THEMES IN SCIENCE AND TECHNOLOGY EDUCATION Volume 1, Number 1, Pages 49-58 Klidarithmos Computer Books
Evaluation framework based on fuzzy measured method in adaptive learning systems Houda Zouari Ounaies1, Yassine Jamoussi2, Henda Hajjami Ben Ghezala3, ENSI, National School of Computer Science, Manouba, Tunisia
Abstract ǡǦǦ
Ǥ ǯ
Ǥ
Ǥǡ Ǥ
ǤǦǦ
Ǥ
Ǧǡ
ǤǦ ǡ
ǤǡǦ
Ǥ ǡ
Ǧ
Ǥ
ǡ
Ǥ ǡ
Ǥ
Keywords Ǧǡǡ
1 2 3
[email protected] [email protected] [email protected]
49
H. Z. Ounaies, Y. Jamoussi, H. H. B. Ghezala
Introduction ǦǤǦ
Ǥ ȋ Ǧ Ȍ
Ǧǣ̈́ʹͳ ʹͲͲͺǤǣ
ǡ
ǡ ǡǡ
Ǥ
ǡǦ
Ǧ
Ǥ ǡ Ǧ
ȋ Ƭ ǡʹͲͲͷǢǡʹͲͲͶǢ ǤǡʹͲͲͶǢǡͳͻͻͻȌǤ
ǤǦ
ȋǤǡʹͲͲͳǢǡʹͲͲ͵Ǣ ǤǡʹͲͲͶǢƬǡʹͲͲͷȌǤ
Ǥǡ
Ǧ
Ǥ
Ǥ
Ǥǡ
Ǧ Ǥ ǡ
Ǥ
Ǧȋǡ ʹͲͲ͵ǢƬǡʹͲͲ͵ǢƬǡʹͲͲͶȌǤ ǡ
Ǥ
Ǥ
Ǥ
ȋǦ
Ȍ
ȋǡͳͻͻͻȌǤ
ǡ
ǡ
Ǥ
ǡ
Ǥ
50
Evaluation framework based on fuzzy measured method in adaptive learning systems
AHAM reference model
Ǥ
ǣǡ Ǥ
Domain Model
ǤǦ ǡǡ
Ǥ
ǣ
ǣǡ
Ǥ
Ǥ
Ǧ Ǥ
Ȁ
Ǥ
ͳǤ
Ʈ
ͳ
ʹ
͵
ͳ
ʹ
͵
Ͷ
ͷ
Figure 1. Concepts hierarchy
ǣ ǡǡ
Ǥǡ
Ǧ ǡ
ǤǡǦ
ǣ • ǣ
• ǣ
• ǣǦǤ ǯǤ
51
H. Z. Ounaies, Y. Jamoussi, H. H. B. Ghezala
Adaptation Model
Ǥ ǡ
Ǧ Ǥ
Ǥ
Ǥ ǣ
ȀǤ
User Model ǯǡ
ǡǡ
ǡǡ
Ǥ
Ǥǡ Ǥ
ǡ
ǡ
ǣǡǡ Ǧǡǡǡ
Ǥ
Adaptation methods evaluation approach
ǯȋǡͳͻͻͶȌǤ
Ǥ
Ǧ ǤǯǦ
ȋ Ȍ
ȋ ƬǡʹͲͲȌǤ
ǡ
Ǧ Ǧ
. Our approach is in three phases. Fǡ
Ǥ
ǡ
Ǥ Ǧ ǡ
Ǧ Ǥ
Evaluation criteria exploration
Ǥ ǡ
52
Evaluation framework based on fuzzy measured method in adaptive learning systems
ǤǯǦǤ
ǦǤ ǡ
ǣ ǡǤ
ǡǦ
ǡǡ
ǦǤ ǡ
Ǥǡ
Ǧ
ǣǡ
Ǥ ȋƬ ǡʹͲͲ͵ȌǤ
ǡ
Ǧ
ȋ Ƭ ǡ ʹͲͲͲȌǤ
ǡǦ
Ǥ
ǣ • • • •
•
ǡ
Ǧ
ǡǡ
Ǥ ȋʹͲͲ͵ȌǦ
Ǥ ǣ •
•
• •
• Ǥ
ǤTǦ
ǣ • ǡǡ
53
H. Z. Ounaies, Y. Jamoussi, H. H. B. Ghezala
• • Ǥ ǡ
Ǧ
Ǥ
ǣ ǣ
Ǥ
ǡǫ
Ǥ
Ǥ
Ǥǡ
Ǥ
ǡ
Ǧ Ǥ
ǣǦ
Ǥ ǡȋ
Ȍ
Ǥǡ
ǡ
Ǥ
Ǥ
Ǥǡ
Ǥ
Ǥ
ǣ
Ǧ Ǥǡ
ǡ
Ǥ
ȋǤǡʹͲͲͳȌǤ
Evaluation criteria assessment Ǥ
ǡǦ
Ǧ
Ǥ
Ǥ
Ǥ ssessment can be possibly performed by linguistic variables like: 54
Evaluation framework based on fuzzy measured method in adaptive learning systems
“bad”, “poor”, “fair”, “good” and “excellent”.
Ǧ ǣ
Ǥ Ǥ
Ǧ Ǧ Ǥ
Global evaluation based on fuzzy group decision-making theory Ǧ
Ǧ
ǡ
ǦǤ ǡ
Ǥ ǡ ȋ Ȍ
ȋƬǡͳͻͺǢǡͳͻͷǡǡ
ȌǤS ȋǡǡȌǣǡǡǡ
ǡ
ǡǡǤ
ǣ
Ͳ
ρȋȀSȌα
δ
ȋǦȌȀȋǦȌ
ζζ
ȋǦȌȀȋǦȌ
ζζ
Ͳ
ε
ʹ
Ǥ
ǣDzdzǡDzdzǡDzdzǡDzdz Dz
dzǤ ͳǤ ρ
ͲǤͲ
ͲǤͳͷ
ͲǤ͵ͲͲ ͲǤ͵ͷͲ
ͲǤͶͷ
ͲǤͷͲ
ͲǤͷʹͷ
ͲǤͺʹͷ
ͳǤͲͲͲ
ͲǤͲͲ
Figure 2. The mapping of linguistic variable into the corresponding TFN
55
H. Z. Ounaies, Y. Jamoussi, H. H. B. Ghezala
Table 1. Linguistic variables conversion into TFN Linguistic variables
TFN
Excellent
(0.700, 0.850, 1.000)
Good
(0.525, 0.675, 0.825)
Fair
(0.350, 0.500, 0.650)
Poor
(0.175, 0.325, 0.475)
Bad
(0.000, 0..150, 0.300)
ǡ ǯ
Ǧ ȋ
ǡͳͻͺͷȌǣ SαȋSͳ⊗Sʹ⊗ǤǤǤǤ⊗SȌͳȀȀ Sǣ
Ǣ Sǣǯ
Ǣ ǣǢ ⊗ǣ
Ǣ
Ǥ
ǣ SαͳȀȋSͳ⊕Sʹ⊕ǥ⊕SȌ ǣ
Ǣ ⊕ǣ Ǣ
Ǥ
ȋȌ
Sǡ ȋǡǡȌǡǦǤǣ αȏȋǦȌΪȋǦȌȐȀ͵Ϊ
ǤGlobal evaluation results of adaptation methods, can participate to improve awareness about the limits and strengths of these methods. Therefore, this research can contribute towards meta-adaptation support by understanding the applicability of current methods given user and context characteristics.
56
Evaluation framework based on fuzzy measured method in adaptive learning systems
Conclusion
Ǥ Ǧ
ǡ
ǤǦ
ǤǦǡ
ǡǦ
Ǥ ǡǦ
Ǥ
ǡ
Ǥ ǦǤ
ǡ
Ǥ
Ǧ Ǥ
Ǥ
Ǧ
Ǧ
Ǥ
ǦǤǦ
ǡǡ
Ǥ
Ǥ
References ǡǤȋͳͻͻȌǡ
ǡ
ǡͷǡͺǦͳʹͻǤ ǡǤȋʹͲͲ͵Ȍǡ
ǣ
Ǧǡ
ǡ ͵ͶȋͶȌǡͶͺǦͶͻǤ ǡǤȋʹͲͲͶȌǡǣ
Ǧǡ
Ǧ
ȋǤͳͲͶǦͳͳ͵ȌǡǤ ǡǤǡǤǤȋʹͲͲͶȌǡ ǡ
ǡͳͶǡ ͶͲʹǦͶʹͳǤ
ǡ Ǥ ǤȋͳͻͺͷȌǡ
ǡ ǡͳȋ͵Ȍǡʹ͵͵ǦʹͶǤ ǡǤǡǡ Ǥ ǤǡǤȋͳͻͻͻȌǡǣǦ
ǡ
̹ͿͿ
ȋǤͳͶǦͳͷȌǡǡ Ǧ Ǥ
57
H. Z. Ounaies, Y. Jamoussi, H. H. B. Ghezala
ǡǤǡǤȋͳͻͺȌǡǡ
Ǧ
ǡͻȋ͵Ȍǡͳ͵ǦʹǤ
ǡǤǡǤȋʹͲͲȌǡǡ ǡǤǡ ǡǤǡǡǤȋǤȌǡǣǡ
ǡȋǤʹͲǦʹȌǤǣǤ
ǡǤǡǤȋʹͲͲͷȌǡ
ǡǦ
ǡͳ͵ǦͳͷǡǦ ǡǤ
ǡǤǡ
ǦǡǤ
ǡ ǤȋʹͲͲͶȌǡǦ
Ǧ
ǡ Ǥ
ȋǤȌǡǦ
Ǧǡ ǡ
ǡ
ȋǤͳͺͻͳǦͳͺͻͺȌǡǤ ǡ Ǥǡ ǤȋʹͲͲͶȌǡǦ
ǡ
ͳͲ ȋ ǯͲͶȌ ȋǤʹͻʹǦʹͻͺȌǤ ǡǤȋͳͻͻͶȌǡǡ Ǧ ǡͶͲǡͶͷͷǦͶʹǤ ǡǤǡǡǤǤȋʹͲͲͳȌǡ
Ǧ
ǡ ǤǡǤǡ ǤȋǤȌǡ
ȋǤͻǦʹͶȌǡǡ Ǥ ǡǤǡǤȋʹͲͲͷȌǤ
Ǧ
ǡ ǤǡǤǡǤ
ȋǤȌǣͶͶͻǡ ͷͶ
ǡͶͶͻǡ
ͻ;ǡȋǤͶ͵ͺǦ ͶͶʹȌǤǣǤ Ǥ ǡǡ ǤȋʹͲͲͲȌǡ
ǣ
ǡ ǡ
ͶͶͶǡǡͻͶǦͻǤ ǡǤ ǡǡ ǤȋʹͲͲ͵Ȍǡǣǡ
Ǧ ǡ
ǡʹ͵ͷǦʹ͵Ǥ ǡǤǤȋͳͻͻͻȌǡ
ǡǣǡ
Ǧ
Ǥ ǤȋʹͲͲ͵Ȍǡǡǡǡ ǡǤǤȋͳͻͷȌǤ
Ǧ Ǧ ǡ
ǡͺȋʹȌǡͳͻͻǦʹͶͻǤ ǡǤǤȋͳͻͷȌǤ
Ǧ Ǧ ǡ
ǡͺȋ͵Ȍǡ͵ͲͳǦ͵ͷǤ ǡǤǤȋͳͻͷȌǤ
Ǧ Ǧ ǡ
ǡͻȋͳȌǡͶ͵ǦͺͲǤ
58