Hindawi Publishing Corporation Journal of Applied Mathematics Volume 2013, Article ID 934973, 9 pages http://dx.doi.org/10.1155/2013/934973
Research Article Expanded Mixed Finite Element Method for the Two-Dimensional Sobolev Equation Qing-li Zhao,1,2 Zong-cheng Li,2 and You-zheng Ding2 1 2
School of Mathematics, Shandong University, Jinan 250100, China School of Science, Shandong Jianzhu University, Jinan 250101, China
Correspondence should be addressed to Qing-li Zhao;
[email protected] Received 23 April 2013; Revised 7 June 2013; Accepted 7 June 2013 Academic Editor: Carlos Conca Copyright Β© 2013 Qing-li Zhao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Expanded mixed finite element method is introduced to approximate the two-dimensional Sobolev equation. This formulation expands the standard mixed formulation in the sense that three unknown variables are explicitly treated. Existence and uniqueness of the numerical solution are demonstrated. Optimal order error estimates for both the scalar and two vector functions are established.
1. Introduction In this paper, we consider the following Sobolev equation: π’π‘ (x, π‘) β β β
{π (x, π‘) βπ’π‘ + π1 (x, π‘) βπ’ (x, π‘)} = π (x, π‘) ,
(x, π‘) β Ξ© Γ (0, π] ,
π’ (x, π‘) = 0,
(x, π‘) β πΞ© Γ [0, π] ,
π’ (x, 0) = π’0 (x) , 2
(1)
x β Ξ©,
in a bounded domain Ξ© β π
with Lipschitz continuous boundary πΞ©. Equation (1) has a wide range of applications in many mathematical and physical problems [1, 2], for example, the percolation theory when the fluid flows through the cracks, the transfer problem of the moisture in the soil, and the heat conduction problem in different materials. So there exists great and actual significance to research Sobolev equation. Up till now, there are some different schemes studied to solve this kind of equation (see [1β4] for instance). The mixed finite element method, which is a finite element method [5] with constrained conditions, plays an important role in the research of the numerical solution for partial differential equations. Its general theory was proposed by Babuska [6] and Brezzi [7]. Falk and Osborn [8] improved their theory and expanded the adaptability of the mixed finite element method. The mixed finite element method
(see [9, 10] for instance) is wildly used for the modeling of fluid flow and transport, as it provides accurate and locally mass conservative velocities. The main motivation of the expanded mixed finite element method [11β15] is to introduce three (or more) auxiliary variables for practical problems, while the traditional finite element method and mixed finite element method can only approximate one and two variables, respectively. The expanded mixed finite element method also has some other advantages except introducing more variables. It can treat individual boundary conditions. Also, this method is suitable for differential equation with small coefficient (close to zero) which does not need to be inverted. Consequently, this method works for the problems with small diffusion or low permeability terms in fluid problems. Using this method, we can get optimal order error estimates for certain nonlinear problems, while standard mixed formulation sometimes gives only suboptimal error estimates. The object of this paper is to present the expanded mixed finite element method for the Sobolev equation. We conduct theoretical analysis to study the existence and uniqueness and obtain optimal order error estimates. The rest of this paper is organized as follows. In Section 2, the mixed weak formulation and its mixed element approximation are considered. In Section 3, we prove the existence and uniqueness of approximation form. In Section 4, some lemmas are given.
2
Journal of Applied Mathematics
In Section 5, optimal order semidiscrete error estimates are established. Throughout the paper, we will use πΆ, with or without subscript, to denote a generic positive constant which does not depend on the discretization parameter β. Vectors will be expressed in boldface. At the same time, we show a useful πCauchy inequality 1 ππ β€ ππ2 + π2 , 4π
Let n be the unit exterior normal vector to the boundary of Ξ©. Then (8) is formulated in the following expanded mixed weak form: find (π’, π, π) β π Γ Ξ Γ V, such that (π’π‘ , π€) + (div π, π€) = (π, π€) , βπ€ β π, 0 < π‘ β€ π, (π, k) β (π’π‘ + ππ’, div k) + (cπ’, k) = 0,
π > 0.
βk β V, 0 < π‘ β€ π,
(2) (π, π) β (ππ, π) = 0,
2. Mixed Weak Form and Mixed Element Approximation
π = πΏ2 (Ξ©) , (3)
denote the Sobolev spaces [16] endowed with the norm 1/π
σ΅© πΌ σ΅©π σ΅©σ΅© σ΅©σ΅© σ΅©σ΅©πσ΅©σ΅©π,π,Ξ© = ( β σ΅©σ΅©σ΅©π· πσ΅©σ΅©σ΅©πΏπ (Ξ©) )
(4)
|πΌ|β€π
(the subscript Ξ© will always be omitted). Let π»π (Ξ©) = ππ,2 (Ξ©) with the norm β β
βπ = β β
βπ,2 . The notation β β
β will mean β β
βπΏ2 (Ξ©) or β β
βπΏ2 (Ξ©)2 . We denote by ( , ) the inner product in either πΏ2 (Ξ©) or πΏ2 (Ξ©)2 ; that is,
Ξ©
(π, π) = β« π β
ππx. Ξ©
(5)
πΞ©
π = ππ = βπβπ’π‘ β π1 βπ’.
(π’β,π‘ , π€) + (div πβ , π€) = (π, π€) , βπ€ β πβ , 0 < π‘ β€ π, (πβ , k) β (π’β,π‘ + ππ’β , div k) + (cπ’β , k) = 0,
(6)
(7)
βk β Vβ , 0 < π‘ β€ π, (πβ , π) β (ππβ , π) = 0,
(x, π‘) β Ξ© Γ (0, π] ,
π’ (x, π‘) = 0,
(x, π‘) β πΞ© Γ (0, π] ,
π’ (x, 0) = π’0 (x) ,
x β Ξ©.
π’0 , π€) , (π’ (0) , π€) = (Μ
βπ€ β πβ ,
where
(12)
Vβ (πΈ) = {k β V : k|πΈ β Vβ (πΈ) , βπΈ β πβ } .
(x, π‘) β Ξ© Γ (0, π] ,
π β ππ = 0,
βπ β Ξβ , 0 < π‘ β€ π,
Ξβ (πΈ) = {π β Ξ : π|πΈ β Vβ (πΈ) , βπΈ β πβ } ,
(x, π‘) β Ξ© Γ (0, π] ,
π + βπ’π‘ β β (ππ’) + cπ’ = 0,
(11)
πβ (πΈ) = {π β π : π|πΈ β πβ (πΈ) , βπΈ β πβ } ,
Letting c = ββπ, we rewrite (1) as the following system: π’π‘ + β β
π = π,
(10)
Let πβ be a quasiregular polygonalization of Ξ© (by triangles or rectangles), with β being the maximum diameter of the elements of the polygonalization. Let πβ Γ Ξβ Γ Vβ be a conforming mixed element space with index π and discretization parameter β. πβ Γ Ξβ Γ Vβ is an approximation to π Γ Ξ Γ V. There are many conforming (or compatible) mixed element function spaces such as Raviart-Thomas elements [17], BDFM elements [18, 19]. Some RT type mixed elements are listed in Table 1. Here, ππ (π) is the polynomial up to π order in two-dimensional domain used in triangle, while ππ,π (π) is the polynomial up to π, π in each dimension used in rectangle. Replacing the three variables by their approximation, we get the expanded mixed finite element approximation problem: find (π’β , πβ , πβ ) β πβ Γ Ξβ Γ Vβ , such that
To formulate the weak form, let π = π1 /π; we introduce two vector variables π = ββπ’π‘ β πβπ’,
Ξ = πΏ2 (Ξ©)2 ,
V = π» (div, Ξ©) = {k β πΏ2 (Ξ©)2 | β β
k β πΏ2 (Ξ©)} .
The notation β¨, β© denotes the πΏ2 -inner product on the boundary of Ξ© β¨π, πβ© = β« ππππ .
βπ€ β π,
where
For 1 β€ π β€ +β and π any nonnegative integer, let
(π, π) = β« πππx ,
βπ β Ξ, 0 < π‘ β€ π,
(π’ (0) , π€) = (π’0 , π€) ,
ππ,π (Ξ©) = {π β πΏπ (Ξ©) | π·πΌ π β πΏπ (Ξ©) , |πΌ| β€ π}
(9)
(8)
The error analysis next makes use of three projection operators. The first operator is the Raviart-Thomas projection (or Brezzi-Douglas-Marini projection) Ξ β : V β Vβ ; Ξ β satisfies (β β
(k β Ξ β k) , πβ ) = 0,
βπβ β πβ .
(13)
Journal of Applied Mathematics
3 By (20), it is easy to see that
Table 1: Some RT type mixed elements. Dim 2D 2D
Element Triangle Rectangle
Vβ (πΈ) RTπ (π) = ππ (πΈ)2 β xππ (πΈ) RT[π] (π) = ππ+1,π (πΈ) β ππ,π+1 (πΈ)
πβ (πΈ) ππ (πΈ) ππ,π (πΈ)
σ΅© σ΅©σ΅© π σ΅©σ΅©β β
(k β Ξ β k)σ΅©σ΅©σ΅©π β€ πΆβ ββ β
kβπ ,
1 β€ π β€ π + 1, 2 0 β€ π β€ π + 1.
(14)
(π β π
β π, πβ ) = 0,
βπ β π, kβ β Vβ , βπ β Ξ, πβ β Ξβ .
Choosing π = div πβ , k = πβ , and π = πβ in (19), we get
In the third equation of (19), letting π = πβ and π = πβ , respectively, then σ΅© σ΅© σ΅©σ΅© σ΅©σ΅© σ΅©σ΅©πβ σ΅©σ΅© β€ πΆ σ΅©σ΅©σ΅©πβ σ΅©σ΅©σ΅© , σ΅© σ΅© σ΅©σ΅© σ΅©σ΅© σ΅©σ΅©πβ σ΅©σ΅© β€ πΆ σ΅©σ΅©σ΅©πβ σ΅©σ΅©σ΅© .
(15)
The other two operators are the standard πΏ2 -projection [5] πβ and π
β onto πβ and Ξβ , respectively, (π β πβ π, β β
kβ ) = 0,
(16)
σ΅© σ΅©2 σ΅© σ΅©2 σ΅© σ΅©2 π0 σ΅©σ΅©σ΅©πβ σ΅©σ΅©σ΅© + σ΅©σ΅©σ΅©div πβ σ΅©σ΅©σ΅© β€ πΆσ΅©σ΅©σ΅©π’β σ΅©σ΅©σ΅© +
(18)
In this section, we consider the existence and uniqueness of the solution of (11).
Proof. In fact, this equation is linear; it suffices to show that the associated homogeneous system (π’β,π‘ , π€) + (div πβ , π€) = 0,
(27)
From (27), we know σ΅© π‘ σ΅©σ΅© π‘ π‘ σ΅©σ΅© σ΅©σ΅© σ΅©σ΅©σ΅© σ΅© σ΅© σ΅© σ΅© σ΅© σ΅©σ΅©π’β σ΅©σ΅© = σ΅©σ΅©β« π’β,π‘ ππ‘σ΅©σ΅©σ΅© β€ πΆ β« σ΅©σ΅©σ΅©π’β,π‘ σ΅©σ΅©σ΅© ππ‘ β€ πΆ β« σ΅©σ΅©σ΅©π’β σ΅©σ΅©σ΅© ππ‘. σ΅©σ΅© 0 0 σ΅©σ΅© 0
(28)
Using Gronwallβs inequality to (28), we can prove π’β = 0. Further, from (26) and (23), we know that πβ = 0, πβ = 0. The proof is completed.
In the study of parabolic equations, we usually introduce a mixed elliptic projection associated with our equations. Μ ,π Define a map: find (Μ π’β , π β Μ β ) β πβ Γ Ξβ Γ Vβ , such that Μ β ) , π€) = 0, (div (π β π
βπ€ β πβ , 0 < π‘ β€ π,
βπ€ β πβ , 0 < π‘ β€ π,
Μ , k) β (π’ β π’Μ + π (π’ β π’Μ ) , div k) + (c (π’ β π’Μ ) , k) (π β π β π‘ β,π‘ β β
(πβ , k) β (π’β,π‘ + ππ’β , div k) + (cπ’β , k) = 0,
= 0, (19)
(πβ , π) β (ππβ , π) = 0,
βk β Vβ , 0 < π‘ β€ π,
Μ ) , π) = 0, Μ β , π) β (π (π β π (π β π β (π’ (0) β π’Μβ (0) , π€) = 0,
βπ β Ξβ , 0 < π‘ β€ π,
βπ β Ξβ , 0 < π‘ β€ π, βπ€ β πβ . (29)
βπ€ β πβ ,
has only the trivial solution. In the first equation of (19), if we take π = π’β,π‘ and π = div πβ , respectively, then we have that σ΅©σ΅© σ΅©σ΅© σ΅©σ΅© σ΅© σ΅©σ΅©π’β,π‘ σ΅©σ΅© β€ σ΅©σ΅©div πβ σ΅©σ΅©σ΅© , σ΅©σ΅© σ΅© σ΅© σ΅© σ΅©σ΅©div πβ σ΅©σ΅©σ΅© β€ σ΅©σ΅©σ΅©π’β,π‘ σ΅©σ΅©σ΅© .
(26)
4. Some Lemmas
Lemma 1. Equation (11) has a unique solution.
(π’ (0) , π€) = 0,
1 σ΅©σ΅© σ΅©2 π σ΅© σ΅©2 σ΅©σ΅©div πβ σ΅©σ΅©σ΅© + 0 σ΅©σ΅©σ΅©πβ σ΅©σ΅©σ΅© . 2 2 (25)
σ΅© σ΅© σ΅©σ΅© σ΅©σ΅© σ΅©σ΅©πβ σ΅©σ΅© β€ πΆ σ΅©σ΅©σ΅©π’β σ΅©σ΅©σ΅© , σ΅©σ΅©σ΅©π’β,π‘ σ΅©σ΅©σ΅© β€ πΆ σ΅©σ΅©σ΅©π’β σ΅©σ΅©σ΅© . σ΅© σ΅© σ΅© σ΅©
(17)
3. Existence and Uniqueness of Approximation Form
βk β Vβ , 0 < π‘ β€ π,
(24)
Note that (21), we deserve
The two projections Ξ β and πβ preserve the commuting property div β Ξ β = πβ β div : π»1 (Ξ©)2 σ³¨β πβ .
(23)
Using the π-Cauchy inequality to (22), we have
They have the approximation properties σ΅© σ΅©σ΅© π σ΅©σ΅©π β πβ πσ΅©σ΅©σ΅© β€ πΆβ βπβπ , 0 β€ π β€ π + 1, σ΅©σ΅© σ΅©σ΅© πσ΅© σ΅© σ΅©σ΅© σ΅©σ΅©π β π
β πσ΅©σ΅© β€ πΆβ σ΅©σ΅©πσ΅©σ΅©π , 0 β€ π β€ π + 1.
(21)
(ππβ , πβ ) + (div πβ , div πβ ) = (ππ’β , div πβ ) β (cπ’β , πβ ) . (22)
The following approximation properties are well known. σ΅© σ΅©σ΅© π σ΅©σ΅©k β Ξ β kσ΅©σ΅©σ΅© β€ πΆβ βkβπ ,
σ΅© σ΅© σ΅© σ΅©σ΅© σ΅©σ΅©div πβ σ΅©σ΅©σ΅© = σ΅©σ΅©σ΅©π’β,π‘ σ΅©σ΅©σ΅© .
(20)
Similarly to Lemma 1, we can prove that system (29) has a unique solution. Μ ,π Now we give some error estimates of (Μ π’β , π β Μ β ). Define π’ β π’Μβ = (πβ π’ β π’Μβ ) + (π’ β πβ π’) = π’1 + π’2 , Μ , π1 = π β π β
Μβ. π1 = π β π
(30)
4
Journal of Applied Mathematics
System (29) can be rewritten as follows:
It is easy to see that πΌ1 = (π1 , Ξ β (πβπ))
(div π1 , π€) = 0,
= (π1 , Ξ β (πβπ) β πβπ) + (π1 , πβπ)
βπ€ β πβ ,
(π1 , k) β (π’1,π‘ + π (π’1 + π’2 ) , div k) + (c (π’1 + π’2 ) , k) = 0, βk β Vβ , (π1 , π) β (ππ1 , π) = 0,
βπ β Ξβ .
(π’ (0) β π’Μβ (0) , π€) = 0,
βπ€ β πβ .
πΈ2 = (ππ1 , β (π β πβ π)) + (ππ1 , β (πβ π))
Lemma 2. Let (π’1 , π1 , π1 ) be the solution of system (31). If π’, π, and π are sufficiently smooth, then there exist positive constants πΆ such that π‘
σ΅© σ΅© σ΅© σ΅© σ΅© σ΅© σ΅©σ΅© σ΅©σ΅© 1βπΏ σ΅© σ΅© σ΅©σ΅©π’1 σ΅©σ΅© β€ πΆ β« (β σ΅©σ΅©σ΅©π1 σ΅©σ΅©σ΅© + β π0 σ΅©σ΅©σ΅©π1 σ΅©σ΅©σ΅© + β σ΅©σ΅©σ΅©π’2 σ΅©σ΅©σ΅© + σ΅©σ΅©σ΅©π’2 σ΅©σ΅©σ΅©β1 ) ππ‘, 0 σ΅© σ΅© σ΅© σ΅© σ΅© σ΅© σ΅© σ΅© σ΅©σ΅© σ΅©σ΅© 1βπΏ σ΅© σ΅© σ΅©σ΅©π’1,π‘ σ΅©σ΅© β€ πΆ (β σ΅©σ΅©σ΅©π1 σ΅©σ΅©σ΅© + β π0 σ΅©σ΅©σ΅©π1 σ΅©σ΅©σ΅© + β σ΅©σ΅©σ΅©π’2 σ΅©σ΅©σ΅© + σ΅©σ΅©σ΅©π’2 σ΅©σ΅©σ΅©β1 + σ΅©σ΅©σ΅©π’1 σ΅©σ΅©σ΅©) , (32)
where πΏπ0 = 0 for π = 0, and πΏπ0 = 0 for π β₯ 1. Proof. Let π β π» following problem:
= (ππ1 , β (π β πβ π)) + (π1 , β (πβ π))
(36)
= (ππ1 , β (π β πβ π)) β (div π1 , (πβ π))
Now we consider the estimates of π’1 and π’1,π‘ .
(Ξ©) β π»01 (Ξ©)
= πΈ1 + πΈ2 , σ΅© σ΅©σ΅© σ΅© σ΅© σ΅©σ΅© σ΅© πΈ1 β€ πΆβ σ΅©σ΅©σ΅©π1 σ΅©σ΅©σ΅© σ΅©σ΅©σ΅©πσ΅©σ΅©σ΅©2 β€ πΆβ σ΅©σ΅©σ΅©π1 σ΅©σ΅©σ΅© σ΅©σ΅©σ΅©πσ΅©σ΅©σ΅© ,
(31)
2
= (π1 , Ξ β (πβπ) β πβπ) + (ππ1 , βπ)
be the solution of the
= (ππ1 , β (π β πβ π)) σ΅© σ΅© σ΅©σ΅© β€ πΆ σ΅©σ΅©σ΅©π1 σ΅©σ΅©σ΅© σ΅©σ΅©σ΅©β (π β πβ π)σ΅©σ΅©σ΅© σ΅© σ΅© σ΅© σ΅© β€ πΆβ1βπΏππ σ΅©σ΅©σ΅©πσ΅©σ΅©σ΅©2 σ΅©σ΅©σ΅©π1 σ΅©σ΅©σ΅© σ΅© σ΅©σ΅© σ΅© β€ πΆβ1βπΏππ σ΅©σ΅©σ΅©πσ΅©σ΅©σ΅© σ΅©σ΅©σ΅©π1 σ΅©σ΅©σ΅© . Now, we estimate πΌ2 , (cπ’1 , Ξ β (πβπ)) σ΅© σ΅© σ΅©σ΅© β€ πΆ σ΅©σ΅©σ΅©π’1 σ΅©σ΅©σ΅© σ΅©σ΅©σ΅©Ξ β (πβπ) β πβπ + πβπσ΅©σ΅©σ΅© σ΅© σ΅© σ΅© σ΅© σ΅© σ΅© β€ πΆ σ΅©σ΅©σ΅©π’1 σ΅©σ΅©σ΅© (β σ΅©σ΅©σ΅©βπσ΅©σ΅©σ΅© + σ΅©σ΅©σ΅©βπσ΅©σ΅©σ΅©) σ΅© σ΅©σ΅© σ΅© β€ πΆ σ΅©σ΅©σ΅©π’1 σ΅©σ΅©σ΅© σ΅©σ΅©σ΅©πσ΅©σ΅©σ΅© ,
(37)
(cπ’2 , Ξ β (πβπ)) = (cπ’2 , Ξ β (πβπ) β πβπ) + (cπ’2 , πβπ)
β β
(πβπ) = π,
βπ₯ β Ξ©,
π|πΞ© = 0.
σ΅© σ΅© σ΅© σ΅© σ΅© σ΅© β€ πΆ (β σ΅©σ΅©σ΅©π’2 σ΅©σ΅©σ΅© + σ΅©σ΅©σ΅©π’2 σ΅©σ΅©σ΅©β1 ) σ΅©σ΅©σ΅©πσ΅©σ΅©σ΅© . (33)
We turn to consider πΌ3 , (βππ’1 , div Ξ β (πβπ)) σ΅© σ΅©σ΅© σ΅© σ΅© σ΅©σ΅© σ΅© β€ πΆ σ΅©σ΅©σ΅©π’1 σ΅©σ΅©σ΅© σ΅©σ΅©σ΅©βπσ΅©σ΅©σ΅© β€ πΆ σ΅©σ΅©σ΅©π’1 σ΅©σ΅©σ΅© σ΅©σ΅©σ΅©πσ΅©σ΅©σ΅© ,
Then we know
(βππ’2 , div Ξ β (πβπ)) σ΅© σ΅© σ΅©σ΅© σ΅©σ΅© σ΅©σ΅©πσ΅©σ΅©2 β€ πΆ σ΅©σ΅©σ΅©πσ΅©σ΅©σ΅© .
(34)
β€ β ((π β πβ0 π) π’2 , div Ξ β (πβπ)) β
For 0 < π‘ β€ π, from the second equation of (31), we have that (π’1,π‘ , π) = (π’1,π‘ , div (πβπ)) = (π’1,π‘ , div Ξ β (πβπ)) = (π 1 , Ξ β (πβπ)) + (c (π’1 + π’2 ) , Ξ β (πβπ)) (35) β (π (π’1 + π’2 ) , div Ξ β (πβπ)) = πΌ1 + πΌ2 + πΌ3 .
β ((πβ0 π) π’2 , div Ξ β πβπβ
(38)
(πβπ))π
= β ((π β πβ0 π) π’2 , div Ξ β (πβπ)) σ΅© σ΅©σ΅© σ΅© β€ πΆβ σ΅©σ΅©σ΅©π’2 σ΅©σ΅©σ΅© σ΅©σ΅©σ΅©πσ΅©σ΅©σ΅© , where πβ0 π is the piecewise constant interpolation of function π. Using the previous estimates, we obtain σ΅©σ΅© σ΅©σ΅© σ΅©σ΅©π’1,π‘ σ΅©σ΅© σ΅© σ΅© σ΅© σ΅© σ΅© σ΅© σ΅© σ΅© σ΅© σ΅© β€ πΆ (β σ΅©σ΅©σ΅©π1 σ΅©σ΅©σ΅© + β1βπΏπ0 σ΅©σ΅©σ΅©π1 σ΅©σ΅©σ΅© + β σ΅©σ΅©σ΅©π’2 σ΅©σ΅©σ΅© + σ΅©σ΅©σ΅©π’2 σ΅©σ΅©σ΅©β1 + σ΅©σ΅©σ΅©π’1 σ΅©σ΅©σ΅©) . (39)
Journal of Applied Mathematics
5 Proof. For 0 < π‘ β€ π, the proof proceeds in three steps as follows. (I) In the first equation of (29), taking π = div π1 , we know
So we deserve σ΅© π‘ σ΅©σ΅© σ΅© σ΅©σ΅© σ΅©σ΅© σ΅©σ΅©σ΅© σ΅©σ΅©π’1 σ΅©σ΅© = σ΅©σ΅©β« π’1,π‘ ππ‘σ΅©σ΅©σ΅© σ΅©σ΅© σ΅©σ΅© 0 π‘
(div π1 , div π1 )
σ΅© σ΅© β€ πΆ β« σ΅©σ΅©σ΅©π’1,π‘ σ΅©σ΅©σ΅© ππ‘ 0
(40)
= (div π1 , div (π β Ξ β π))
π‘
σ΅© σ΅© σ΅© σ΅© σ΅© σ΅© β€ πΆ β« (β σ΅©σ΅©σ΅©π1 σ΅©σ΅©σ΅© + β1βπΏπ0 σ΅©σ΅©σ΅©π1 σ΅©σ΅©σ΅© + β σ΅©σ΅©σ΅©π’2 σ΅©σ΅©σ΅© 0
σ΅©σ΅© σ΅© σ΅© β€ σ΅©σ΅©σ΅©div π1 σ΅©σ΅©σ΅© σ΅©σ΅©σ΅©div (π β Ξ β π)σ΅©σ΅©σ΅© ,
σ΅© σ΅© σ΅© σ΅© +σ΅©σ΅©σ΅©π’2 σ΅©σ΅©σ΅©β1 + σ΅©σ΅©σ΅©π’1 σ΅©σ΅©σ΅© ) ππ‘.
which implies that σ΅©σ΅© σ΅© σ΅© σ΅© σ΅©σ΅©div π1 σ΅©σ΅©σ΅© β€ σ΅©σ΅©σ΅©div (π β Ξ β π)σ΅©σ΅©σ΅©
Applying Gronwallβs inequality to (40), we have
β€ πΆβπ βπβπ+1 ,
σ΅©σ΅© σ΅©σ΅© σ΅©σ΅©π’1 σ΅©σ΅© π‘
σ΅© σ΅© σ΅© σ΅© σ΅© σ΅© σ΅© σ΅© β€ πΆ β« (β σ΅©σ΅©σ΅©π1 σ΅©σ΅©σ΅© + β1βπΏπ0 σ΅©σ΅©σ΅©π1 σ΅©σ΅©σ΅© + β σ΅©σ΅©σ΅©π’2 σ΅©σ΅©σ΅© + σ΅©σ΅©σ΅©π’2 σ΅©σ΅©σ΅©β1 ) ππ‘. 0
(54)
(41)
0 β€ π β€ π + 1.
(55)
Μ β ), π) = 0 and (div(π β Choosing π β πβ , note that (div(π β π Ξ β π), π) = 0, we get Μ β ) = 0. div (Ξ β π β π
Noting the estimates of πΌ1 , πΌ2 , and πΌ3 , the proof is completed.
(56)
Combing (15) with (56), we can prove (43). Μ β , together with (43), we (II) In (29), letting k = Ξ β π β π obtain
Define βπ’, π, πβπ = βπ’βπ + βπβπ + βπβπ , π‘
|βπ’, π, πβ|π = β« (βπ’βπ + βπβπ + βπβπ ) ππ‘.
(42)
Μ ,π Lemma 3. Let (π’, π, π) and (Μ π’β , π β Μ β ) be the solution of (19) and (29), respectively. If π’, π, and π are sufficiently smooth, then there exist positive constants πΆ such that (I) if π β₯ 0, then 0 β€ π β€ π + 1,
(43)
σ΅© σ΅©σ΅© π+1βπΏπ0 |βπ’, π, πβ|π , 1 β€ π β€ π + 1, (44) σ΅©σ΅©πβ π’ β π’Μβ σ΅©σ΅©σ΅© β€ πΆβ σ΅© σ΅©σ΅© π+1βπΏπ0 βπ’, π, πβπ , 1 β€ π β€ π + 1, (45) σ΅©σ΅©πβ π’π‘ β π’Μβ,π‘ σ΅©σ΅©σ΅© β€ πΆβ
σ΅© σ΅© σ΅© σ΅©σ΅© σ΅©σ΅©π’π‘ β π’Μβ,π‘ σ΅©σ΅©σ΅© β€ πΆβ (σ΅©σ΅©σ΅©π’π‘ σ΅©σ΅©σ΅©1 + βπ’, π, πβ1 + |βπ’, π, πβ|1 ) , σ΅©σ΅©σ΅©π β π Μ σ΅©σ΅©σ΅©σ΅© β€ πΆβ (βπ’, π, πβ + |βπ’, π, πβ| ) , σ΅©σ΅© βσ΅© 1 1 σ΅©σ΅© σ΅© Μ β σ΅©σ΅©σ΅© β€ πΆβ (βπ’, π, πβ1 + |βπ’, π, πβ|1 ) , σ΅©σ΅©π β π
(46) (47) (48) (49)
Μ , we get In the third equation of (29), choosing π = π
β π β π β Μ ) = (π (π β π Μ ). Μ ),π
π β π Μ β , π
β π β π (π β π β β β β
(59)
So we know Μ ) + (Ξ π β π Μ ) Μ β , π
β π β π (π β Ξ β π, π
β π β π β β β Μ ),π
π β π Μ ). = (π (π β π β β β
(60)
Μ ) Μ β , π
β π β π (Ξ β π β π β Μβ) = (c (π’β β π’Μβ ) , Ξ β π β π Μ ),π
π β π Μ ) β (π β Ξ π, π
π β π Μ ), = (π (π β π β β β β β β (61) which implies that Μ ) Μ β , π
β π β π (Ξ β π β π β
(III) if π β₯ 1, 2 β€ π β€ π + 1, then σ΅©σ΅© σ΅© π σ΅©σ΅©π’ β π’Μβ σ΅©σ΅©σ΅© β€ πΆβ (βπ’βπ + |βπ’, π, πβ|πβ1 ) ,
Μ ,Ξ π β π Μ β ) β (c (π’ β π’Μβ ) , Ξ β π β π Μ β ) = 0. (58) (π
β π β π β β
Note that (44) and (45), we obtain
(II) if π = 0, then σ΅© σ΅©σ΅© σ΅©σ΅©π’ β π’Μβ σ΅©σ΅©σ΅© β€ πΆβ (βπ’β1 + |βπ’, π, πβ|1 ) ,
(57)
Hence
0
σ΅©σ΅© Μ β )σ΅©σ΅©σ΅©σ΅© β€ πΆβπ βπβπ+1 , σ΅©σ΅©div (π β π
Μ ,Ξ π β π Μ β ) β (c (π’ β π’Μβ ) , Ξ β π β π Μ β ) = 0. (π β π β β
(50)
σ΅© σ΅©σ΅© π σ΅© σ΅© σ΅©σ΅©π’π‘ β π’Μβ,π‘ σ΅©σ΅©σ΅© β€ πΆβ (σ΅©σ΅©σ΅©π’π‘ σ΅©σ΅©σ΅©π + βπ’, π, πβπ + |βπ’, π, πβ|πβ1 ) , (51) σ΅©σ΅©σ΅©π β π Μ σ΅©σ΅©σ΅©σ΅© β€ πΆβπ (βπ’, π, πβ + |βπ’, π, πβ| ) , (52) σ΅©σ΅© βσ΅© π πβ1 σ΅©σ΅© Μ β σ΅©σ΅©σ΅©σ΅© β€ πΆβπ (βπ’, π, πβπ + |βπ’, π, πβ|πβ1 ) . (53) σ΅©σ΅©π β π
σ΅© σ΅©σ΅© Μ β σ΅©σ΅©σ΅©σ΅© β€ πΆ σ΅©σ΅©σ΅©π’ β π’Μβ σ΅©σ΅©σ΅© σ΅©σ΅©σ΅©Ξ β π β π
(62)
σ΅© σ΅© σ΅© σ΅© σ΅© Μ β σ΅©σ΅©σ΅©σ΅© . β€ πΆ (σ΅©σ΅©σ΅©π’1 σ΅©σ΅©σ΅© + σ΅©σ΅©σ΅©π’2 σ΅©σ΅©σ΅©) σ΅©σ΅©σ΅©Ξ β π β π
Μ β β, Now we estimate βΞ β π β π Μ ),Ξ π β π Μ β , Ξ β π β π Μ β ) = (π (π β π Μβ) . (π β π β β
(63)
6
Journal of Applied Mathematics By Lemma 2, if π = 0, we have that
It is easy to see that
σ΅©σ΅© Μ σ΅©σ΅©σ΅©σ΅© = σ΅©σ΅©σ΅©π σ΅©σ΅©σ΅© σ΅©σ΅©π β π βσ΅© σ΅© 1σ΅© σ΅©
2 σ΅©σ΅© Μ β σ΅©σ΅©σ΅©σ΅© σ΅©σ΅©Ξ β π β π
Μ ),Ξ π β π Μ β ) + (π (π β π Μβ) = (Ξ β π β π, Ξ β π β π β β
β€ πΆβ (βπ’β1 + βπβ1 + βπβ1
Μ β ) + (π (π β π
β π) , Ξ β π β π Μβ) = (Ξ β π β π, Ξ β π β π
π‘
+ β« (βπ’β1 + βπβ1 + βπβ1 ) ππ) .
Μ ),Ξ π β π Μβ) + (π (π
β π β π β β σ΅© σ΅© σ΅© σ΅© σ΅© σ΅© σ΅© σ΅© β€ πΆ (σ΅©σ΅©σ΅©Ξ β π β πσ΅©σ΅©σ΅© + σ΅©σ΅©σ΅©π β π
β πσ΅©σ΅©σ΅© + σ΅©σ΅©σ΅©π’1 σ΅©σ΅©σ΅© + σ΅©σ΅©σ΅©π’2 σ΅©σ΅©σ΅©) σ΅© Μ β σ΅©σ΅©σ΅©σ΅© . Γ σ΅©σ΅©σ΅©Ξ β π β π
(69)
0
If π β₯ 1, 2 β€ π β€ π + 1, we have that (64)
σ΅©σ΅© Μ σ΅©σ΅©σ΅©σ΅© β€ πΆβπ (βπ’β + βπβ + βπβ σ΅©σ΅©π β π βσ΅© π π π σ΅© (70)
π‘
By the properties of projection Ξ β , we get
+ β« (βπ’βπβ1 + βπβπβ1 βπβπβ1 ) ππ‘) . 0
σ΅©σ΅© Μ β σ΅©σ΅©σ΅©σ΅© β€ πΆβπ (βπ’βπ + βπβπ + βπβπ + σ΅©σ΅©σ΅©σ΅©π’1 σ΅©σ΅©σ΅©σ΅©) , σ΅©σ΅©Ξ β π β π
(65)
0 β€ π β€ π + 1,
Μ β β, we obtain Using the estimate of βΞ β π β π σ΅©σ΅© Μ β σ΅©σ΅©σ΅©σ΅© β€ πΆ (βπ (βπ’βπ + βπβπ + βπβπ ) + σ΅©σ΅©σ΅©σ΅©π’1 σ΅©σ΅©σ΅©σ΅©) , σ΅©σ΅©π β π
which proves (49) and (53). Μ β, Now we estimate βπ
β π β π β
0 β€ π β€ π + 1.
(71)
If π = 0, we get
Μ ),π
π β π Μ ) (π (π
β π β π β β β
σ΅©σ΅© Μ β σ΅©σ΅©σ΅©σ΅© σ΅©σ΅©π β π
Μ ,π
π β π Μ ) = (π (π β π β β β
β€ πΆβ (βπ’β1 + βπβ1 + βπβ1
Μ ) + (π (π
β π β π) , π
β π β π β Μ ) + (Ξ π β π Μ ) Μ β , π
β π β π = (π β Ξ β π, π
β π β π β β β
(72)
π‘
+ β« (βπ’β1 + βπβ1 + βπβ1 ) ππ‘) . 0
Μ ) + (π (π
β π β π) , π
β π β π β Μ ) + (c (π’ β π’Μ ) , Ξ π β π Μβ) = (π β Ξ β π, π
β π β π β β β Μ ) + (π (π
β π β π) , π
β π β π β σ΅© σ΅© σ΅© σ΅© σ΅© Μ σ΅©σ΅©σ΅©σ΅© β€ (σ΅©σ΅©σ΅©π β Ξ β πσ΅©σ΅©σ΅© + πΆ σ΅©σ΅©σ΅©π β π
β πσ΅©σ΅©σ΅©) σ΅©σ΅©σ΅©σ΅©π
β π β π βσ΅© σ΅© σ΅©σ΅© Μ β σ΅©σ΅©σ΅©σ΅© + πΆ σ΅©σ΅©σ΅©π’1 + π’2 σ΅©σ΅©σ΅© σ΅©σ΅©σ΅©Ξ β π β π σ΅© σ΅©2 σ΅© σ΅©2 σ΅© σ΅©2 σ΅© σ΅©2 β€ πΆ (σ΅©σ΅©σ΅©π β Ξ β πσ΅©σ΅©σ΅© + σ΅©σ΅©σ΅©π’1 σ΅©σ΅©σ΅© + σ΅©σ΅©σ΅©π’2 σ΅©σ΅©σ΅© + σ΅©σ΅©σ΅©π
β π β πσ΅©σ΅©σ΅© ) π σ΅© Μ σ΅©σ΅©σ΅©σ΅©2 , + 0 σ΅©σ΅©σ΅©σ΅©π
β π β π βσ΅© 2
(66)
If π β₯ 1, 2 β€ π β€ π + 1, we get σ΅©σ΅© Μ β σ΅©σ΅©σ΅©σ΅© σ΅©σ΅©π β π β€ πΆβπ (βπ’βπ + βπβπ + βπβπ
(73)
π‘
+ β« (βπ’βπβ1 + βπβπβ1 + βπβπβ1 ) ππ‘) . 0
(III) By Lemma 2, we have that σ΅©σ΅© σ΅© σ΅© σ΅© π+1βπΏπ0 σ΅©σ΅©πβ π’ β π’Μβ σ΅©σ΅©σ΅© = σ΅©σ΅©σ΅©π’1 σ΅©σ΅©σ΅© β€ πΆβ π‘
Γ β« (βπ’βπ + βπβπ + βπβπ ) ππ,
where
0
Μ ),π
π β π Μ ) β₯ π σ΅©σ΅©σ΅©σ΅©π
π β π Μ σ΅©σ΅©σ΅©σ΅©2 . (π (π
β π β π β β β 0σ΅© β βσ΅©
(67)
0 β€ π β€ π + 1,
σ΅©σ΅© σ΅© σ΅©σ΅©πβ π’π‘ β π’Μβ,π‘ σ΅©σ΅©σ΅© β€ πΆβπ+1βπΏπ0 (βπ’βπ + βπβπ + βπβπ
From (66) and (67), we know σ΅©σ΅© Μ σ΅©σ΅©σ΅©σ΅© β€ πΆ (βπ (βπ’β + βπβ + βπβ ) + σ΅©σ΅©σ΅©π’ σ΅©σ΅©σ΅©) , σ΅©σ΅©π
β π β π βσ΅© π π π σ΅© 1σ΅© σ΅© σ΅©σ΅© Μ σ΅©σ΅©σ΅©σ΅© β€ πΆ (βπ (βπ’β + βπβ + βπβ ) + σ΅©σ΅©σ΅©π’ σ΅©σ΅©σ΅©) , σ΅©σ΅©π β π βσ΅© π π π σ΅© 1σ΅© σ΅© 0 β€ π β€ π + 1.
π‘
+ β« (βπ’βπ + βπβπ + βπβπ ) ππ‘) , (68)
0
0 β€ π β€ π + 1. (74)
Journal of Applied Mathematics
7
If π = 0, we know
(I) if π = 0, then
σ΅©σ΅© σ΅© σ΅© σ΅© σ΅© σ΅© σ΅©σ΅©π’ β π’Μβ σ΅©σ΅©σ΅© β€ σ΅©σ΅©σ΅©π’ β πβ π’σ΅©σ΅©σ΅© + σ΅©σ΅©σ΅©π’1 σ΅©σ΅©σ΅© π‘
β€ πΆβ (βπ’β1 + β« (βπ’β1 + βπβ1 + βπβ1 ) ππ‘) , 0
σ΅©σ΅© σ΅© σ΅©σ΅©π’π‘ β π’Μβ,π‘ σ΅©σ΅©σ΅©
(75)
σ΅© σ΅© β€ πΆβ (σ΅©σ΅©σ΅©π’π‘ σ΅©σ΅©σ΅©1 + βπ’β1 + βπβ1 + βπβ1 π‘
+ β« (βπ’β1 + βπβ1 + βπβ1 ) ππ‘) .
σ΅© σ΅¨σ΅© σ΅©σ΅¨ σ΅©σ΅© σ΅©σ΅©π’ β π’β σ΅©σ΅©σ΅© β€ πΆβ (βπ’β1 + σ΅¨σ΅¨σ΅¨σ΅©σ΅©σ΅©π’, π’π‘ , π, πσ΅©σ΅©σ΅©σ΅¨σ΅¨σ΅¨1 ) , σ΅© σ΅© σ΅© σ΅©σ΅© σ΅©σ΅©π’π‘ β π’β,π‘ σ΅©σ΅©σ΅© β€ πΆβ (σ΅©σ΅©σ΅©π’, π’π‘ , π, πσ΅©σ΅©σ΅©1 + |βπ’, π, πβ|1 ) , σ΅© σ΅© σ΅© σ΅¨σ΅© σ΅©σ΅¨ σ΅©σ΅© σ΅©σ΅©π β πβ σ΅©σ΅©σ΅© β€ πΆβ (σ΅©σ΅©σ΅©π’, π’π‘ , π, πσ΅©σ΅©σ΅©1 + σ΅¨σ΅¨σ΅¨σ΅©σ΅©σ΅©π’, π’π‘ , π, πσ΅©σ΅©σ΅©σ΅¨σ΅¨σ΅¨1 ) , σ΅© σ΅©σ΅© σ΅© σ΅© σ΅¨σ΅© σ΅©σ΅¨ σ΅©σ΅©π β πβ σ΅©σ΅©σ΅© β€ πΆβ (σ΅©σ΅©σ΅©π’, π’π‘ , π, πσ΅©σ΅©σ΅©1 + σ΅¨σ΅¨σ΅¨σ΅©σ΅©σ΅©π’, π’π‘ , π, πσ΅©σ΅©σ΅©σ΅¨σ΅¨σ΅¨1 ) , σ΅© σ΅©σ΅© σ΅©σ΅©div (π β πβ )σ΅©σ΅©σ΅© σ΅© σ΅© σ΅¨σ΅© σ΅©σ΅¨ β€ πΆβ (βπ’β1 + σ΅©σ΅©σ΅©π’π‘ σ΅©σ΅©σ΅©1 + βπβ2 + σ΅¨σ΅¨σ΅¨σ΅©σ΅©σ΅©π’, π’π‘ , π, πσ΅©σ΅©σ΅©σ΅¨σ΅¨σ΅¨1 ) ,
(78) (79) (80) (81) (82)
0
(II) if π β₯ 1 and 2 β€ π β€ π + 1, then
If π β₯ 1, 2 β€ π β€ π + 1, we know σ΅©σ΅© σ΅© σ΅©σ΅©π’ β π’Μβ σ΅©σ΅©σ΅© π‘
β€ πΆβπ (βπ’βπ + β« (βπ’βπβ1 + βπβπβ1 + βπβπβ1 ) ππ‘) , 0
σ΅©σ΅© σ΅© σ΅©σ΅©π’π‘ β π’Μβ,π‘ σ΅©σ΅©σ΅©
σ΅© σ΅¨σ΅© σ΅©σ΅¨ σ΅©σ΅© π σ΅©σ΅©π’ β π’β σ΅©σ΅©σ΅© β€ πΆβ (βπ’βπ + σ΅¨σ΅¨σ΅¨σ΅©σ΅©σ΅©π’, π’π‘ , π, πσ΅©σ΅©σ΅©σ΅¨σ΅¨σ΅¨πβ1 ) , σ΅© σ΅©σ΅© σ΅©σ΅©π’π‘ β π’β,π‘ σ΅©σ΅©σ΅© σ΅© σ΅© β€ πΆβπ (σ΅©σ΅©σ΅©π’π‘ σ΅©σ΅©σ΅©π + βπ’βπβ1 + βπβπβ1 + βπβπβ1 π‘
σ΅© σ΅© + β« (βπ’βπβ1 + σ΅©σ΅©σ΅©π’π‘ σ΅©σ΅©σ΅©π + βπβπβ1 + βπβπβ1 ) ππ‘) ,
σ΅© σ΅© β€ πΆβπ (σ΅©σ΅©σ΅©π’π‘ σ΅©σ΅©σ΅©π + βπ’βπβ1 + βπβπβ1
0
σ΅© σ΅©σ΅© σ΅©σ΅©π β πβ σ΅©σ΅©σ΅©
π‘
+ β« (βπ’βπβ1 + βπβπβ1 + βπβπβ1 ) ππ‘) . 0
(76)
β€ πΆβπ (βπ’, π, πβπ π‘
σ΅© σ΅© + β« (σ΅©σ΅©σ΅©π’π‘ σ΅©σ΅©σ΅©π + βπ’βπβ1 + βπβπβ1 + βπβπβ1 ) ππ‘) , 0
The proof is completed. Remark 4. The estimate results of (46)β(53) are optimal. If π β₯ 1, the estimate results of (43)β(45) are superconvergent.
5. Main Result
σ΅© σ΅©σ΅© σ΅©σ΅©π β πβ σ΅©σ΅©σ΅© β€ πΆβπ ( βπ’, π, πβπ π‘
In this section, we consider error estimates for the continuous-in-time mixed finite element approximation. Define
Μ ) + (π Μ βπ )=π +π , π β πβ = (π β π β β β 1 2 σ΅©σ΅© σ΅© σ΅© σ΅© σ΅©σ΅©π’, π’π‘ , π, πσ΅©σ΅©σ΅©π = βπ’βπ + σ΅©σ΅©σ΅©π’π‘ σ΅©σ΅©σ΅©π + βπβπ + βπβπ ,
σ΅©σ΅© σ΅© σ΅©σ΅©div (π β πβ )σ΅©σ΅©σ΅© σ΅© σ΅© β€ πΆβπ (σ΅©σ΅©σ΅©π’π‘ σ΅©σ΅©σ΅©π + βπβπ + βπβπ+1 + βπ’βπβ1
π’β β π’β ) = π’3 + π’4 , π’ β π’β = (π’ β π’Μβ ) + (Μ
Μ β ) + (Μ π β πβ = (π β π πβ β πβ ) = π1 + π2 ,
σ΅© σ΅© + β« (σ΅©σ΅©σ΅©π’π‘ σ΅©σ΅©σ΅©π + βπ’βπβ1 + βπβπβ1 + βπβπβ1 ) ππ‘) , 0 (83)
π‘
(77)
σ΅© σ΅© + β« (σ΅©σ΅©σ΅©π’π‘ σ΅©σ΅©σ΅©π + βπ’βπβ1 + βπβπβ1 + βπβπβ1 ) ππ‘) . 0 (84)
π‘
σ΅¨σ΅¨σ΅©σ΅© σ΅©σ΅¨ σ΅© σ΅© σ΅¨σ΅¨σ΅©σ΅©π’, π’π‘ , π, πσ΅©σ΅©σ΅©σ΅¨σ΅¨σ΅¨π = β« (βπ’βπ + σ΅©σ΅©σ΅©π’π‘ σ΅©σ΅©σ΅©π + βπβπ + βπβπ ) ππ‘. 0 Theorem 5. Let (π’, π, π) and (π’β , πβ , πβ ) be the solution of (9) and (11), respectively. If π’, π, and π are sufficiently smooth, then there exist positive constants πΆ such that
Proof. From (9) and (19), we have the following error equation: (π’4,π‘ + π’3,π‘ , π€) + (div π2 , π€) = 0, βπ€ β πβ , 0 < π‘ β€ π,
8
Journal of Applied Mathematics (π2 , π) β (ππ2 , π) = 0,
Remark 6. The estimate results of (78)β(84) are optimal.
βπ β Ξβ , 0 < π‘ β€ π,
Acknowledgments
(π2 , k) β (π’4,π‘ + ππ’4 , div k) + (cπ’4 , k) = 0, βk β Vβ , 0 < π‘ β€ π, π’4 (0) = 0. (85) In (85), choosing π = π’4,π‘ + πβ (ππ’4 ), π = π2 , and k = π2 , we have (π2 , π2 ) + (π’4,π‘ , π’4,π‘ ) = β (π’3,π‘ , π’4,π‘ + πβ (ππ’4 )) β (π’4,π‘ , πβ (ππ’4 ))
(86)
β (cπ’4 , π2 ) . In the second equation of (85), letting π = π2 , we know π2 β€ πΆπ2 .
(87)
Further, using π-inequality to (86), we get σ΅© σ΅©2 σ΅© σ΅©2 σ΅©σ΅© σ΅©σ΅©2 σ΅©σ΅© σ΅©σ΅©2 σ΅©σ΅©π’4,π‘ σ΅©σ΅© + σ΅©σ΅©π2 σ΅©σ΅© β€ πΆ (σ΅©σ΅©σ΅©π’4 σ΅©σ΅©σ΅© + σ΅©σ΅©σ΅©π’3,π‘ σ΅©σ΅©σ΅© ) . Hence, σ΅© π‘ σ΅©σ΅© σ΅© σ΅©σ΅© σ΅©σ΅© σ΅©σ΅©σ΅© σ΅©σ΅©π’4 σ΅©σ΅© = σ΅©σ΅©β« π’4,π‘ ππσ΅©σ΅©σ΅© σ΅©σ΅© 0 σ΅©σ΅© π‘
π‘
σ΅© σ΅© σ΅© σ΅© σ΅© σ΅© β€ πΆ β« σ΅©σ΅©σ΅©π’4,π‘ σ΅©σ΅©σ΅© ππ β€ πΆ β« (σ΅©σ΅©σ΅©π’4 σ΅©σ΅©σ΅© + σ΅©σ΅©σ΅©π’3,π‘ σ΅©σ΅©σ΅©) ππ‘. 0 0
(88)
(89)
Using Gronwallβs inequality to (89), we obtain π‘
σ΅©σ΅© σ΅©σ΅© σ΅© σ΅© σ΅©σ΅©π’4 σ΅©σ΅© β€ πΆ β« σ΅©σ΅©σ΅©π’3,π‘ σ΅©σ΅©σ΅© ππ‘. 0
(90)
Further, we know π‘
σ΅©σ΅© σ΅©σ΅© σ΅©σ΅© σ΅©σ΅© σ΅©σ΅© σ΅©σ΅© σ΅© σ΅© σ΅© σ΅© σ΅©σ΅©π2 σ΅©σ΅© + σ΅©σ΅©π’4,π‘ σ΅©σ΅© + σ΅©σ΅©π2 σ΅©σ΅© β€ πΆ (σ΅©σ΅©σ΅©π’3,π‘ σ΅©σ΅©σ΅© + β« σ΅©σ΅©σ΅©π’3,π‘ σ΅©σ΅©σ΅© ππ‘) . 0
(91)
Noting the first equation of (78), we get π‘
σ΅©σ΅© σ΅© σ΅© σ΅© σ΅© σ΅© σ΅© σ΅© σ΅© σ΅© σ΅©σ΅©div π2 σ΅©σ΅©σ΅© β€ σ΅©σ΅©σ΅©π’3,π‘ σ΅©σ΅©σ΅© + σ΅©σ΅©σ΅©π’4,π‘ σ΅©σ΅©σ΅© β€ πΆ (σ΅©σ΅©σ΅©π’3,π‘ σ΅©σ΅©σ΅© + β« σ΅©σ΅©σ΅©π’3,π‘ σ΅©σ΅©σ΅© ππ‘) . (92) 0 So we have that π‘
σ΅©σ΅© σ΅© σ΅© σ΅© σ΅© σ΅© σ΅©σ΅©π’ β π’β σ΅©σ΅©σ΅© β€ σ΅©σ΅©σ΅©π’3 σ΅©σ΅©σ΅© + πΆ β« σ΅©σ΅©σ΅©π’3,π‘ σ΅©σ΅©σ΅© ππ‘, 0 π‘
σ΅©σ΅© σ΅© σ΅© σ΅© σ΅© σ΅© σ΅©σ΅©π’π‘ β π’β,π‘ σ΅©σ΅©σ΅© β€ πΆ (σ΅©σ΅©σ΅©π’3,π‘ σ΅©σ΅©σ΅© + β« σ΅©σ΅©σ΅©π’3,π‘ σ΅©σ΅©σ΅© ππ‘) , 0 π‘
σ΅©σ΅© σ΅© σ΅© σ΅© σ΅© σ΅© σ΅© σ΅© σ΅©σ΅©π β πβ σ΅©σ΅©σ΅© β€ σ΅©σ΅©σ΅©π1 σ΅©σ΅©σ΅© + πΆ (σ΅©σ΅©σ΅©π’3,π‘ σ΅©σ΅©σ΅© + β« σ΅©σ΅©σ΅©π’3,π‘ σ΅©σ΅©σ΅© ππ‘) , 0
(93)
π‘
σ΅© σ΅© σ΅©σ΅© σ΅© σ΅© σ΅© σ΅© σ΅© σ΅©σ΅©π β πβ σ΅©σ΅©σ΅© β€ σ΅©σ΅©σ΅©π1 σ΅©σ΅©σ΅© + πΆ (σ΅©σ΅©σ΅©π’3,π‘ σ΅©σ΅©σ΅© + β« σ΅©σ΅©σ΅©π’3,π‘ σ΅©σ΅©σ΅© ππ‘) , 0 σ΅©σ΅© σ΅© σ΅© σ΅© σ΅© σ΅© σ΅©σ΅©div (π β πβ )σ΅©σ΅©σ΅© β€ σ΅©σ΅©σ΅©div π1 σ΅©σ΅©σ΅© + σ΅©σ΅©σ΅©div π2 σ΅©σ΅©σ΅© . Together with the results of Lemmas 2 and 3, the proof is completed.
This work is supported by the National Natural Science Foundation of China (nos. 11171190, 11101246, and 11101247) and the Natural Science Foundation of Shandong Province (ZR2011AQ020). The authors thank the anonymous referees for their constructive comments and suggestions, which led to improvements in the presentation.
References [1] N. Li, F. Gao, and T. Zhang, βAn expanded mixed finite element method for Sobolev equation,β Journal of Computational Analysis and Applications, vol. 15, no. 3, pp. 535β543, 2013. [2] T. Sun, βA Godunov-mixed finite element method on changing meshes for the nonlinear Sobolev equations,β Abstract and Applied Analysis, vol. 2012, Article ID 413718, 19 pages, 2012. [3] R. E. Ewing, βNumerical solution of Sobolev partial differential equations,β SIAM Journal on Numerical Analysis, vol. 12, pp. 345β363, 1975. [4] D. Shi and Y. Zhang, βHigh accuracy analysis of a new nonconforming mixed finite element scheme for Sobolev equations,β Applied Mathematics and Computation, vol. 218, no. 7, pp. 3176β 3186, 2011. [5] P. G. Ciarlet, The Finite Element Method for Elliptic Equations, North-Holland, Amsterdam, The Netherlands, 1978. [6] I. Babuska, βError-bounds for finite element method,β Numerische Mathematik, vol. 16, no. 4, pp. 322β333, 1970. [7] F. Brezzi, βOn the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers,β RAIRO Mathematical Modelling and Numerical Analysis, vol. 8, no. 2, pp. 129β151, 1974. [8] R. S. Falk and J. E. Osborn, βError estimates for mixed methods,β RAIRO Analyse NumΒ΄erique, vol. 14, no. 3, pp. 249β277, 1980. [9] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, vol. 15 of Springer Series in Computational Mathematics, Springer, Berlin, Germany, 1991. [10] J. E. Roberts and J. M. Thomas, βMixed and hybrid methods,β in Handbook of Numerical Analysis, vol. 2, pp. 523β639, NorthHolland, Amsterdam, The Netherlands, 1991. [11] Z. Chen, βExpanded mixed finite element methods for linear second-order elliptic problems. I,β RAIRO Mathematical Modelling and Numerical Analysis, vol. 32, no. 4, pp. 479β499, 1998. [12] Z. Chen, βExpandedmixed finite elementmethods for quasilinear second-order elliptic problems,β RAIROMathematical Modelling and Numerical Analysis, vol. 32, no. 4, pp. 500β520, 1998. [13] L. Guo and H. Z. Chen, βAn expanded characteristic-mixed finite element method for a convection-dominated transport problem,β Journal of Computational Mathematics, vol. 23, no. 5, pp. 479β490, 2005. [14] W. Liu, H. X. Rui, and H. Guo, βA two-grid method with expanded mixed element for nonlinear reaction-diffusion equations,β Acta Mathematicae Applicatae Sinica (English Series), vol. 27, no. 3, pp. 495β502, 2011. [15] H. Che, Z. Zhou, and Z. Jiang, βH1-Galerkin expanded mixed finite element methods for nonlinear pseudo-parabolic integrodifferential equations,β Numerical Methods for Partial Differential Equations, vol. 29, no. 3, pp. 799β817, 2013.
Journal of Applied Mathematics [16] R. A. Adams, Sobolev Spaces, vol. 65, Academic Press, New York, NY, USA, 1975. [17] P. A. Raviart and J. M. Thomas, βA mixed finite element method for 2nd order elliptic problems,β in Mathematical Aspects of Finite Element Methods, vol. 606 of Lecture Notes in Mathematics, pp. 292β315, Springer, Berlin, Germany, 1977. [18] F. Brezzi, J. Douglas Jr., and L. D. Marini, βTwo families of mixed finite elements for second order elliptic problems,β Numerische Mathematik, vol. 47, no. 2, pp. 217β235, 1985. [19] F. Brezzi, J. Douglas Jr., M. Fortin, and L. D. Marini, βEfficient rectangular mixed finite elements in two and three space variables,β RAIRO Mathematical Modelling and Numerical Analysis, vol. 21, no. 4, pp. 581β604, 1987.
9
Advances in
Operations Research Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Advances in
Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Journal of
Applied Mathematics
Algebra
Hindawi Publishing Corporation http://www.hindawi.com
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Journal of
Probability and Statistics Volume 2014
The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
International Journal of
Differential Equations Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Volume 2014
Submit your manuscripts at http://www.hindawi.com International Journal of
Advances in
Combinatorics Hindawi Publishing Corporation http://www.hindawi.com
Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Journal of
Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
International Journal of Mathematics and Mathematical Sciences
Mathematical Problems in Engineering
Journal of
Mathematics Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Discrete Mathematics
Journal of
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Discrete Dynamics in Nature and Society
Journal of
Function Spaces Hindawi Publishing Corporation http://www.hindawi.com
Abstract and Applied Analysis
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
International Journal of
Journal of
Stochastic Analysis
Optimization
Hindawi Publishing Corporation http://www.hindawi.com
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Volume 2014