Enumeration of K-Trees and Applications - CiteSeerX

1 downloads 48 Views 60KB Size Report
Enumeration of K-Trees and Applications. Mahendra Jani, Robert G. Rieper, and Melkamu Zeleke∗. Department of Mathematics, William Paterson University, ...
c Birkh¨auser Verlag, Basel, 2002

Annals of Combinatorics 6 (2002) 375-382

Annals of Combinatorics

0218-0006/02/040375-8

Enumeration of K-Trees and Applications Mahendra Jani, Robert G. Rieper, and Melkamu Zeleke∗ Department of Mathematics, William Paterson University, Wayne, NJ 07470, USA {janim, zelekem}@wpunj.edu Received November 9, 2001 AMS Subject Classification: 05A15 Abstract. A k-tree is constructed from a single distinguished k-cycle by repeatedly gluing other k-cycles to existing ones along an edge. If K is any nonempty subset of {2, 3, 4, . . .}, then a K-tree is obtained as above using k-cycles with k ∈ K. In this paper, we enumerate ordered Ktrees, show that the ratio of terminal edges to total number of edges in k-trees is k−1 k , and use the K-trees as models to enumerate planted plane cacti. Keywords: K-trees, terminal edges, generating functions, generalized Catalan numbers, planted plane cacti

References 1. M. Bona, M. Bousquet, and G. Labelle, Enumeration of m-ary cacti, Adv. Appl. Math. 24 (2000) 22–56. 2. W.Y.C. Chen, A general bijective algorithm for trees, Proc. Natl. Acad. Sci. USA 87 (1990) 9635–9639. 3. R.L. Graham, D.E. Knuth, and O. Patashnik, Concrete Mathematics, Addison-Wesley, 1989. 4. F. Haray and G.E. Uhlenbeck, On the number of Husimi trees, Proc. Natl. Acad. Sci. USA 39 (1953) 315–322. 5. F. Harary and G. Palmer, Graph Enumeration, Academic Press, 1973. 6. I. Pak, Reduced decomposition of permutations in terms of star transpositions, generalized Catalan numbers and k-ary trees, Dicrete Math. 204 (1999) 329–335. 7. M. Petkovsek, H. Wilf, and D. Zeilberger, A=B, AK Peters, 1996. 8. R.G. Rieper and M. Zeleke, Skew diagrams and ordered trees, Adv. Appl. Math. 27 (2001) 671–681. 9. W.R. Schmitt and M. S.Waterman, Linear trees and RNA secondary structures, Dicrete Appl. Math. 51 (1994) 317–323. 10. L.W. Shapiro, Problem #10753, Amer. Math. Monthly 106 (1999) 777. 11. L.W. Shapiro, A Catalan triangle, Discrete Math. 14 (1976) 83–70. 12. L.W. Shapiro, The higher you go, the odder it gets, Congr. Numer. 138 (1999) 93–96. ∗

Corresponding author.

375

376 13. 14. 15. 16.

M. Jani, R.G. Rieper, and M. Zeleke R.P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge University Press, 1999. D. Stanton and D. White, Constructive Combinatorics, Springer-Verlag, 1986. H.S. Wilf, Generatingfunctionology, Academic Press, 1994. D. Zeilberger, EKHAD-Maple Package, http://math.temple.edu.

Suggest Documents