rosen DuBois Cullen Taylor Dean Unger Crawford Samuel Barnes Cross Wolcott Hussein Kaminski Thwaites Chuang Graham Groah Scott Usadi McCooey Askitas Wagner Woodson Bryson Goresky Wong Sabotka Thompson Penn Terrell Neuhaus Griffing Wilansky Bonvallet KaliszewskiBlankenhorn Belate Gruendler Kiem Lee Martin Assadourin Murray Laverell Stormer Perna Kist Peercy TornheimDubisch Hayes Hanamura Uschold Iqbal Radloff Bush Kiokemeister Yang Chandler Griffin Kim Tomforde Miles Nolting Crawford Stark McAllister Smith Cappitt Babson Sommerfield Kipps Kathman Heo Sternbach Harty Buoni Timm Gader Taylor Wichman Scott Epelbaum MullineuxMushtaqAshiq Sussner Feidner SchweitzerAvitzourPutnam Hemmer Kerr Ortmeyer Garside Jewell Curtis Mesina III Nishibata Maesumi Ho Shover Chern Talmage Cockburn Ji Kan Howard Ha Brown Williams ChangLeviatan Helms Shin Edmonds Williams Loring Ostling KalischKa Morley Fletcher Greathouse Laning Kidwell Kroll Abadie Howard Ritter Ward Walter Danskin Vivian Clarke Siegel Wiegmann Richards Kelly Doyle Randell Slivka Johnson Hall Zhu Hummel Chen Franekic Goheen Buley Davis Nyhoff Temple Wagner Pujara Zettel Arvola Schwartz Hampson Dorff Cassady Zhu Kumjian Kupka Rieffel Zhao Falk Westlund Boyles Tritter Smith Staal Dristy Kamran Huef Tidd Schneckenburger Orlik Xu McDermott Schiefelbusch Heath Terras Ye PaesGlimm Newberger Jordan Shaheen Kirch Cohen Johnson Zumbrun Yu Zeng Li Rawdon Rhode Dinnen Jacobson Butson Simon Tsai Howson Lee Patterson Clemens Shapiro Frykman Nagy Smith Baker Eifler Getu Plotnick Seaton Aizley Flanders Powell Hupert Iorio Morrison Biggs Brand Smith Higman Kerr Stafford Bratteli Croom Smith Wilson Stewart Heilman Wang Morris Megory Enge Sikko Krabbe Chou Friedman Raimi Kuller Page Johnson Deskins Pant Bailey Lewis Nimershiem Feist Boyle Scheuermann Marchesin Simond Frankel Madden Berg Howard Farsi Lien Smoller Conder Luke Curtis Vance Odle HajacRenault Alperin Agrawal Kim Li Fei Parker Szydlik Cartlidge Li Cox Liu Thompson Mitchell Boisen Wheeler Kim Lee Jerison Andrus Bukiet Hardell Anderson SpencerThurston Khodja Hoyle Griego McDonough Morse Ramazan Isaia Snyder Carroll Combe Cashing Ollman Ayres Oh Finkel Park Hinrichsen Case Shultz Mack Williams Bakke Roseman Kalyansundar Atalla Radjavi Katzenstein Smalø Logsdon Hughes Hukle Exel Silverman Barker Barrow Winter Linden Kim Shamash Duran Phy Stoudt DeVos Park Lien Ramras McEachin Rhoades Ayres Marchetto Furtado Boukaabar Sheu Brauner Cadet Marlin Southcott Rees Phillips Iyengar Gantos Perkovic Rolfsen Mason Boyer Dana Addepalli Tennant Hotchkiss Kuo Venzke Derr Rosenberg Graves Fattahi Kim Laforest McDonald Petrucco Gans Khan Kim Sedlock Marwaha Fletcher Quinn Bhatia Ganske Patty Myers Brunner Smith Tobin WoodhouseBeetham Everitt Pao Raymond Zaks Gluck Wilson Potoczny Shaffer Chatland Oh Schaufele Aghajani Wilson Latimer Yang Bridger Brumer Riley Yoon Hesaaraki Green Nardo Burry Hosada Abadie Garaizar Stancl Liu Sharma Rosenholtz Putnam Pyle Hakawati Marcos Fair Reddy Rouch Gardner Miller Levy Tessaro Blackwell Leen O White Cerri Walker Hewage Neumann Kyrouz Ong Wassermann Rocca O Johnson Boersema Razvan Pedersen Wenger Witherspoon Roe McCulloughGrasse Reed Myers Isaacson Lee Flint Stangl Hewitt Jonsson Taylor Dobcsanyi Prince Engvall Blanton Chellevold Pitcher Gilliam Fisher Yahaghi Simonic Mukherjee BellEthington Rhee Ledet Keiter Smith Mazaud Brumfiel Kannan Rosenthal Thomas Guan Underwood Ranum Baker Silberfarb Brown Dreifus Katz Wilson Harvey Farjami Exner Pilz Eudave Kabbaj Brandt Dickenson Cairns MacDowell Sanwal Keswani Brixey Antonelli Porter Latil Easton Martin Schumann SandersonHull Lashof Eszter Hoff Abramson Sorets Macchione Hsu Shy Katsuura Kasum Reeves Adams Hoare Schultens Radner Wayland Ray Doerstling Smith Friedman Harris McBay Whitaker Gerges Lampazzi Jochner McMorris Gallinari Moghadas Jahandideh Margush LaBach Voce Wilson Johnson III Hall Breen Bhatia Miller Miller Bussey Zarnowski Jones Bloomberg Shannon Williamson Hardy DeSapio Brown Eisenstadt Leighton Ng Spencer Sola Turner Berg WuMoon Matthews Ross GriffithsNowlan Auslander Munroe Bellis Razani Titcomb Zhong Moran Shook Haberzetle Hemmingsen Hong Bellamy Tsyganov Ryan Woodruff Heider Frohliger Luo Collet Kostenbauder Ding Moser Mayland Kelly Brown Smith Savage Jordan Robinson Couvillon Mason Kricker Kowng Wang Munasinghe Wilson FeauxHunsucker Estes McDill Surace Zhao Clark Weller Lees Yohai Gough TannerBurkinshaw Davis Peterson Diny Garten Corbett Ishii Prince Brahana Kim Wallgren Braga Scharlemann Sirotine Patil Clay Carothers Natsheh Platzeck Haddad Varadachari Lam Mercuri Appelbaum Fukuoka Naddaf Schor Kulkarni Costa Garrett Dickey WillerdingGeorges Newell Zacharia CoppotelliThiel BarrWiginton Rees Person Nipp Koslowski Moore Su Behrns Strebe Kim Dickson KuoXu Pall BomanTollefson Kalliongis Chandler Fay Stark Todorov Martsinkovsky Barrett Fox Johnson Larsen Litzinger Ballard Sparks Smith Kim Boden Cochran Joseph Foster Ghuman Elsner Larguier White Jeevanjee Aitchison Giller Teter Namboodri Caron Irwin Matherne Minkus Heitsch Green Schultz Lewis Kaplan Milgram Tang Taylor Brown Grant Vandenboss Peralta Montgomery Doll Fremon Keener Kainen Smillie Harada Lima Maier Ling Webber Nelson Frech Spickler Ferdinands McClendon Leighton Dancer Handel Kusner Alling Shaker Kezlan Speers Seda Parks Miller Strecker Mauch Menzin Wu Elkhader FreedStitz Thompson Schmidt Moore Du Militello Burns McCarthyHedstrom Zhu Pyung AbudiakMartinez Barrett Ko Yu Bigelow Steelman Johnson From Taylor Gehman Reeves Limaye Kulkarni Stephanus James Cooper Groot Cao Rigas Melton Boisen Rice Currier Su Archibald Hardy Solin Lobquist Goonetilleke Langworthy Adkisson Greenberg Apodaca Roberts Richardson Maxey Myung Rutt Lovell Albert Liu Brown Hedlund Grimmer Lukkarinen Kupiainen Cohen Tsai Patry Taylor Lovaglia Pepper Williamson Zhao Kwun Kennedy Kania Hruska Martin Menasco Helsabeck Collins Moebes Davis Wadsworth Larson Cheung Morrow Betz Goulding Stemmons Yahya Anderson Bloom Johnson Beaucage Ensil Butcher PirtleWright Smith Weiner Cassidy Chaloner Hutchinson He Capobianco Hass Showers Grossman Neuzil Deshpande Alam Hirsch Gomprecht Etgu Tong Fife Benton Papoulis Edelson Bustoz Gee RubermanHuang Garver Grou Aof Slagle McFarland Kuykendall Kuo Bennett Rinne Weiss Meda Hazlett KimBoals Farkas Rice Schneiderman Hardy Mucuk Castellini Ren Ellermeyer Huang Wu Swick Hyams Arkowitz Barry Jefferson Hakulinen Dines Dickinson Wright Börger Williams Costich Smith Croke Wilder Lin Oldenburger Gérard Shapiro Albert Warren Morez Sherling Mader Huston Zuckerman Sugar Tuller Yim Slaught EllisMahatabuddin Evans NallRyden Claytor Wells Hart Al Ries Landman Shukla Hajek Singh Young Nouh Chen Lindgren Harris StaffordJones Thale Lameier Howe Anderson Nordstrom TownesOppenheimHumphreys Sorenson Huber Lee Coven Hilton Rosenberg Mauldon Barcus Hansen Rawat Taylor Cariola Jones Hook Grasman Hatch Fugate Anderson Meyer Scott Melvin Kline Chaves Cross Kelley Cross Spence Quinn Silberger Bernard Weidner Hardie Zippin Moore AshleyShrimpton SchluntWaltman WaidPollak Chang Larson Schiffman Anderson Vaughan RootGokhale Lennes Piatkiewicz Ghent Stong Stenlund Madden Harer Smith Barros Gary Grilliot Barnard Feuerbacher Lange Hursch Pettus Pan Fan Zhang Fantham Heath Brownstein Foisy Schnare Bryan Luxon Gaba Heidel Ori Salleh Kammoun Bryce Markley Cox Merrill Martin Riggs Foland Hutchinson Mishra Yoon Tonks Lorensen Kaplan Behera Eynden Johannes Chewning Cobb Anderson Schuck Merkes Kim Pelland Mulvey Hidalgo III Gauld Ruan Kirby Pilyugin Beck Williams ThompsonWunderlich Lininger Lustfield Martin Voxman Herald Haymond Brown Jones Strain Knobelauch MacKayStoddard Swingle Jakobsen Hillam Valent Liu Strassberg Gard Alliston Nyikos Zhang Gersdorff Rowlett Shi Wright Thron Shoenfield Mueller Hartz Lih Dennis Worth Roberson Bruton Ragsdale Colding Pauls Maxfield Cunkle Miller Niven Utz Berriozabal McLean Harasani Dempster England He Glover Hopkinson Wypasek Deng Moore BoucherOdden Bell Sanders Borwein Alzobaee Nelson Saiers McKinney Blake Tseng Song Chen Paul Abd Schweitzer Wheeler Maier Brogan Woodard Mand Armentrout SchoriCook Pennington Tamulis Socrates Livingston Marsh Jones Briggs Thomson Clemons Ye Fryman Whitehead Cheo Montgomery Park Byers Burdick Reed Dooher Walker Hoffman Nowell Beshears Stewart Mohamad Greenwood Andima Chen Goldfarb Kim Heckenbach Henson DakinHeyworth King Wegner Seppala Pursch Eggan Hsu Sitaraman Goggins Diesto Waller Kwon Korntved FischerAlthoen Crossley Menguy Larsen May Hare Schorow RothMerwin Cole Gugenheim Isaac Bdeir Stephenson Scarborough Frank Grabbe Strojwas Zhuang Wilson Edwards Seade Dancer Wright Clay Rose Guo Heifetz Tran Fennell Luo ZeislerWong Metcalf Chapman Owens Torrence Johnson Christopher Cruz Wang Ryden Ohme Nelson Mao Beem Singh BidwellTurner Poddar Naik Ouyang Dolciani Bauschke Ramakrishnan Shi Stonitsch Wu O Horn Walker Iseri Cook Callas Drake Stevenson Atwell Warren Zane Hallam Harris Ýçen Steer Grigsby Mayer Asprey Wolf Varino Ji Boessenroth Matveyev Zhou Icen GongHwang Hass Cockroft Stiadle Gubbi Summerhill Ingraham Hughes Akbulut Moses Hunt Molnar Jones Gay Huang Chen Edwards Wilson Ancel Braun Jani II Mosa Powell Hubbuck Fassett Ackleh Goldston Higgins Stalley Baker Black Franklin SmithBaker Kumar Jacquet Greenberger Young Swenson Lawton Duke Hughes Hooper Dressler Gibson Gottschalk Lee Findlay Perez BoalchCalderbank Reed Smith MacNeish Sutherland Halbout Benz Long Kamel Brook Huneke Wang Cooper DeLuna Ward Chittenden Hughes Salamon Marshall Silva Brechner Bonnafé Weld Lesin Pitcher Brook Laidacker Kuksov Wittekind Pree Aull Ok Wong Thys Hlavacek Blue Antonios Paechter Chang Manzur Miller Wine Trimble Trump Klasi Humphries III Ferdinand Stephens OzanMikhalkin ManerWest Boren Mellor Woo McCudden Kohli Cliett Graves Hane Chung Koo Huang Maxfield Michaelides Livernet James Sabello Mantel Klein Boyles Singer Hitchin Johnson Mundt Ling Grant Hakim Sawyer Ramaley LeVeque Vaughn Bennis Leung Skarstedt Chatterjee Sawon Bogner Baritompa Chu Abrams Gompf Snaith Pobanz Lune Hansen Smiley Marsh Warner Siopsis Auslander Fiedler Lee Yeung Gray Li GreenHanks Allen Chu Stafford Kauffmann Marin Schmitt Federighi Renaudin Cameron Zaldivar Gonzalez KroonenbergNunnally II Fuller Pukatzki Wambst Pollock Wicke Grabner Freedman Cook Dyer Godement Naber Griffiths Swenson Conwell Pollard Sellami McNamara Beck Rosso Ospel Hodgkin Sorgenfrey Etnyre Henderson Brady Howe Krishnarao Bell Perez Dudley Santos Kassel Gaucher Alderton Girou Rodabaugh Detmer Keynes Qiang Garcia Chun Rabinowitz Nuss Guerin Guting Walker Grobe Stocking ScheinostFeix Cerin Tipple Lee Burton Vitulli Ozeki Wolfe Replogle Jung Ye Nagarkatte Transue Millspaugh Wheeler Zhang Andersen Finley Morava Thomas Campbell Vaughn Rim Kirley Ming Balaban Ames Fendrich Su Oxbury Cadavid Kurihara Tan Cartier HaissinskyBle WolfDavis Graham Eisenberg Wong Heath Sharp Smith Buchanan Anderson Rhie Ding Roesch Poor Wochels Srivastav Gothen Garity Barratt Miller Riley Babcock Baumann Devadoss Lieberum Laursen Whaples Dorey Leitzel Pettey Sher Freden Harms CannonAdams Fay BankIsmail Nerurkar Choo Emmert Hansen Chu Penazzi Zemanek Williams Pornputtkul Johnson IV Berkey Anand Baier Chan Reynolds NobleLehmerWilliams Stancl Hannula Ng Balavoine Kesinger Hodge Ruedemann Svendsen Chen Dyn LeVan Gray Roberson Helversen Oppenheim Douady Whittaker Rutter Patten Israel Jubran Pedersen Stucke Anderson Guggenbuhl Spellman Broussard Chéritat Caux Griffus Felt BaldwinGrove Moore James Grabner Libis Pages Loday Mullikin Finan Hou Seo Sund Krishnamurthi Gershenson McCallum Klingler Crampton Wiser Martin Treybig Leitzel Garcia Hausel Guin Oberste Glass Nyman Connor Tatsuoka Hakimzadeh Eaton Everett Loveland Dula Dalla Porter Bisch Nelson Reiner Hassanpour Horelick Emert Carter Weibull Wright Karoubi Boxer Miles Biddle Neuberger Farmer Cathey Miyata Zakeri Azarbod Vobach Koray Madison Payne Abbud Chen Al Oudom Hurtubise Raggi Troy Carlisle Petrescu Carette Pu Shepard Alexander Thistlethwaite Zampogni Li Lazer Coffey Stefan Wakae Galecki Ellis Hughes Buff Fisher Harris Hatzenbuhler Shawcroft Miller Haraty Frabetti Dorroh Lubben Poon Maharam RubinHusch Coutant Eccles Murray HungBarton Wright Woo Mahmoud Coleman Brown Proffitt Ssembatya Gray Cox Parr Byun McCann Franco Pothoven Yang So Odenthal Babich Franca Wilson Câmpeanu Buzby Gentry PittmannBall Pekonen Nutt Carlson Shader Fordham Hunter ListerBurgess Lamoreaux Radulescu Ram Rhee Effinger Ortega Ralley Clapp Segal Ahre Andrews Dokken Swain Hutchings Li Curd Tinsley Sheldon Wishart O Steed Pierce Tucker Davis Unsurangsie Ali Castro Dykema Nemeth Sanchez Lee Simone Clark Hubbard Garrett Silva Chang Geissinger Feng Curtis Pohrer Solomon Stoughton Maddaus Hamstrom Rant Mitchell Madsen Timotin Winslow Keesling Bernier Tindell Rogers Baker Remage TrotterLoWilliams Wong Ma Vrabec Miller Dobbins Neggers Lindsey Boswell Perrizo Dima Levy Bahl Mullins Chu Nadathur Stefansson Ron KingRiecke Davis Wagner Baroni Dunning Beebe Wiegand Hall Lambert Cox Corel Wright Edler Chen Johnson Hodges Ceccherini Seldomridge Lopez Covington Pearson Slye Turner Cossio Gadam Cannon Ramis Panda Tataram Edmonds Spencer Kinch Cartan Nistor Selden O Kinch Deveney Khan Mohat Popa Vucic Heerema Kunio Amirsoleymani Su Symancyk Zelmanowitz Daus Baroni Miller Kurepa Cowan Chadick Hayes Wilson Benjelloun Komornicki Barkauskas Goodsell Okamoto Cliff Cover Morris Arslanov Hsu Briggs Getchell Cain Piccione Saveliev Zhou Fort Green Pownall Leslie Pave Mramor Hogan Sadler Hall Peter Shu Asaeda Hinrichsen Newton SandersAnderson Kuzmanovich Bittman Broome Fisher Lytle Hudson Strong II Goldstein Lassowsky Schleicher Reeves Ehrlich Reilly Andrist Mitschi Copes Brown II Overton Murtha Gustafson Schneider Donovan Nadler Pierce Fabbri Pimsner SeldenStepp Alexander Glezen Sanders Zhang Vickery Hu Ostrand Fan Ware Mitsuma Fernandez Álvarez Lukesh Yue John Dediu Streinu Voiculescu Davis Thwing Wakerling Little Bastida Moore Worrell Nica Smith Hildebrandt Rodriguez Mathews Salpukas Calude Ocneanu Howard Kaltenborn Bass Cima McDowell Havea Authement Mantellini Martin Heinzer Schweigert Olson Klatt Dunfield Scott Shershin Gordon Wilson Bauer Mann Hoggatt Haefner Riera Truitt Nicholas III Wituski Riedl Katz Thomas Martinez Chae Iqbal Aucoin Moise Jones Montgomery Beard Serre Fahy Wade Howard Poisignon Germain Pufendorf Anshelevich Baker Klaff Carlitz Lipschitz Eisenstein Nanda Givens Rutledge Cao Davis Yang Bartoszek Hunter Boca Morrison Rhee Secker Cuervo Suciu Westall WorthJewett Shlyakhtenko Oca Cleveland Boyce Fox BernsteinStadtlander Malbon Blakemore Meter Lutts Marcus Shell Bourdon Purifoy Cavior Gu Dowell Malita Daigle Zhang Buzeteanu Davis Wagner Zerla Heitmann Smith PennerSaadaldin Gorfin Butcher Lin Dumesnil Berard Shalen Lin Cervantes Stanley Habibi Terry Clark Reed Hoffman Wesselink Huth Arrow Strother Grozea Stacy Henderson Weiner Barbosu Cismasiu Hodel Sturm Smith Briggs Alexander Ho Oberhoff Hildebrant Al Jones KwakFulton Dirichlet Fourier Plana Welmers Brasher Halperin Jayaram Hrycay Hayes Alford Kelley Sorgo Foias Peligrad Chiorean Smythe Duda Stubblefield Jackson Cook Li Szechtman Hou Keesee Vaughan Kurtz McConnel Wang Walker McMillan May Keisler MisloveZhang Thorsteinsson Allen Rouse Bernoulli Kroeger HallettKlipple Wells Cross McDonough Krajewski Ginsburg Boyd Reid Loepp Yates Huang Ramakrishnan Karvellas Crawley Rosenstein Smith Castro Garcia Hotelling Basye Thomson Mullin Friedberg Schneider Weigel Buchanan Munkres Day Blumen KrajewskiWang Mosher Ji Ly Cao Titi Syzmanski Fernandes Milies George Lee Gavrea Cobzas Siddiqui Wehausen Graham Benningfield Byers Goolsby Gagrat Lutz Krebes Rao Bradley Walker Ackerson L O Rosa Park Starling Tripathi Gropen Cannon Johnson Menon Hersonsky Smiley Ezell Dang Hays Wardwell Dushnik Kim Wall Borrego Roberts Canaday Cornette Younglove Maehara Weber Williams Eden Barros Young Jackson GiovinazzoHaynsworth Wallace Farley Veblen Howe Rousseau Koch Carruth Euler Collins Walker Puckett Timourian Bookhout Brown Shelden Fu Hashimi McGranery Choe Bermejo Benharbit Wilkinson Anderson Nash Leibniz Lagrange Wynne Hauk Hinman HegdeCuttle Hsieh Sharma Poisson Richardson Cohen Renz Olson Chand Kuzmack Rodriguez Zsidó Adam Forge Smith Nicolescu Whyburn Church Cripps Williams III Habermas Hocking Williams Brown Dünnbeil Jones Wilson Mills Strus Bernoulli Dumitrescu Kasriel Aitchison Mahavier Knebelman Hartley Parker Clark Brilleslyper Jarnagin Soniat Girolo MarxHaque Fray To Mitchell Ganci Guisse McCharen Sr Kropa Ciupa Popoviciu Haywood Bandy Lehman Jr Naimpally Aïd Nicholson Sr Komm Stenson Palenz Gonzalez Walker Schatz Yeager Smithson Ahmad Spears Slaughter Salazar Konstantinou Robinson Matheson Vogel Potra Morris Wildius Tomlinson Jollensten Faucett Houston Dickman Lin Wenner Grimson Price Holte Wells Benkard Schmid Zhong Hahn Gentry Hong Nathan Dumitras Nandakumar Church Krabill Dai Johnston Robertson Saalfrank Long Fuller Ehlers Hall Stancu Hubert Jones Goncalves Bacon Russell Soland Blaga Dillon Devun Mitchell GrantSholander Rothman Lefton McGrew King Lawson Fernandes Dumitrescu Thompson Scott Wertheimer Baccam III Owens McMorris Smith Krule Conner Vanderslice Conwell Muenzenberger Shi Knight Petrides Haywood Lau Greenleaf Agratini Hodel Liouville Strohl Greever Chon Harry Berner Kilgore Roselle Rickart Coroian Lee Kapoor Guay Cohen Jin Malghan Zaccaro Stevens Jeannerod Moussa Reizner Goodykoontz Mashburn Krachni Bruasse Pickrell McDougle Selfridge Iltis White Wadsworth Hwang Brezinski Williams White Tucker May Kaufman Akst Rudin Saibel Sullivan Davis Frey Sharp Kakiko Yen Haliloglu Stenson Itzikowitz Nichols PalmerWiskott Gere Yu Bennett Masarani Eberhart III Heins Dora Hohmann Wang Osborne Fwu Montel Acu Bilazarian Schuh Siry Zhou Jacobson III Ashley Makky Martin Daniel Mullen Wage Stone Rector Williams Wright Trudinger Suchower Lin Stralka Ferguson Crummer Robbie Schäfer Kung Navy Bennett Boyer White Catinas Buskirk Ward Shepardson Honerlah Dymacek Lu Geisser Sigmon Asawakun Mir Derridj Bendat Lum Lazarevic Kramer Meylan Kohler Dloussky Ferrari Plunkett Stenzel CabellKlemm Roberts Kronk Beaucage Hsu Bonavero Civin Livingston Gilbert Gastinel Duke Morris Cain Mendivil Saccone Cole Sanabria O Watson Chauvier DuncanBenander Bergman Solodovnikov Feustal Brown Mitchell Cleave Brent Barnhardt Ambrose II Gilbert Apostolov Lea Lorica Schulte Spitznagel Vaughan Osborn Perry Frisch Lindahl Stafney Terrell Morgan Bunch Arnquist Chasles Khuri Parsons Simon HarrisMohler Diller Davidson Shirley Jacobson Sinal Perry Simmons Walkington Bosse Little Rose Pease Lobb Anderson Baouendi Gonzalez Rosenfeld Cullough Dogaru Beale Hashtroodi Chang Jensen Capdeboscq Hrusak Dowling Benedetto Jiang Bussian Ogawa Clarke Haase Floyd Haley Harrison Anker Dieudonné Franklin Paschke Tucker Gross Sullivan McConnell Thomas Bachar Peterson Weiss Gonzalez Hu Moore Toure Norfolk Bourgeois III Vityaev Rose Fink Gauduchon Boucksom Goudon Rogers Pope Lominac Rosenzweig VilaSmithO Titt Ford Ting Yang Johnson Carr Cho Bachelis Gorelic Jones Himonas Williams Starbird Lee Dimitroff Knight Andreucci Carron Lawrence Lehner Roy Chipman Rulla Mohammad Qiao Kerfoot Lewellen Chan Dawes Packer Brahm O Gorsky Roberts Hanges Lee Terrell Worthington Wood DungelloChicks Cuttle Carrano Aubry Spraglin Loeb Curtis Diaconu Phillips Guan Minovitch McCulley Cook Mohammad SandomierskiJones Franke Johnson Lewis Koszmider Steprans Sun Vought Lee Holte Depauw Ngoc Allaire Lindstrom Mutchler Goul Labbi Guediri Weaver Hollingsworth Rock Oprea Bourezgue Rollin Sims Kim Wood Rigoli Delistathis Farmer Greef Hunter BerkowitzTaussig Kennedy O Rao Cateforis Zumbrunn Denman Tymchatyn Ozawa Hirschowitz Thomas Burke Whitehead Bernstein Rooney Gronbaek Pak Showalter Sit Chu Sanders Vick Luong Bondy Gibbons Franek Slobko Johnson Yohe Lemaire Franc Waggoner Feichtinger Lundquist Hwang Won Demailly Kollmer Ahluwalia Gomez Parra Manocha Muckenhoupt Buvat Eid Valentine Krause Chrestenson Su Watson Pearl Sottocornola Stolovitch Arthurs Bourgault Laeng Prasad Levine Donaldson Yeung Chan Yakubu Orden Benander Visarraga Lee Dunn Berg Lohuis Boudhraa Avakian Kramer Hamdache Gordh Ferris Johnson Layton Kelley Starbird Mounoud Markowitz HuangHarle Jagy Morton SmithGrace Wen Yates XuMomken Yang Abo Heath Leeney Verdière Fitzgerald Goodrick YoungBoles Rumin Robert Tall Szeptycki Minear McAllister LafitteJeanne Ghanmi Dobranszky Thoe Hanson SimmonsLoeb Clark Kuttler Beidleman Kallin Vanderwinden Vogt Figà Peters Schmidt Porter Reed Rabus ThomasCash Tuncali Bounaim Auroux Jensen Totaro Ozawa Block Haneken Tordella Lafontaine Casler Perry Raisbeck Ragland Miller Borel Friberg Wittbold Bonnett Li CapelleMalgrange Schlais Propes Chossat Balas Perlis Burdick Anderson Brown Wilson Horning Thomas Puel Grubb James Hillairet Gillman Pate Kobayashi Bear Steger Zandi Jones Creede Hagopian Welmers Lazzarini Pansu Kwan Liao Musso Faugeras Bihari Nailor Sun Zaidi Zwick Allendoerfer Oppenheimer Singh Hasegawa Swett Cobb Wilde Murphy Bedenikovic Harvey Woo Shin Davies Gerlach Crass Koosis Pedersen Mandallena Bourbon Berger Dua Hansman Valaristos Ricard Prue Driscoll Feldman Prosser Cramton Roth Ralston Laszlo Brewster Johnsen Paun Brydak Rogers Harris BiskupEdwards Anderson Geiger Speece Dayawansa Koh Mabuchi Picciotto Biquard Nicholson Snell Farhat Best Berger Petrus Price Darboux Laskar KrainesAkyildiz Kiernan Dilks Drutu Brooks Burke ShepherdZheng Klamer Foster Oldham Gilioli Landstad Bing Travers Czerni Holcman Junqueira Ounsy Caillau Sieradski Cavagnaro Goblirsch Balakrishnan Perez Harabetian Fell Bourdon Scott Solomyak Blum Brin Atkinson Welch Nagase Yeh Boen Seybold Rozmus Czerwik Sanchez Aubin Iooss Doucet MajumdarDomke Liepins Doyle Doody Lukasiewicz Cardona Navaratna Grzegorczyk Smith Meziani Shilepsky Coram DeLoura Steinberg Wester Russo Guiraud Sertoz Soloway Thomas Santos Zuhong Li Laufer Bennett Dieffenbach Slack Terry Villarreal Sinclair ParkerFlaherty Berggren Chaatit Pfaff Yang Son Hebey Carrell Francsics Kaltofen Namioka Elliott Brahana Craggs Oliveira Washburn Djadli Baildon Gale Phelan Evans Bismuth Sei Carrère Narasimhan Tenny Bogley Lee Garnett Lemos Burkhart Kimber Horn Berge Caviness Koss Knabe Gualtierotti Heil Rugina Raspopovic Hosay Boyd Almgren Rosen Glaser Goldman Kearsley McMillan Laurent Nang Leibon Shepler Arslan Yff Vadakkekurputh WebsterOlinick Edwards KwackMaynadier Cho Mersky Santiago Alvarez Ju Ferguson Jones Crovella Taylor Brawley Woodruff Kaul Zafiris Datta Lehner Holen Jajodia Salehi Yoon Nam Lerner Turner Lee Chastkofsky Wong Pugh Xu SeeseGersonowicz Skau Messer Utikal Auroux Bourguignon Brown Glasner Cresson Vaugon Carrizosa Noailles Sili Lohrenz Haver Eisenlohr Hempel Pettet Malagutti Kuczma Ruan Hyman Fredericks Schwartz Robey Wong Baker Wright Rakovec Boulis Majda Winicki Kessar Smajdor Nyenhuis Bailey Spring Kim Ayaragarnchanakul KozakVernicos Fanaai Teitloff Chao Weber Baggett Shrikhande Picaud Marle JensenCohen Wright Palais Faget Belfi Bean Wertheim Malek Besson Crary Richter Galup Brown Kordylewski Royston Tavares Glowinski Brown Kim Ayad Wing O Swallow Drufenbrock Caravone Bamberger Artola Loizeaux Stötzer Neelon Reed Feuerman RoytburdLong Gross Thompson Flesch Sternfeld McAuley CohoonTreves Hounie Hamza Korchagina Brozovic Park Calbert Aubin Bass Zaremski Shim Kramer Delzant Orgad Chae Reiz Belnap Schubert Knoblauch Kwon Benson Moroianu Margerin Winiarska Verovic Rosenblatt Hasisaki McKeague Frey Herzog Eisenman Row Flapan Nasser Sheyner Johnson Lyon Myers Yap Lu Schaffer Mikulski Schnibben Gamble Powell Shama Duncan DavisMoore Gerlach Jones Lewis Stuart Reed Maubon Mouton Singer Tran Dent Dent Dona Nettles Damon Bechata Dancis Lusk Timofeyev Latner Dziurzynski Feit Abedi Carthel Richey Lucas Baldridge Bieszk Pidekówna Matkowski Pax Daverman Johnson Schwennicke Schwartz Li Frandsen Hsia Bernadou Messmer Tang O Xu Gancarzewicz Thomann III Demir Estrada Zaslavsky Petersen Movshovitz Nam Solomon Gossett Roeling Péreyrol McCarron Konderak Pogoda Bedient Moloney Evans Hartenstein Civil Postawa Kister D Jaco Burke Hoehn Kornelson Kindred Treisman Droz Braunfeld Rebman Rodrigues Christoph Amsbury Thompson Chami Pielichowski Brown Ferry Mouron Krauss Ahmed Miller Archdeacon Lawser Ungar Pong Lee Goodman Silva Melo Courter Joy Sedory Bourlioux Reinhold G Neufeld SimsHenderson Kim HalversonSnyder Kare Topa Oh Long Maier Ho Ratcliffe Avramidou Zaidman Graham Dienes Pasicki Whitten Davis Yang Rin Liu Lipshitz Batiz McLaughlinPegoDenny Berhanu Argiris Detlefs Bloch DuChateau Woldar Wolak Karp Im Gurski Bochenek Vien Martin Zajtz Strube Lou Mason Marker White Colby Tourniaire Cordaro Delahan Ferguson Fintushel Demaree Przybycin Mylnikov Deszy Haynes Lions Houde Johnson W Crane Lee Thrall Smith Wilson Olsen Glover IwasawaSchultz Preston Seidman Sikkema Volmink Li Sun Terry Meth Kim Scott Wheaton EdwardsKranjc Jacob Tighiouart Alabau Guilbault Altman Trace Miliaras Decker Sanderson Connelly Douthett Hammons Jabir Bertozzi Mark Zhang Kapoulas Cutler Lockhart Ihring Wróbel Go Videla Weiss Seligson Rosengarten Kucharzewski Bello Rybicki Addis Perez Resek Zandecka Kitto Debonis Rosamond McRae Floyd DaiAlvarez Borges Slaminka Kozlowski Miller Bennett Karp Meyer Suchanek Burnette Jones Jean HowardHenkin Léonard Nesin Bielecki Tryuk Wieczorek Lenker Thurston Case Engelberg Mayer Jones Wang Voon Howard Shors Raviart Moszner Blanchard Grosvenor Kitchen Keremedis Riley Cohn Raugel Reagor Walsh Koseleff Mato Keller Gallin Wagstrom Wu Hy McCullough Cherlin Cashy W Latka Ishiguro Gawrylczyk Moore Gresham Stum Brandt Vest SacerdotePheidas AlLuchter Choi Lay Ferguson Stern Kurshan Metcalf Choi Heisey Patching Wall Carr Saracino Pelletier Mourrain Ruatta Quintero Dietrich Jakubowicz Cobb Opozda Campbell Kranakis Hildebrand Williams Jans Wilkosz Urner Morizumi Zhou Becker Grz Naso Siwek Bowers Falk Bialostocki IntermontMackiw Zhong III Farley Li Wo Crossley Robinson Fischer Derakhshan Poleksic Macintyre Dodd JohnsonLake Serafin Baeten Dean Paulin Boone III Lightstone Altinel Tripodes Ferland Wheeler Hoborski Formella Meerdink Singletary Mayoh Ruane Smith Akin Klassen Zolesio Deane Davidson Anderson Kolb Danas Messing Ozbagci Kochen Hale Halpern Madison Parker Mulry Hurwitz Cohen Steketee Cea Ogden Joshi Zhornitskaya Robaszewska Lindley Mochizuki McCoy Bestvina Hoste Austin West Xu Lagha Al Masih Richter Premadasa O Schuetz Brady Irudayanathan Midura Tabor Fischer Anderson Kock Roy Turski Schmidt Tebou Quiros Misir Bercovier Geoghegan Adams Abdeljaouad Dimovski Witowicz Spalinski Fitting Miller Pogorzelski Bloch Bushnell Kelly Urbano Cagnol Easton Forsythe Trimble Searl Lengyel Bauer Thuong Kieft Curtis Grothendieck Quigley Wilkerson Topp Soufyane Hughes Israel Dubrovsky Buss Bonet Rosenblatt Macura Matic Karlov Smith Faro Lawvere Powers Schaal Huang Bloomsburg Bergner Plavchak Deligne Funderburk Scholnick Wolf Lindgren Gentle Martin Zaremba Fernandez Curry Robinson Jacobs MacDonald McGrail Miller Poffald Lee Ladegaillerie Strounine Henderson Laanaia Farmer Smullyan Wood Hammouch WidenerOversteegen Brouwer Hensel Lynch Heller Zhao Kou Cox McKinleySteffenson Rounds Felcyn Chueh Lopez Perkins Mihalik Arroyo Michael TanyiBernstein Contou Phillips White Daw Cleary Pogorzelski Jaworowski Keller Zoubairi Rallis Krajcevski Daigneault Robinson Badzioch Sawka Thompson Werremeyer Betley Varadarajan Tierney Kamizono Sto Bahls Boos Mitchell Kopperman Vinsonhaler Page Rapoport Rector Mannucci Bucur Cruickshank Lee HulbertReich Scott Chicone Gunter Fish Dziri Blanc Wagner West Grispolakis Lakner Blumenstein Robbin Krasinkiewicz Collino Baldursson Hou Askanas Wu Mimna Reichaw Profio Qian Vora Latch Leroy Halpern Ross Zemel Rudnicki McDonald Winder Minc Ritchey Peschke Omiljanowski Rasoanaivo Lotspeich Bardos Hallet Wedhorn Enayat Velleman Winkler Park Caicedo Yanofsky L Mulla Pollett Gaussent Feuer Dwyer TrautmanZhou Johnson Spasojevic Stover Farjoun Outassourt Glover Dye Lelek Epps Luo Panitchpakdi Illusie Rios Guard Cvitanic Church Alinhac Piotrowski Pikovsky Karatzas Verdier Wilson Golumbic Baker Benes Horowitz Ritchie Houakmi Chavent Kugler Madan Gold MarcumAllen Chen Dutour Littleford Miklos Zimmer Kang Aronszajn Arasmith Moss Zaremba Shapiro Kemeny Saraswat Merrill Price Goldstone Wu Springsteel Cadenillas Feyock Kunen Carson Gostanian Prajs Pedrick Kan Wang Sawatzy Birkedal Tong Mauger Anton Xue Helffer Ladhari Jr Wajs Goldberg HarrowCollins III Maltsiniotis Mintz Grossman Saks Charatonik Chirimar Strong Jones Czuba Lucas Aregba Dzamonja Goodman Mioduszewski Kierstead Lamb Sieklucki He Jennings Zrotowski Moodie Bousfield Beck Zoonekynd Nikiel Jones Villaveces Rowe Applegate Thakur Moschovakis Ketonen Pohl Pozsgay Moser En Hoscheit Hanouzet Rosenberg Fechter Buckingham Bennett Barland JolyFouquet Thompson Oncu Jongh Bustamente Vanderbilt Shochat Alibert Moore Dietz Weidenhofer Hannan WoolseyKatz Lee Schlesinger Berg Higginson Miller Eilenberg Rakowski Milisic MitraCharatonik Petkovsek Hirschhorn Kolaitis Sorbi Davis Andrews Giaccai Borsuk Duda Hodas Solecki McColm Gerlach Knaster Wingers Herink Velickovic Gunnarsson Mansfield Laumon Montgomery Currie Wilger Mulmuley LaForte Emerson Malraison Krupski Mackowiak Fenson Lafforgue Molski Paola LandraitisHarnikSchwartz Nadathur Roberts Cenzer Al Riazati Mohamed Castillo Tuomela Manka Rudolf Priddy Kleinerman Martino Gonzalez Lejay Ince Beauville Stahl Bishop Liu Bertanzetti Royer Elliott Liang Cuadrado Xi Vasseur Jenson Smith Fleissner Bumble Mazurkiewicz TuringFisher Issar Koppel Uzcategui Laszlo Raychaudhuri Fossum Becker Landver Booth Hart Cowles Denes Molinari Eckertson LaBerge Zakrzewski Townsend Moschovakis Jackson Zbierski Sikorski Felty Pavlicek Wagner Kleene Spiez Linfield Kechris Li Cutcheon Arponen Després Salwicki Lysenko Jackson Rosenbaum Smith Druel Bachelot Douma Hutchinson Chen Blass Ratliff Schuster Jacobs Pavelich Gonzalez Woempner Ehrenfeucht Perlis AndersonPfenning Holsztynski Patkowska Keller Maliakas Ramsamujh Swartwout Wanna Boffi Smith Freedman Strasen Duch Axt Rubin Lebowitz Karwowski Elgot Stanley Kuratowski Hinman Remy Virga Tesman Térouanne Gordon Schuermann Minami Gover Kuperberg Guzicki Sierpiñski Lagoutière Pekec Mann Debarre Opsut Artale Gemeda Klucznik Brynski Gordon McArthur Zuckerman Kunkel Akin Rasiowa Patterson Kosinski Coomes Dietzen Janiczak Michel McDowell Miller Krynicki RabinPersiano Smith Venkateswarlu Sanchez Spector Sofronidis Ditzen KojmanBen Barankin Farnell Whitney Kirousis Sridharan Jinnah Kulich O Stenger Ko Vesley Nelson Wolfe Michaylov Srinivasan Miller Doheny Kuperberg Narayan Meloul Crawshaw Cozzens Isaak Nirkhe Schneider Olson Schinzel Darrigrand Bode John Shelah Yee Rose Buchsbaum Oglesby Neeman Mostowski Purang Eagle FreemanChell Winslow Milton DeLucia Yates Camerlo Cheng Brown Clemens Curiel Wardlaw Cullinane Clarke Tygar Apt Grant Gillette Froemke El Krajewski Breutzmann Juedes Amgott Thompson Fora Blefko Jothilingam Ki Tan Dharmadhikari Gabel Young Clark Seaquist Tankou Cruz Hain Chen Parimala Turner Mahony RajlichSchimmerling Minichiello Prullage Dodd Onyszkiewicz Jhu Yang Guattery Stallings Faber Kastanas Lutz Hoole Wong Andretta McClosky Mitchell Denny Stoltenberg Heydon Shore Adamowicz Kabanov MarczewskiTsali Weyman Dawes Krom Subrahmanyam Sundholm Call Wisniewski Just Mrówka Knoebel Walton Foster Lathrop Grossberg Gandy Hodgetts Moore Komanaka Moulton Grzegorczyk Kossak Kulkarni CooperBhatwadekar Steel Zafrany Addison Rosser Knudson Lessmann Narciso Welch Gregory Niefield Nguyen Krawczyk Chawathe Springer Iwaniec Tsai Pickett Marek Alpert Lear Smith Sommers Chen Rege Magill Rowlands Barnes Dyer Devi Daniel Waller Hicks Kaigh Jalali Choudhuri McColgan Jakel Terasawa Adler Wingard Delavina Li Palachek Pitt Pelc Neveu Cunningham Tourneau Wesep Quaife Pitblado Gerard Ramakotaiah Moran VanDieren Chow Sansing Mendelson Hailperin Das Deb Limaye Smaill Luo Astromoff Pixley Sussman Rajagopalarao Brooks Ulrich Phillips Kamin Fajtlowicz Anderson Dubiel Rudominer Matlock Benson Bull Cuckle Ernst Subbiah Myers Jorgensen Chhawchharia Vandell III Paisner Sioson Strickert III Overbay McKeon Michael Stillwell Miller Garland Swarup Moser Fraughnaugh Bridges Crofts Minor Thompson He Wiggins Richardson Kelenson Krussel Willoughby Beineke Chandra Cookson Frawley Harle Brown Maddox Lin Fraughnaugh Polansky Parr Allen Stracener Boddie Manvel Schucany Miller Yao Bailey Tzuu Bagga Constable Hoffman Singleterry Huang Johnson Li Owen Uiyyasathian Kazam Heilbron Hodges Ghosh Campbell Seppalainen Wang Nicholsen Seibert Harary Molina Cho Stone Tarditi Borgman Yaqub Kabell Paris BurnsPennell Grosen Yatracos Klotz Palmer Orrillo Arakaki Hunt Hsiao Singh Thombs Rogers Loyall Hong Shyu Cha Hoffman Psomopolous Young Colby March Jeon Wadge Feiner Orey Linton Wang Yan Fix Lee Mehlhorn Adams Young Yeh Weerasinghe Fernandez Striebel Battle Hodes Bates Basin Hardy Spencer Chou Heintze Paiva Kulkarni Guenther Laue Oyelese Perera Greig Hyland Plantholt Chao Samuelson Gaffey Lindae Swensen MooreYamini Lillibridge RondogiannisWeyhrauch Lee Shivers Sengers Marsh Wilson Bezuidenhout Carscadden Putcha Trauth Haas Draves Lee Agarwal Javitz Guha Kreider Bao Löcherbach Chang Crasswell Morrisett Alt Godau Lester Borrego Durling Sasaki Balder Traxler Ritter Chae Lo Gass Kahr Stockmeyer Okasaki Harper Bosmia Kent PutterChen Tan Aalen Loustau Hassanali Huang Reilly Exoo Prins Ray Goria Schwartz Höpfner Cranston Eroh Walters Schulzer Orgun Geiser Caby Clifford Liu Sankar Gass Levine Cook Carlyle Bauer Augustine Nord Phoa Marcus Bovykin Hong Abrams Chapman Meeks Osei Yang Fabian WangPierce Sehr Wang Posner Rittgen Majone Yu Necula Tolmatz Wasserman Shachter Ling Verity Wang Hodge Torgersen Jeeves Wu Leou Schaeffer Yang Djordjevic Kubicki Schwenk Korn Wittenberg Arlinghaus Dorer Markus Neyman ScoyHarris Sane Riley Bhat Minimair Beeson II Darden Norman Iwanowski Adler Eaves Brooks Hummel Jockusch Marquart Cartwright Hucke Bühler Solow Daras Mukherjee Chang Acharya Campos Kraft Hedetniemi Yue Chen MacIntyre MacQueen Cam Janssen Lee Hwang Kaye Smiriga Grinstead Ingrassia Acosta Chen Park Luckham Esary Campbell III Kurtz Plummer Hare Richter Walter Fredette Robinson Friedman Leichner SomersEmamy Llewellyn Jha Blömer Lawes Cong Slaman Minea Clarke Ligatti Knauer Green Gurland Samuels DaviesTsiatis Huh Neff Ilyes Wolf Edler Mau Parikh Chen Welch Blaylock Steck Wang Yang Blum Burch Lowenthal NarayananMitchell Gomberg Malde HughesSeiden Shu Foster Xu Yang Morton Hoyos Buchanan Antoniak Rankin Staples Staples Slater Wimer Polak Lippe Zhao Cohen Sims Korf Celikkan Altenburg McMillan Lawes Nelson Davis Solis Singh Read Chiang Eudey Tate ShangBang Brown Truelove Long Moussatat Kunz Otto Gu Brech Smart Talluri Sacks Griffor Mileti Raghavan Browne Emerson Hutchinson Vaidhyanathan Chang Brown Manders Hedetniemi Peele McNulty Taylor Zhong Chen Benhenni III German Chen Maltz Wets Karp Gennart Pinter Moti Muntersbjorn Trees Carbone Sahni Paterson Nelson McRae Kirmayer Clemans Massey Kelker Gray Jorsten Yu Araujo Mingoti Shepardson Sinha Rosenblum Epstein Peckova Georgatos Rosenthal Greenberg Kautz OdellGabay Casey Salinetti Brylawski Li Dantzig Roussanov Binns Bagh Bednarski Wang Cartwrigh Melolidakis Ferguson Hall Banos Kearns Vembar Ghebremichael Jamieson Meeden Smith Anderson Dill Decatur Gordon AbdelbarFaigle Weiss Wegner Roach Lopez Scrimshaw Kahlon Kraft Kronmal Staudte Sokol Samaniego Mummert Fleming Brown Haught Croxton Simpson IV Biesterfeld Leung Wright Clair Machtey Lucas Marcone Mysore Shore Sibley Low Funo Valiant Nelson NelsonDodd Pepe Gilstein Cardle Carlton Mishra Yan Fischer Sukonick Lustig Wilson McClelland Zhou Breznay Thomason Marcus Homer Snow Sobel Makani Blyth Parberry Pappas Qiu Chatterji Owings Hirschfeldt Wang Flanigan Dong Mondschein Mireault Dillon Singh Greenberg Kosorok Shen Hong Solomon Kaplan Monsour Kelly Simpson ZhouAlonzo Stigler Steele Lee Yu Rojo Sohoni Friedman Tzimas Weiner Roth Wang Grier Hirst Yu Lischer Ganesan Davis Sukhatme Raghavachari Nisnevich Konijn Madan Yen Legrand Brackin Tucker Guillier Shi Yu Wu Park Donohue Wieand Humphreys Wang Kuo Birge Black Peinado Wei Lin Wong Wylie Draper Gupta Emir Mikulski Johnson Balakrishnan Lubarsky Tan Golden Iusem Ramachandramurty Vayl Buhrman Weitkamp Runnestrand Takriti Bienstock Dougherty Gutierrez Carmichael Giusto Kalish Bhuchongkul Chao Gomez Wang Ferreira Jalaluddin Gueorguieva Mills Corvo Hatzikiriakou Browne D Stefansky Hernandez HoadleyArchambault Peracchi Gopalan Morris Mittenthal Rahman Jong Bentley Staddon Dasgupta Perakis Huber Luo Jagadeesan Johann Tulloss Chacko Agresti Yuan Green Calhoun Hoyland Schlatter Pleszkoch Jim Hampel Muratore Robinson Chiang Wykoff Rao John Cai Jin Lehmann Sinclair Harrington Schwiebert Chien Yen Guu Cottle Tanaka Feser Soofi Gokhale Heilmayr Riecke Angus Nguyen Passarin Xiong Macarie Sasso Jayasimha John Lippel Wu Ralescu Gasarch Scholz Anbar Schoenfeld Jogdeo Hartzel Stanley JordanLang Flynn Lee Rubison Puri Vourtsanis Epstein Ahmed Rousseeuw Mehra Halpern Arens Lea Chung Fine Bhattacharyya Hovick Kucan Monti Meyer Cantoni Geunes Ladner Chen Grau Dumas Liere Nash Shane Sun Perennec Wu Tarui Teti Gryparis Rajaram Carlson Stuart Weinstein Bj Andrews Pulskamp Lawton Ferland Hoorn Tourkodimitris RossiHeritier Zikan Mancini Denton Pearce Seiferas Zhang Hrushovski Hellerstein Seoh Russel Ralescu Mak Kozlov Loui Peterzil Lu Bjerve Chicks Gross Lo Nassar Kim Koller Rangaraj Shih Jaeckel Dell Kouider Zhou Lubell Chen Qu Scanlon AdichieMike Viollaz Koo JinLorentziadis Holmes Laskowski Kim Singh Howard Viswanathan Mesenbrink UnalSu Gardner Wang Laska Birnbaum Pang Wang Lim Miura Dehon Chen Loh Yuan Huang Malekpour SakovHammerstromVadiveloo Kamanou Mathur Dong Mitchell Marcondes Carney Pierce Wang Ge Park Yao Yhap Shenkin Chiang Gabriel Weerth Yang Faraway Lo Poggio Kim Namesnik Zheng Cho Paik Trosset Doksum Brodsky Metzler James Chan Polovina Wong Huang Kim Dabrowska Morita Azzam Potter Iachan Blyth Yu Aiyar Taam Kim Zou Bickel Kwon Hengartner Kademan Quang Jelihovschi Vallarino Song Yandell Muron Satagopan Baek Humphrey Dong Nair Cojocaru Ahn Shen WangGat Moon Gaffney Wang Livadas Feng Jiang Bajamonde Tao Adewale Lo Liao Collins Chow Pessoa Minami Fang Zhou Abramson Weng Mo Jin Borghi Geertsema Brunner Boza Dachs James Wiens Heo Thewarapperuma Gould Li Qiu Zhang Huang Taylor Sankoh Park Xu Yu Hsu Hou Branton
Rocha
Cabral Gao
Jewell Rassias
Culmer
Tolle Weinberg
Varma Hung TeglasCalvetti
Wang Cheng
ZhouChen Wiebking Lin Dziuban Fotso Pedroso Song TonegawaMou Shah Mohrmann Ashdown Grotowski
McKown
Daumis
HaddockGerneth
Pletsch Chapin
Abbott
Burton
Hagan Clark Barrett
Dorsett Bruyr Bedgood
Liu
Bonawitz Zhang
Yao Li
Poon
Niemi
CoveyBeck McNamara Scott Ecker Kouada
Jones Landweber Iberkleid Forman
Payne
Kopell
Fried
Franco Marcus
Cowieson Cleveland
Jouini
Thomas Rojas
Kelley Zoracki
HegnerJohnson
Crowley
Mehta McIlwain
Corlette Bernhard
Menad
VanDerWoude
Pinezich
Gauthier
Ong
Smale
Bishop Nadim
Renegar Romero Tangerman Jones Pena Vera
Vargas Smania Haab
Nevins Srinivasan
Franco Rugenstein
Handron
Rowland
Rocha
Durkin
Daccach
Borsari
Lee Winters
Devaney
KohGrimm Fitzpatrick
Spikes
Butler
Mark Cramer KcKown
Whitney
Montgomery Taijeron
Patrick Kwon
ZhangKime
Weerakoon
Brothers
WangZhouColemanDeng Kar Thompson Najafi
Jobe
Crawford
Rothmann
Hsu Haimo
Hoelzer
Olum Kahn Alligood Alexander Temte
Howes
ReidHarris Pitts Quinn Russell
Moreman
Smith
Cleave
Stallard Williams
Pawlowski Etgen
Spencer Garner
Harmsen
McMillian
Ng SvobodnyAmundson
Sardis
Chueh
Chen Hall
Diao
Sarhangi Slepian
Griswold
KupferschmidEch
Phillips Prokhorenkov
Richardson
Schecter
Xuan
Tomter
Rivertz
Gheiner Labarca
Malta Pinheiro
Pujals
Vieira Hiller Quillen
Baker
Bhattacharjee Atela
Fagella
Huang Nitecki Pierce
LoFaro
Díaz Ávila Melo
Locci
Mathai
Haruta Harou
Chen
Langer
Langlois
Buffo
Tahzibi Martin Catsigeras
Ruas Pacifico
Duflot
Myers
Swanson
Tromba Zhang
Rassias
Sánchez Mora
Colli
Palis Plaza
Beloqui
Souza
Araújo
Fanti Willms Guckenheimer
RoachFriedman Zeithoefler
Doeff Jacobson
Mendes
Ures
Morales
Baraviera
Du
Narasimhan Franks
Rezende Madden
VeraRocha
Silva
BentleyMillen
Hsu
Lander Cheng Messaoudene
Makuch
Pergher
Falbo
Batterson
Alongi
Bauer
Martin Moreira Arroyo
Markarian Luzzatto
Hetzler
Santos Duarte Dias
Foltin Holland
Stein
Worfolk
Stawiska
Kassof Meleshuk Holmgren
Stafford Moar Wiseman
Enrich
Paternain Doering
Carvalho Gómez
Alves Bochi
Snavely
Rykken
You
Machtinger
Meyer
Rebarber
FengDing Haile
Faber
Hall
Jinghong
Chen Yu Hsu Pasali Schenck Huang
Bindschadler
Reed
Williams HancaskyCole Whipple
KennedyDoren
Peratt Scott
Tefteller Krueger
Avery McKellips
Egan Cullen
Kibler Taboada
Leal
Hu
Ji
Czarcinski
Lawlor Morgan
Schuur
Shaw RustichiniShao
Du
Rentzmann
Hendricks
Sullivan
Moody Ball
MillerFord
III Holdt
Baker
Shih Taylor Leavelle
Hahm
Brown
Hemmati
Aberra Cottrill
Sarsour
Maynard
Ruan
Vargas
Zhang
Attar Yesha
Ouaknine
Jones
Martin Chang
Driscoll Kegley
Feliciano Frawley
Hankerson
Schneider
Kaplan
Yan
Bondarevsky Valente
Ashmore Filippas
Parks Kelley Adams Chung Chang White Underwood Perry Murthy Chan Taylor AlmgrenMackenzie Brakke Horton Yunger Hastings Roosen Drachman Steinke Caraballo Paur Scheffer Gompa Taylor
Anderson Lindblad Hermiller
Hollis
Chitwood
Zimmerberg
Bogar
Anderson
Morelli Diaz
Cochell Dooley
Fearnley GillChamberlin
Richardson McIntyre Brod Tree
Levin
Rochberg Vignati
Grabiner Chern Pei
Sun Yun Cheney Chang
Knight Traylor Sloss
Jones
Reid Bennett
Stehney
Atici
Hoffacker Peil Peterson
Yan Gillette
Runckel Wend
Crisler
Topal
Balogh
Tripp
Schreiner Tsai Kaur
Boehm Ikebe Chen
Lauko Gilliam
Bownik
Bellenot Baker
Kang Anderson Kilgore Price Pinter
He
Kerr
Christian
Smith
Holt
II
Bradley
Marriott
Mohammed
Ratto
Paulsen
Kitto Menegatto Wulbert Fuller
Reed
Henry
III
Proctor Oxley
Herdman
Harris
Zoltek
Small Krikorian Akin Sukup
Rogerson
Salavessa
Cattani
Zwart
Boothby Alagia
RohJolly
Smith Mukherjea
Atkin
VilmsStefan
Fardoun Goller
Sedwick Kwak Norman
Hastings
Dizaji
Lu Slastikov Judice Killough Kohn Jin
Lipton Velo
Li
Kwean
Bae
Fan Mallet
Paraskevopoulos Reznikoff
Bennett Kim Bobonis Sternberg Austin
Kupeli
Ferreira Schwarz
Hough
Byer
Takigawa
Huang Regala
Rybka
HillJadallah Bruno
Raffoul Ahlbrandt Hooker
Byrd Semmes
Peron Stover Lane
Straley Daniels
Scholz
Ottarsson Valli
Curran
Marino Rodriguez Livingston
Sukantamala Schommer
Gantner
Verhey
Zenor
Chen
Hennig
Doria
Field Sealey
Eells
Vale
Sheng
Lyczak Simion
Xue
Damiano Swardson
Blair
Carter Morian
Steiger
Thorpe
Feldman Dubuc
Glazebrook
Robbins
Levow
Schmutz Garfield
Mandelbaum
Wick
Lane Jensen Shapiro Smiley
Huang
Williams Baxendale
Baird
Shutters
SklarWang Cunningham Wagoner Hill
Donohue D
Deraux
ToledoSavage
Bozhkov
Albertson
Wertheimer
Wilf Zito
Hutchinson
Anderson Turnidge
Amillo Zhang Voepel Castro Goukasian
Smirnova Burstall
Edelman Chen Nadas
Bolmarcich
Sellers
Lazebnik Fiorini Atay
Charlap
Wood
RuffDeslauriers
Noel
Haack
Fuller Burkholder Grantham III
Eerkes
Serven
Powers Hulsing
Kang
Lamoneda
Gross
Bartholdi Harpe
Burel
McAlpin De
MikovskyPrice Dayhoff
Klingsberg
Graham
Donaghey
Hyde
Wood Erdem
Rodenberg Lemire
WangMcCabe Burstein Kuhn
Hartung
Hill Fabiano
Rubio Marrekchi Tadi BurnsStewart
Hayslip
Pantilie
Parmar
Perez
Mandal
III
Yang
Loubeau Gordon
Xiong
Kallianpur
Kim
Hucke
Caballero Wadleigh
Ko Voss Hullinger Horn
Nordstrom Torres
Singler
Stanley Liu
Spies
Hansen Larsen Heisler Brøns
Rosenthal
Bahy Mustafa
Kuwana Zhang
Dupuis
LePageDasGupta Baldwin Christensen
Naik
Gudmundsson
Tu Venkatraman Selukar Rao
Liu
Siegmund
Loader
Budhiraja White
Gæde
Turi
Borggaard
Miller
Villemoes
Kristensen Montaldo
Lalley Stover
Abrams
Plaut Stallmann
Searle
Grove Cho Shankar
Guijarro Kapovitch Knudsen
Dolgoarshinnykh Kordzakhia
Rabbee Sellke
Park
Møller Markvorsen
Szatkiewicz Zhang Feingold
Zhang
Bachmann
Høst McGowan
Mokliatchouk
Darken
Dmochowski
Wilhelm
Andersen Ganocy
Terentyev
Thelen
Celik
Jiao
Zhou Zhao
Koh Petersen Yang
Wang
Lai Wong Shan Ait
Hinrichs
Kiltinen
Park
Kim Zhang
Wang
Zhu
Safi
Cassorla
Borzellino
Shteingold Sprouse
Chuang
Graves
Mandrekar
Minut
Lim Wei
LaiYing Liu
Trow
Kan
Yang Patterson
Newhouse
Kline Branson
OliveiraLampe
Molinek
Kahng
Levine
Stajner
Nadler Hu Grinberg
O
Niamsup
Sullivan
Vilonen
Anderson
Yavin
Anderson
Braden
Ryan
Eerdewegh
Damiano
Sather Su
Hubbard
Chang
Kavinoky Hong
Scribner
Butler
Lui
Clapp
MacPherson
Baddoura
Dai
Welty
Betz
Menick
Lord
Adams
Bolie Price
Clarkson
Grow
Sember
Omlin
Wang
Grossman
QuirkLeetsma
Purdy
Wang
Koul
Wu Tang
Shen
Sundaram
Chen Ingram ParkShao
Qian
Ye Hong Wang
Sriram Zheng Tiro
Lahiri
Lee Shete
Wu Cheng
Wenyu Susko
Zhu
Horrocks
N w
F gure 6 The second argest component from the Mathemat cs Genea ogy Project Top overa ayout w th node over ap removed Bottom c ose up v ew of a sma area of the center- eft part of above
72
Gansner and Hu Efficient Node Overlap Removal
References [1] I. Borg and P. Groenen. Modern Multidimensional Scaling: Theory and Applications. Springer, 1997. [2] U. Brandes and C. Pich. An experimental study on distance based graph drawing. In GD’08: Proceedings of the Symposium on Graph Drawing, 2008 (to appear). [3] J.-H. Chuang, C.-C. Lin, and H.-C. Yen. Drawing graphs with nonuniform nodes using potential fields. In Proc. 11th Intl. Symp. on Graph Drawing, volume 2012 of LNCS, pages 460–465. Springer-Verlag, 2003. [4] G. Di Battista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari, and F. Vargiu. An experimental comparison of four graph drawing algorithms. CGTA: Computational Geometry: Theory and Applications, 7:303–325, 1997. [5] T. Dwyer, Y. Koren, and K. Marriott. Ipsep-cola: An incremental procedure for separation constraint layout of graphs. IEEE Transactions on Visualization and Computer Graphics, 12(5):821–828, 2006. [6] T. Dwyer, K. Marriott, and P. J. Stuckey. Fast node overlap removal. In Proc. 13th Intl. Symp. Graph Drawing (GD ’05), volume 3843 of LNCS, pages 153–164. Springer, 2006. [7] P. Eades. A heuristic for graph drawing. Congressus Numerantium, 42:149– 160, 1984. [8] H. Edelsbrunner and E. P. M¨ ucke. Three-dimensional alpha shapes. ACM Trans. on Graphics, 13(1):43–72, 1994. [9] C. Erten, A. Efrat, D. Forrester, A. Iyer, and S. G. Kobourov. Forcedirected approaches to sensor network localization. In R. Raman, R. Sedgewick, and M. F. Stallmann, editors, Proc. 8th Workshop Algorithm Engineering and Experiments (ALENEX), pages 108–118. SIAM, 2006. [10] S. Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica, 2:153–174, 1987. [11] C. Friedrich and F. Schreiber. Flexible layering in hierarchical drawings with nodes of arbitrary size. In Proceedings of the 27th conference on Australasian computer science (ACSC2004), pages 369–376. Australian Computer Society, 2004. [12] T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force directed placement. Software - Practice and Experience, 21:1129–1164, 1991. [13] E. R. Gansner, Y. Koren, and S. C. North. Graph drawing by stress majorization. In Proc. 12th Intl. Symp. Graph Drawing (GD ’04), volume 3383 of LNCS, pages 239–250. Springer, 2004.
JGAA, 14(1) 53–74 (2010)
73
[14] E. R. Gansner and S. North. An open graph visualization system and its applications to software engineering. Software - Practice & Experience, 30:1203–1233, 2000. [15] E. R. Gansner and S. C. North. Improved force-directed layouts. In Proc. 6th Intl. Symp. Graph Drawing (GD ’98), volume 1547 of LNCS, pages 364–373. Springer, 1998. [16] J. C. Gower and G. B. Dijksterhuis. Procrustes Problems. Oxford University Press, 2004. [17] L. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions and the computation of voronoi. ACM Trans. Graph., 4(2):74–123, 1985. [18] S. Hachul and M. J¨ unger. Drawing large graphs with a potential field based multilevel algorithm. In Proc. 12th Intl. Symp. Graph Drawing (GD ’04), volume 3383 of LNCS, pages 285–295. Springer, 2004. [19] D. Harel and Y. Koren. A fast multi-scale method for drawing large graphs. J. Graph Algorithms and Applications, 6:179–202, 2002. [20] K. Hayashi, M. Inoue, T. Masuzawa, and H. Fujiwara. A layout adjustment problem for disjoint rectangles preserving orthogonal order. In Proc. 6th Intl. Symp. Graph Drawing (GD ’98), volume 1547 of LNCS, pages 183– 197. Springer, 1998. [21] Y. F. Hu. Drawings of the mathematics genealogy project graphs. http://www.research.att.com/˜yifanhu/GALLERY/MATH GENEALOGY. [22] Y. F. Hu. Efficient and high quality force-directed graph drawing. Mathematica Journal, 10:37–71, 2005. [23] Y. F. Hu and Y. Koren. Extending the spring-electrical model to overcome warping effects. In Proceedings of IEEE Pacific Visualization Symposium 2009 (PacificVis ’09), pages 129–136, 2009. [24] X. Huang and W. Lai. Force-transfer: A new approach to removing overlapping nodes in graph layout. In Proc. 25th Australian Computer Science Conference, pages 349–358, 2003. [25] J. W. Jaromczyk and G. T. Toussaint. Relative neighborhood graphs and their relatives. Proc. IEEE, 80:1502–1517, 1992. [26] T. Kamada and S. Kawai. An algorithm for drawing general undirected graphs. Information Processing Letters, 31:7–15, 1989. [27] G. Leach. Improving worst-case optimal Delaunay triangulation algorithms. In 4th Canadian Conference on Computational Geometry, pages 340–346, 1992.
74
Gansner and Hu Efficient Node Overlap Removal
[28] W. Li, P. Eades, and N. Nikolov. Using spring algorithms to remove node overlapping. In Proc. Asia-Pacific Symp. on Information Visualisation, pages 131–140, 2005. [29] K. A. Lyons, H. Meijer, and D. Rappaport. Algorithms for cluster busting in anchored graph drawing. J. Graph Algorithms and Applications, 2(1), 1998. [30] K. Marriott, P. J. Stuckey, V. Tam, and W. He. Removing node overlapping in graph layout using constrained optimization. Constraints, 8(2):143–171, 2003. [31] K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout adjustment and the mental map. J. Vis. Lang. Comput., 6(2):183–210, 1995. [32] North Dakota State University Dept. of Math. The mathematics genealogy project. http://genealogy.math.ndsu.nodak.edu/. [33] J. R. Shewchuk. Engineering a 2D quality mesh generator and Delaunay triangulator. In Applied Computational Geometry: Towards Geometric Engineering, volume 1148 of LNCS, pages 203–222. Springer, 1996. [34] J. R. Shewchuk. Delaunay refinement algorithms for triangular mesh generation. Computational Geometry: Theory and Applications, 22:21–74, 2002. [35] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of hierarchical systems. IEEE Trans. Systems, Man and Cybernetics, SMC11(2):109–125, 1981. [36] C. Walshaw. A multilevel algorithm for force-directed graph drawing. J. Graph Algorithms and Applications, 7:253–285, 2003. [37] X. Wang and I. Miyamoto. Generating customized layouts. In GD ’95: Proceedings of the Symposium on Graph Drawing, volume 1027 of LNCS, pages 504–515. Springer, 1995.