Hindawi Publishing Corporation Journal of Applied Mathematics Volume 2013, Article ID 934973, 9 pages http://dx.doi.org/10.1155/2013/934973
Research Article Expanded Mixed Finite Element Method for the Two-Dimensional Sobolev Equation Qing-li Zhao,1,2 Zong-cheng Li,2 and You-zheng Ding2 1 2
School of Mathematics, Shandong University, Jinan 250100, China School of Science, Shandong Jianzhu University, Jinan 250101, China
Correspondence should be addressed to Qing-li Zhao;
[email protected] Received 23 April 2013; Revised 7 June 2013; Accepted 7 June 2013 Academic Editor: Carlos Conca Copyright © 2013 Qing-li Zhao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Expanded mixed finite element method is introduced to approximate the two-dimensional Sobolev equation. This formulation expands the standard mixed formulation in the sense that three unknown variables are explicitly treated. Existence and uniqueness of the numerical solution are demonstrated. Optimal order error estimates for both the scalar and two vector functions are established.
1. Introduction In this paper, we consider the following Sobolev equation: 𝑢𝑡 (x, 𝑡) − ∇ ⋅ {𝑎 (x, 𝑡) ∇𝑢𝑡 + 𝑏1 (x, 𝑡) ∇𝑢 (x, 𝑡)} = 𝑓 (x, 𝑡) ,
(x, 𝑡) ∈ Ω × (0, 𝑇] ,
𝑢 (x, 𝑡) = 0,
(x, 𝑡) ∈ 𝜕Ω × [0, 𝑇] ,
𝑢 (x, 0) = 𝑢0 (x) , 2
(1)
x ∈ Ω,
in a bounded domain Ω ⊂ 𝑅 with Lipschitz continuous boundary 𝜕Ω. Equation (1) has a wide range of applications in many mathematical and physical problems [1, 2], for example, the percolation theory when the fluid flows through the cracks, the transfer problem of the moisture in the soil, and the heat conduction problem in different materials. So there exists great and actual significance to research Sobolev equation. Up till now, there are some different schemes studied to solve this kind of equation (see [1–4] for instance). The mixed finite element method, which is a finite element method [5] with constrained conditions, plays an important role in the research of the numerical solution for partial differential equations. Its general theory was proposed by Babuska [6] and Brezzi [7]. Falk and Osborn [8] improved their theory and expanded the adaptability of the mixed finite element method. The mixed finite element method
(see [9, 10] for instance) is wildly used for the modeling of fluid flow and transport, as it provides accurate and locally mass conservative velocities. The main motivation of the expanded mixed finite element method [11–15] is to introduce three (or more) auxiliary variables for practical problems, while the traditional finite element method and mixed finite element method can only approximate one and two variables, respectively. The expanded mixed finite element method also has some other advantages except introducing more variables. It can treat individual boundary conditions. Also, this method is suitable for differential equation with small coefficient (close to zero) which does not need to be inverted. Consequently, this method works for the problems with small diffusion or low permeability terms in fluid problems. Using this method, we can get optimal order error estimates for certain nonlinear problems, while standard mixed formulation sometimes gives only suboptimal error estimates. The object of this paper is to present the expanded mixed finite element method for the Sobolev equation. We conduct theoretical analysis to study the existence and uniqueness and obtain optimal order error estimates. The rest of this paper is organized as follows. In Section 2, the mixed weak formulation and its mixed element approximation are considered. In Section 3, we prove the existence and uniqueness of approximation form. In Section 4, some lemmas are given.
2
Journal of Applied Mathematics
In Section 5, optimal order semidiscrete error estimates are established. Throughout the paper, we will use 𝐶, with or without subscript, to denote a generic positive constant which does not depend on the discretization parameter ℎ. Vectors will be expressed in boldface. At the same time, we show a useful 𝜀Cauchy inequality 1 𝑎𝑏 ≤ 𝜀𝑎2 + 𝑏2 , 4𝜀
Let n be the unit exterior normal vector to the boundary of Ω. Then (8) is formulated in the following expanded mixed weak form: find (𝑢, 𝜆, 𝜎) ∈ 𝑊 × Λ × V, such that (𝑢𝑡 , 𝑤) + (div 𝜎, 𝑤) = (𝑓, 𝑤) , ∀𝑤 ∈ 𝑊, 0 < 𝑡 ≤ 𝑇, (𝜆, k) − (𝑢𝑡 + 𝑏𝑢, div k) + (c𝑢, k) = 0,
𝜀 > 0.
∀k ∈ V, 0 < 𝑡 ≤ 𝑇,
(2) (𝜎, 𝜏) − (𝑎𝜆, 𝜏) = 0,
2. Mixed Weak Form and Mixed Element Approximation
𝑊 = 𝐿2 (Ω) , (3)
denote the Sobolev spaces [16] endowed with the norm 1/𝑞
𝛼 𝑞 𝑓𝑚,𝑞,Ω = ( ∑ 𝐷 𝑓𝐿𝑞 (Ω) )
(4)
|𝛼|≤𝑚
(the subscript Ω will always be omitted). Let 𝐻𝑚 (Ω) = 𝑊𝑚,2 (Ω) with the norm ‖ ⋅ ‖𝑚 = ‖ ⋅ ‖𝑚,2 . The notation ‖ ⋅ ‖ will mean ‖ ⋅ ‖𝐿2 (Ω) or ‖ ⋅ ‖𝐿2 (Ω)2 . We denote by ( , ) the inner product in either 𝐿2 (Ω) or 𝐿2 (Ω)2 ; that is,
Ω
(𝜉, 𝜂) = ∫ 𝜉 ⋅ 𝜂𝑑x. Ω
(5)
𝜕Ω
𝜎 = 𝑎𝜆 = −𝑎∇𝑢𝑡 − 𝑏1 ∇𝑢.
(𝑢ℎ,𝑡 , 𝑤) + (div 𝜎ℎ , 𝑤) = (𝑓, 𝑤) , ∀𝑤 ∈ 𝑊ℎ , 0 < 𝑡 ≤ 𝑇, (𝜆ℎ , k) − (𝑢ℎ,𝑡 + 𝑏𝑢ℎ , div k) + (c𝑢ℎ , k) = 0,
(6)
(7)
∀k ∈ Vℎ , 0 < 𝑡 ≤ 𝑇, (𝜎ℎ , 𝜏) − (𝑎𝜆ℎ , 𝜏) = 0,
(x, 𝑡) ∈ Ω × (0, 𝑇] ,
𝑢 (x, 𝑡) = 0,
(x, 𝑡) ∈ 𝜕Ω × (0, 𝑇] ,
𝑢 (x, 0) = 𝑢0 (x) ,
x ∈ Ω.
𝑢0 , 𝑤) , (𝑢 (0) , 𝑤) = (̃
∀𝑤 ∈ 𝑊ℎ ,
where
(12)
Vℎ (𝐸) = {k ∈ V : k|𝐸 ∈ Vℎ (𝐸) , ∀𝐸 ∈ 𝑇ℎ } .
(x, 𝑡) ∈ Ω × (0, 𝑇] ,
𝜎 − 𝑎𝜆 = 0,
∀𝜏 ∈ Λℎ , 0 < 𝑡 ≤ 𝑇,
Λℎ (𝐸) = {𝜏 ∈ Λ : 𝜏|𝐸 ∈ Vℎ (𝐸) , ∀𝐸 ∈ 𝑇ℎ } ,
(x, 𝑡) ∈ Ω × (0, 𝑇] ,
𝜆 + ∇𝑢𝑡 − ∇ (𝑏𝑢) + c𝑢 = 0,
(11)
𝑊ℎ (𝐸) = {𝜔 ∈ 𝑊 : 𝜔|𝐸 ∈ 𝑊ℎ (𝐸) , ∀𝐸 ∈ 𝑇ℎ } ,
Letting c = −∇𝑏, we rewrite (1) as the following system: 𝑢𝑡 + ∇ ⋅ 𝜎 = 𝑓,
(10)
Let 𝑇ℎ be a quasiregular polygonalization of Ω (by triangles or rectangles), with ℎ being the maximum diameter of the elements of the polygonalization. Let 𝑊ℎ × Λℎ × Vℎ be a conforming mixed element space with index 𝑘 and discretization parameter ℎ. 𝑊ℎ × Λℎ × Vℎ is an approximation to 𝑊 × Λ × V. There are many conforming (or compatible) mixed element function spaces such as Raviart-Thomas elements [17], BDFM elements [18, 19]. Some RT type mixed elements are listed in Table 1. Here, 𝑃𝑘 (𝑇) is the polynomial up to 𝑘 order in two-dimensional domain used in triangle, while 𝑄𝑘,𝑙 (𝑇) is the polynomial up to 𝑘, 𝑙 in each dimension used in rectangle. Replacing the three variables by their approximation, we get the expanded mixed finite element approximation problem: find (𝑢ℎ , 𝜆ℎ , 𝜎ℎ ) ∈ 𝑊ℎ × Λℎ × Vℎ , such that
To formulate the weak form, let 𝑏 = 𝑏1 /𝑎; we introduce two vector variables 𝜆 = −∇𝑢𝑡 − 𝑏∇𝑢,
Λ = 𝐿2 (Ω)2 ,
V = 𝐻 (div, Ω) = {k ∈ 𝐿2 (Ω)2 | ∇ ⋅ k ∈ 𝐿2 (Ω)} .
The notation ⟨, ⟩ denotes the 𝐿2 -inner product on the boundary of Ω ⟨𝜉, 𝜂⟩ = ∫ 𝜉𝜂𝑑𝑠.
∀𝑤 ∈ 𝑊,
where
For 1 ≤ 𝑞 ≤ +∞ and 𝑚 any nonnegative integer, let
(𝜉, 𝜂) = ∫ 𝜉𝜂𝑑x ,
∀𝜏 ∈ Λ, 0 < 𝑡 ≤ 𝑇,
(𝑢 (0) , 𝑤) = (𝑢0 , 𝑤) ,
𝑊𝑚,𝑞 (Ω) = {𝑓 ∈ 𝐿𝑞 (Ω) | 𝐷𝛼 𝑓 ∈ 𝐿𝑞 (Ω) , |𝛼| ≤ 𝑚}
(9)
(8)
The error analysis next makes use of three projection operators. The first operator is the Raviart-Thomas projection (or Brezzi-Douglas-Marini projection) Πℎ : V → Vℎ ; Πℎ satisfies (∇ ⋅ (k − Πℎ k) , 𝜔ℎ ) = 0,
∀𝜔ℎ ∈ 𝑊ℎ .
(13)
Journal of Applied Mathematics
3 By (20), it is easy to see that
Table 1: Some RT type mixed elements. Dim 2D 2D
Element Triangle Rectangle
Vℎ (𝐸) RT𝑘 (𝑇) = 𝑃𝑘 (𝐸)2 ⊕ x𝑃𝑘 (𝐸) RT[𝑘] (𝑇) = 𝑄𝑘+1,𝑘 (𝐸) ⊕ 𝑄𝑘,𝑘+1 (𝐸)
𝑊ℎ (𝐸) 𝑃𝑘 (𝐸) 𝑄𝑘,𝑘 (𝐸)
𝑟 ∇ ⋅ (k − Πℎ k)𝑟 ≤ 𝐶ℎ ‖∇ ⋅ k‖𝑟 ,
1 ≤ 𝑟 ≤ 𝑘 + 1, 2 0 ≤ 𝑟 ≤ 𝑘 + 1.
(14)
(𝜏 − 𝑅ℎ 𝜏, 𝜏ℎ ) = 0,
∀𝜔 ∈ 𝑊, kℎ ∈ Vℎ , ∀𝜏 ∈ Λ, 𝜏ℎ ∈ Λℎ .
Choosing 𝜔 = div 𝜎ℎ , k = 𝜎ℎ , and 𝜏 = 𝜆ℎ in (19), we get
In the third equation of (19), letting 𝜏 = 𝜎ℎ and 𝜏 = 𝜆ℎ , respectively, then 𝜎ℎ ≤ 𝐶 𝜆ℎ , 𝜆ℎ ≤ 𝐶 𝜎ℎ .
(15)
The other two operators are the standard 𝐿2 -projection [5] 𝑃ℎ and 𝑅ℎ onto 𝑊ℎ and Λℎ , respectively, (𝜔 − 𝑃ℎ 𝜔, ∇ ⋅ kℎ ) = 0,
(16)
2 2 2 𝑎0 𝜆ℎ + div 𝜎ℎ ≤ 𝐶𝑢ℎ +
(18)
In this section, we consider the existence and uniqueness of the solution of (11).
Proof. In fact, this equation is linear; it suffices to show that the associated homogeneous system (𝑢ℎ,𝑡 , 𝑤) + (div 𝜎ℎ , 𝑤) = 0,
(27)
From (27), we know 𝑡 𝑡 𝑡 𝑢ℎ = ∫ 𝑢ℎ,𝑡 𝑑𝑡 ≤ 𝐶 ∫ 𝑢ℎ,𝑡 𝑑𝑡 ≤ 𝐶 ∫ 𝑢ℎ 𝑑𝑡. 0 0 0
(28)
Using Gronwall’s inequality to (28), we can prove 𝑢ℎ = 0. Further, from (26) and (23), we know that 𝜆ℎ = 0, 𝜎ℎ = 0. The proof is completed.
In the study of parabolic equations, we usually introduce a mixed elliptic projection associated with our equations. ̃ ,𝜎 Define a map: find (̃ 𝑢ℎ , 𝜆 ℎ ̃ ℎ ) ∈ 𝑊ℎ × Λℎ × Vℎ , such that ̃ ℎ ) , 𝑤) = 0, (div (𝜎 − 𝜎
∀𝑤 ∈ 𝑊ℎ , 0 < 𝑡 ≤ 𝑇,
∀𝑤 ∈ 𝑊ℎ , 0 < 𝑡 ≤ 𝑇,
̃ , k) − (𝑢 − 𝑢̃ + 𝑏 (𝑢 − 𝑢̃ ) , div k) + (c (𝑢 − 𝑢̃ ) , k) (𝜆 − 𝜆 ℎ 𝑡 ℎ,𝑡 ℎ ℎ
(𝜆ℎ , k) − (𝑢ℎ,𝑡 + 𝑏𝑢ℎ , div k) + (c𝑢ℎ , k) = 0,
= 0, (19)
(𝜎ℎ , 𝜏) − (𝑎𝜆ℎ , 𝜏) = 0,
∀k ∈ Vℎ , 0 < 𝑡 ≤ 𝑇,
̃ ) , 𝜏) = 0, ̃ ℎ , 𝜏) − (𝑎 (𝜆 − 𝜆 (𝜎 − 𝜎 ℎ (𝑢 (0) − 𝑢̃ℎ (0) , 𝑤) = 0,
∀𝜏 ∈ Λℎ , 0 < 𝑡 ≤ 𝑇,
∀𝜏 ∈ Λℎ , 0 < 𝑡 ≤ 𝑇, ∀𝑤 ∈ 𝑊ℎ . (29)
∀𝑤 ∈ 𝑊ℎ ,
has only the trivial solution. In the first equation of (19), if we take 𝜔 = 𝑢ℎ,𝑡 and 𝜔 = div 𝜎ℎ , respectively, then we have that 𝑢ℎ,𝑡 ≤ div 𝜎ℎ , div 𝜎ℎ ≤ 𝑢ℎ,𝑡 .
(26)
4. Some Lemmas
Lemma 1. Equation (11) has a unique solution.
(𝑢 (0) , 𝑤) = 0,
1 2 𝑎 2 div 𝜎ℎ + 0 𝜆ℎ . 2 2 (25)
𝜆ℎ ≤ 𝐶 𝑢ℎ , 𝑢ℎ,𝑡 ≤ 𝐶 𝑢ℎ .
(17)
3. Existence and Uniqueness of Approximation Form
∀k ∈ Vℎ , 0 < 𝑡 ≤ 𝑇,
(24)
Note that (21), we deserve
The two projections Πℎ and 𝑃ℎ preserve the commuting property div ∘ Πℎ = 𝑃ℎ ∘ div : 𝐻1 (Ω)2 → 𝑊ℎ .
(23)
Using the 𝜀-Cauchy inequality to (22), we have
They have the approximation properties 𝑟 𝜔 − 𝑃ℎ 𝜔 ≤ 𝐶ℎ ‖𝜔‖𝑟 , 0 ≤ 𝑟 ≤ 𝑘 + 1, 𝑟 𝜏 − 𝑅ℎ 𝜏 ≤ 𝐶ℎ 𝜇𝑟 , 0 ≤ 𝑟 ≤ 𝑘 + 1.
(21)
(𝑎𝜆ℎ , 𝜆ℎ ) + (div 𝜎ℎ , div 𝜎ℎ ) = (𝑏𝑢ℎ , div 𝜎ℎ ) − (c𝑢ℎ , 𝜎ℎ ) . (22)
The following approximation properties are well known. 𝑟 k − Πℎ k ≤ 𝐶ℎ ‖k‖𝑟 ,
div 𝜎ℎ = 𝑢ℎ,𝑡 .
(20)
Similarly to Lemma 1, we can prove that system (29) has a unique solution. ̃ ,𝜎 Now we give some error estimates of (̃ 𝑢ℎ , 𝜆 ℎ ̃ ℎ ). Define 𝑢 − 𝑢̃ℎ = (𝑝ℎ 𝑢 − 𝑢̃ℎ ) + (𝑢 − 𝑝ℎ 𝑢) = 𝑢1 + 𝑢2 , ̃ , 𝜆1 = 𝜆 − 𝜆 ℎ
̃ℎ. 𝜎1 = 𝜎 − 𝜎
(30)
4
Journal of Applied Mathematics
System (29) can be rewritten as follows:
It is easy to see that 𝐼1 = (𝜆1 , Πℎ (𝑎∇𝜙))
(div 𝜎1 , 𝑤) = 0,
= (𝜆1 , Πℎ (𝑎∇𝜙) − 𝑎∇𝜙) + (𝜆1 , 𝑎∇𝜙)
∀𝑤 ∈ 𝑊ℎ ,
(𝜆1 , k) − (𝑢1,𝑡 + 𝑏 (𝑢1 + 𝑢2 ) , div k) + (c (𝑢1 + 𝑢2 ) , k) = 0, ∀k ∈ Vℎ , (𝜎1 , 𝜏) − (𝑎𝜆1 , 𝜏) = 0,
∀𝜏 ∈ Λℎ .
(𝑢 (0) − 𝑢̃ℎ (0) , 𝑤) = 0,
∀𝑤 ∈ 𝑊ℎ .
𝐸2 = (𝑎𝜆1 , ∇ (𝜙 − 𝑝ℎ 𝜙)) + (𝑎𝜆1 , ∇ (𝑝ℎ 𝜙))
Lemma 2. Let (𝑢1 , 𝜆1 , 𝜎1 ) be the solution of system (31). If 𝑢, 𝜆, and 𝜎 are sufficiently smooth, then there exist positive constants 𝐶 such that 𝑡
1−𝛿 𝑢1 ≤ 𝐶 ∫ (ℎ 𝜆1 + ℎ 𝑘0 𝜆1 + ℎ 𝑢2 + 𝑢2 −1 ) 𝑑𝑡, 0 1−𝛿 𝑢1,𝑡 ≤ 𝐶 (ℎ 𝜆1 + ℎ 𝑘0 𝜆1 + ℎ 𝑢2 + 𝑢2 −1 + 𝑢1 ) , (32)
where 𝛿𝑘0 = 0 for 𝑘 = 0, and 𝛿𝑘0 = 0 for 𝑘 ≥ 1. Proof. Let 𝜙 ∈ 𝐻 following problem:
= (𝑎𝜆1 , ∇ (𝜙 − 𝑝ℎ 𝜙)) + (𝜎1 , ∇ (𝑝ℎ 𝜙))
(36)
= (𝑎𝜆1 , ∇ (𝜙 − 𝑝ℎ 𝜙)) − (div 𝜎1 , (𝑝ℎ 𝜙))
Now we consider the estimates of 𝑢1 and 𝑢1,𝑡 .
(Ω) ⋂ 𝐻01 (Ω)
= 𝐸1 + 𝐸2 , 𝐸1 ≤ 𝐶ℎ 𝜆1 𝜙2 ≤ 𝐶ℎ 𝜆1 𝜓 ,
(31)
2
= (𝜆1 , Πℎ (𝑎∇𝜙) − 𝑎∇𝜙) + (𝑎𝜆1 , ∇𝜙)
be the solution of the
= (𝑎𝜆1 , ∇ (𝜙 − 𝑝ℎ 𝜙)) ≤ 𝐶 𝜆1 ∇ (𝜙 − 𝑝ℎ 𝜙) ≤ 𝐶ℎ1−𝛿𝑘𝑜 𝜙2 𝜆1 ≤ 𝐶ℎ1−𝛿𝑘𝑜 𝜓 𝜆1 . Now, we estimate 𝐼2 , (c𝑢1 , Πℎ (𝑎∇𝜙)) ≤ 𝐶 𝑢1 Πℎ (𝑎∇𝜙) − 𝑎∇𝜙 + 𝑎∇𝜙 ≤ 𝐶 𝑢1 (ℎ ∇𝜙 + ∇𝜙) ≤ 𝐶 𝑢1 𝜓 ,
(37)
(c𝑢2 , Πℎ (𝑎∇𝜙)) = (c𝑢2 , Πℎ (𝑎∇𝜙) − 𝑎∇𝜙) + (c𝑢2 , 𝑎∇𝜙)
∇ ⋅ (𝑎∇𝜙) = 𝜓,
∀𝑥 ∈ Ω,
𝜙|𝜕Ω = 0.
≤ 𝐶 (ℎ 𝑢2 + 𝑢2 −1 ) 𝜓 . (33)
We turn to consider 𝐼3 , (−𝑏𝑢1 , div Πℎ (𝑎∇𝜙)) ≤ 𝐶 𝑢1 ∇𝜙 ≤ 𝐶 𝑢1 𝜓 ,
Then we know
(−𝑏𝑢2 , div Πℎ (𝑎∇𝜙)) 𝜙2 ≤ 𝐶 𝜓 .
(34)
≤ − ((𝑏 − 𝑝ℎ0 𝑏) 𝑢2 , div Πℎ (𝑎∇𝜙)) −
For 0 < 𝑡 ≤ 𝑇, from the second equation of (31), we have that (𝑢1,𝑡 , 𝜓) = (𝑢1,𝑡 , div (𝑎∇𝜙)) = (𝑢1,𝑡 , div Πℎ (𝑎∇𝜙)) = (𝜆 1 , Πℎ (𝑎∇𝜙)) + (c (𝑢1 + 𝑢2 ) , Πℎ (𝑎∇𝜙)) (35) − (𝑏 (𝑢1 + 𝑢2 ) , div Πℎ (𝑎∇𝜙)) = 𝐼1 + 𝐼2 + 𝐼3 .
∑ ((𝑝ℎ0 𝑏) 𝑢2 , div Πℎ 𝑒∈𝑇ℎ
(38)
(𝑎∇𝜙))𝑒
= − ((𝑏 − 𝑝ℎ0 𝑏) 𝑢2 , div Πℎ (𝑎∇𝜙)) ≤ 𝐶ℎ 𝑢2 𝜓 , where 𝑝ℎ0 𝑏 is the piecewise constant interpolation of function 𝑏. Using the previous estimates, we obtain 𝑢1,𝑡 ≤ 𝐶 (ℎ 𝜆1 + ℎ1−𝛿𝑘0 𝜆1 + ℎ 𝑢2 + 𝑢2 −1 + 𝑢1 ) . (39)
Journal of Applied Mathematics
5 Proof. For 0 < 𝑡 ≤ 𝑇, the proof proceeds in three steps as follows. (I) In the first equation of (29), taking 𝜔 = div 𝜎1 , we know
So we deserve 𝑡 𝑢1 = ∫ 𝑢1,𝑡 𝑑𝑡 0 𝑡
(div 𝜎1 , div 𝜎1 )
≤ 𝐶 ∫ 𝑢1,𝑡 𝑑𝑡 0
(40)
= (div 𝜎1 , div (𝜎 − Πℎ 𝜎))
𝑡
≤ 𝐶 ∫ (ℎ 𝜆1 + ℎ1−𝛿𝑘0 𝜆1 + ℎ 𝑢2 0
≤ div 𝜎1 div (𝜎 − Πℎ 𝜎) ,
+𝑢2 −1 + 𝑢1 ) 𝑑𝑡.
which implies that div 𝜎1 ≤ div (𝜎 − Πℎ 𝜎)
Applying Gronwall’s inequality to (40), we have
≤ 𝐶ℎ𝑟 ‖𝜎‖𝑟+1 ,
𝑢1 𝑡
≤ 𝐶 ∫ (ℎ 𝜆1 + ℎ1−𝛿𝑘0 𝜆1 + ℎ 𝑢2 + 𝑢2 −1 ) 𝑑𝑡. 0
(54)
(41)
0 ≤ 𝑟 ≤ 𝑘 + 1.
(55)
̃ ℎ ), 𝜔) = 0 and (div(𝜎 − Choosing 𝜔 ∈ 𝑊ℎ , note that (div(𝜎 − 𝜎 Πℎ 𝜎), 𝜔) = 0, we get ̃ ℎ ) = 0. div (Πℎ 𝜎 − 𝜎
Noting the estimates of 𝐼1 , 𝐼2 , and 𝐼3 , the proof is completed.
(56)
Combing (15) with (56), we can prove (43). ̃ ℎ , together with (43), we (II) In (29), letting k = Πℎ 𝜎 − 𝜎 obtain
Define ‖𝑢, 𝜆, 𝜎‖𝑟 = ‖𝑢‖𝑟 + ‖𝜆‖𝑟 + ‖𝜎‖𝑟 , 𝑡
|‖𝑢, 𝜆, 𝜎‖|𝑟 = ∫ (‖𝑢‖𝑟 + ‖𝜆‖𝑟 + ‖𝜎‖𝑟 ) 𝑑𝑡.
(42)
̃ ,𝜎 Lemma 3. Let (𝑢, 𝜆, 𝜎) and (̃ 𝑢ℎ , 𝜆 ℎ ̃ ℎ ) be the solution of (19) and (29), respectively. If 𝑢, 𝜆, and 𝜎 are sufficiently smooth, then there exist positive constants 𝐶 such that (I) if 𝑘 ≥ 0, then 0 ≤ 𝑟 ≤ 𝑘 + 1,
(43)
𝑟+1−𝛿𝑘0 |‖𝑢, 𝜆, 𝜎‖|𝑟 , 1 ≤ 𝑟 ≤ 𝑘 + 1, (44) 𝑝ℎ 𝑢 − 𝑢̃ℎ ≤ 𝐶ℎ 𝑟+1−𝛿𝑘0 ‖𝑢, 𝜆, 𝜎‖𝑟 , 1 ≤ 𝑟 ≤ 𝑘 + 1, (45) 𝑝ℎ 𝑢𝑡 − 𝑢̃ℎ,𝑡 ≤ 𝐶ℎ
𝑢𝑡 − 𝑢̃ℎ,𝑡 ≤ 𝐶ℎ (𝑢𝑡 1 + ‖𝑢, 𝜆, 𝜎‖1 + |‖𝑢, 𝜆, 𝜎‖|1 ) , 𝜆 − 𝜆 ̃ ≤ 𝐶ℎ (‖𝑢, 𝜆, 𝜎‖ + |‖𝑢, 𝜆, 𝜎‖| ) , ℎ 1 1 ̃ ℎ ≤ 𝐶ℎ (‖𝑢, 𝜆, 𝜎‖1 + |‖𝑢, 𝜆, 𝜎‖|1 ) , 𝜎 − 𝜎
(46) (47) (48) (49)
̃ , we get In the third equation of (29), choosing 𝜏 = 𝑅ℎ 𝜆 − 𝜆 ℎ ̃ ) = (𝑎 (𝜆 − 𝜆 ̃ ). ̃ ),𝑅 𝜆 − 𝜆 ̃ ℎ , 𝑅ℎ 𝜆 − 𝜆 (𝜎 − 𝜎 ℎ ℎ ℎ ℎ
(59)
So we know ̃ ) + (Π 𝜎 − 𝜎 ̃ ) ̃ ℎ , 𝑅ℎ 𝜆 − 𝜆 (𝜎 − Πℎ 𝜎, 𝑅ℎ 𝜆 − 𝜆 ℎ ℎ ℎ ̃ ),𝑅 𝜆 − 𝜆 ̃ ). = (𝑎 (𝜆 − 𝜆 ℎ ℎ ℎ
(60)
̃ ) ̃ ℎ , 𝑅ℎ 𝜆 − 𝜆 (Πℎ 𝜎 − 𝜎 ℎ ̃ℎ) = (c (𝑢ℎ − 𝑢̃ℎ ) , Πℎ 𝜎 − 𝜎 ̃ ),𝑅 𝜆 − 𝜆 ̃ ) − (𝜎 − Π 𝜎, 𝑅 𝜆 − 𝜆 ̃ ), = (𝑎 (𝜆 − 𝜆 ℎ ℎ ℎ ℎ ℎ ℎ (61) which implies that ̃ ) ̃ ℎ , 𝑅ℎ 𝜆 − 𝜆 (Πℎ 𝜎 − 𝜎 ℎ
(III) if 𝑘 ≥ 1, 2 ≤ 𝑟 ≤ 𝑘 + 1, then 𝑟 𝑢 − 𝑢̃ℎ ≤ 𝐶ℎ (‖𝑢‖𝑟 + |‖𝑢, 𝜆, 𝜎‖|𝑟−1 ) ,
̃ ,Π 𝜎 − 𝜎 ̃ ℎ ) − (c (𝑢 − 𝑢̃ℎ ) , Πℎ 𝜎 − 𝜎 ̃ ℎ ) = 0. (58) (𝑅ℎ 𝜆 − 𝜆 ℎ ℎ
Note that (44) and (45), we obtain
(II) if 𝑘 = 0, then 𝑢 − 𝑢̃ℎ ≤ 𝐶ℎ (‖𝑢‖1 + |‖𝑢, 𝜆, 𝜎‖|1 ) ,
(57)
Hence
0
̃ ℎ ) ≤ 𝐶ℎ𝑟 ‖𝜎‖𝑟+1 , div (𝜎 − 𝜎
̃ ,Π 𝜎 − 𝜎 ̃ ℎ ) − (c (𝑢 − 𝑢̃ℎ ) , Πℎ 𝜎 − 𝜎 ̃ ℎ ) = 0. (𝜆 − 𝜆 ℎ ℎ
(50)
𝑟 𝑢𝑡 − 𝑢̃ℎ,𝑡 ≤ 𝐶ℎ (𝑢𝑡 𝑟 + ‖𝑢, 𝜆, 𝜎‖𝑟 + |‖𝑢, 𝜆, 𝜎‖|𝑟−1 ) , (51) 𝜆 − 𝜆 ̃ ≤ 𝐶ℎ𝑟 (‖𝑢, 𝜆, 𝜎‖ + |‖𝑢, 𝜆, 𝜎‖| ) , (52) ℎ 𝑟 𝑟−1 ̃ ℎ ≤ 𝐶ℎ𝑟 (‖𝑢, 𝜆, 𝜎‖𝑟 + |‖𝑢, 𝜆, 𝜎‖|𝑟−1 ) . (53) 𝜎 − 𝜎
̃ ℎ ≤ 𝐶 𝑢 − 𝑢̃ℎ Πℎ 𝜎 − 𝜎
(62)
̃ ℎ . ≤ 𝐶 (𝑢1 + 𝑢2 ) Πℎ 𝜎 − 𝜎
̃ ℎ ‖, Now we estimate ‖Πℎ 𝜎 − 𝜎 ̃ ),Π 𝜎 − 𝜎 ̃ ℎ , Πℎ 𝜎 − 𝜎 ̃ ℎ ) = (𝑎 (𝜆 − 𝜆 ̃ℎ) . (𝜎 − 𝜎 ℎ ℎ
(63)
6
Journal of Applied Mathematics By Lemma 2, if 𝑘 = 0, we have that
It is easy to see that
̃ = 𝜆 𝜆 − 𝜆 ℎ 1
2 ̃ ℎ Πℎ 𝜎 − 𝜎
̃ ),Π 𝜎 − 𝜎 ̃ ℎ ) + (𝑎 (𝜆 − 𝜆 ̃ℎ) = (Πℎ 𝜎 − 𝜎, Πℎ 𝜎 − 𝜎 ℎ ℎ
≤ 𝐶ℎ (‖𝑢‖1 + ‖𝜆‖1 + ‖𝜎‖1
̃ ℎ ) + (𝑎 (𝜆 − 𝑅ℎ 𝜆) , Πℎ 𝜎 − 𝜎 ̃ℎ) = (Πℎ 𝜎 − 𝜎, Πℎ 𝜎 − 𝜎
𝑡
+ ∫ (‖𝑢‖1 + ‖𝜆‖1 + ‖𝜎‖1 ) 𝑑𝜏) .
̃ ),Π 𝜎 − 𝜎 ̃ℎ) + (𝑎 (𝑅ℎ 𝜆 − 𝜆 ℎ ℎ ≤ 𝐶 (Πℎ 𝜎 − 𝜎 + 𝜆 − 𝑅ℎ 𝜆 + 𝑢1 + 𝑢2 ) ̃ ℎ . × Πℎ 𝜎 − 𝜎
(69)
0
If 𝑘 ≥ 1, 2 ≤ 𝑟 ≤ 𝑘 + 1, we have that (64)
̃ ≤ 𝐶ℎ𝑟 (‖𝑢‖ + ‖𝜆‖ + ‖𝜎‖ 𝜆 − 𝜆 ℎ 𝑟 𝑟 𝑟 (70)
𝑡
By the properties of projection Πℎ , we get
+ ∫ (‖𝑢‖𝑟−1 + ‖𝜆‖𝑟−1 ‖𝜎‖𝑟−1 ) 𝑑𝑡) . 0
̃ ℎ ≤ 𝐶ℎ𝑟 (‖𝑢‖𝑟 + ‖𝜆‖𝑟 + ‖𝜎‖𝑟 + 𝑢1 ) , Πℎ 𝜎 − 𝜎
(65)
0 ≤ 𝑟 ≤ 𝑘 + 1,
̃ ℎ ‖, we obtain Using the estimate of ‖Πℎ 𝜎 − 𝜎 ̃ ℎ ≤ 𝐶 (ℎ𝑟 (‖𝑢‖𝑟 + ‖𝜆‖𝑟 + ‖𝜎‖𝑟 ) + 𝑢1 ) , 𝜎 − 𝜎
which proves (49) and (53). ̃ ‖, Now we estimate ‖𝑅ℎ 𝜆 − 𝜆 ℎ
0 ≤ 𝑟 ≤ 𝑘 + 1.
(71)
If 𝑘 = 0, we get
̃ ),𝑅 𝜆 − 𝜆 ̃ ) (𝑎 (𝑅ℎ 𝜆 − 𝜆 ℎ ℎ ℎ
̃ ℎ 𝜎 − 𝜎
̃ ,𝑅 𝜆 − 𝜆 ̃ ) = (𝑎 (𝜆 − 𝜆 ℎ ℎ ℎ
≤ 𝐶ℎ (‖𝑢‖1 + ‖𝜆‖1 + ‖𝜎‖1
̃ ) + (𝑎 (𝑅ℎ 𝜆 − 𝜆) , 𝑅ℎ 𝜆 − 𝜆 ℎ ̃ ) + (Π 𝜎 − 𝜎 ̃ ) ̃ ℎ , 𝑅ℎ 𝜆 − 𝜆 = (𝜎 − Πℎ 𝜎, 𝑅ℎ 𝜆 − 𝜆 ℎ ℎ ℎ
(72)
𝑡
+ ∫ (‖𝑢‖1 + ‖𝜆‖1 + ‖𝜎‖1 ) 𝑑𝑡) . 0
̃ ) + (𝑎 (𝑅ℎ 𝜆 − 𝜆) , 𝑅ℎ 𝜆 − 𝜆 ℎ ̃ ) + (c (𝑢 − 𝑢̃ ) , Π 𝜎 − 𝜎 ̃ℎ) = (𝜎 − Πℎ 𝜎, 𝑅ℎ 𝜆 − 𝜆 ℎ ℎ ℎ ̃ ) + (𝑎 (𝑅ℎ 𝜆 − 𝜆) , 𝑅ℎ 𝜆 − 𝜆 ℎ ̃ ≤ (𝜎 − Πℎ 𝜎 + 𝐶 𝜆 − 𝑅ℎ 𝜆) 𝑅ℎ 𝜆 − 𝜆 ℎ ̃ ℎ + 𝐶 𝑢1 + 𝑢2 Πℎ 𝜎 − 𝜎 2 2 2 2 ≤ 𝐶 (𝜎 − Πℎ 𝜎 + 𝑢1 + 𝑢2 + 𝑅ℎ 𝜆 − 𝜆 ) 𝑐 ̃ 2 , + 0 𝑅ℎ 𝜆 − 𝜆 ℎ 2
(66)
If 𝑘 ≥ 1, 2 ≤ 𝑟 ≤ 𝑘 + 1, we get ̃ ℎ 𝜎 − 𝜎 ≤ 𝐶ℎ𝑟 (‖𝑢‖𝑟 + ‖𝜆‖𝑟 + ‖𝜎‖𝑟
(73)
𝑡
+ ∫ (‖𝑢‖𝑟−1 + ‖𝜆‖𝑟−1 + ‖𝜎‖𝑟−1 ) 𝑑𝑡) . 0
(III) By Lemma 2, we have that 𝑟+1−𝛿𝑘0 𝑝ℎ 𝑢 − 𝑢̃ℎ = 𝑢1 ≤ 𝐶ℎ 𝑡
× ∫ (‖𝑢‖𝑟 + ‖𝜆‖𝑟 + ‖𝜎‖𝑟 ) 𝑑𝜏,
where
0
̃ ),𝑅 𝜆 − 𝜆 ̃ ) ≥ 𝑐 𝑅 𝜆 − 𝜆 ̃ 2 . (𝑎 (𝑅ℎ 𝜆 − 𝜆 ℎ ℎ ℎ 0 ℎ ℎ
(67)
0 ≤ 𝑟 ≤ 𝑘 + 1,
𝑝ℎ 𝑢𝑡 − 𝑢̃ℎ,𝑡 ≤ 𝐶ℎ𝑟+1−𝛿𝑘0 (‖𝑢‖𝑟 + ‖𝜆‖𝑟 + ‖𝜎‖𝑟
From (66) and (67), we know ̃ ≤ 𝐶 (ℎ𝑟 (‖𝑢‖ + ‖𝜆‖ + ‖𝜎‖ ) + 𝑢 ) , 𝑅ℎ 𝜆 − 𝜆 ℎ 𝑟 𝑟 𝑟 1 ̃ ≤ 𝐶 (ℎ𝑟 (‖𝑢‖ + ‖𝜆‖ + ‖𝜎‖ ) + 𝑢 ) , 𝜆 − 𝜆 ℎ 𝑟 𝑟 𝑟 1 0 ≤ 𝑟 ≤ 𝑘 + 1.
𝑡
+ ∫ (‖𝑢‖𝑟 + ‖𝜆‖𝑟 + ‖𝜎‖𝑟 ) 𝑑𝑡) , (68)
0
0 ≤ 𝑟 ≤ 𝑘 + 1. (74)
Journal of Applied Mathematics
7
If 𝑘 = 0, we know
(I) if 𝑘 = 0, then
𝑢 − 𝑢̃ℎ ≤ 𝑢 − 𝑝ℎ 𝑢 + 𝑢1 𝑡
≤ 𝐶ℎ (‖𝑢‖1 + ∫ (‖𝑢‖1 + ‖𝜆‖1 + ‖𝜎‖1 ) 𝑑𝑡) , 0
𝑢𝑡 − 𝑢̃ℎ,𝑡
(75)
≤ 𝐶ℎ (𝑢𝑡 1 + ‖𝑢‖1 + ‖𝜆‖1 + ‖𝜎‖1 𝑡
+ ∫ (‖𝑢‖1 + ‖𝜆‖1 + ‖𝜎‖1 ) 𝑑𝑡) .
𝑢 − 𝑢ℎ ≤ 𝐶ℎ (‖𝑢‖1 + 𝑢, 𝑢𝑡 , 𝜆, 𝜎1 ) , 𝑢𝑡 − 𝑢ℎ,𝑡 ≤ 𝐶ℎ (𝑢, 𝑢𝑡 , 𝜆, 𝜎1 + |‖𝑢, 𝜆, 𝜎‖|1 ) , 𝜆 − 𝜆ℎ ≤ 𝐶ℎ (𝑢, 𝑢𝑡 , 𝜆, 𝜎1 + 𝑢, 𝑢𝑡 , 𝜆, 𝜎1 ) , 𝜎 − 𝜎ℎ ≤ 𝐶ℎ (𝑢, 𝑢𝑡 , 𝜆, 𝜎1 + 𝑢, 𝑢𝑡 , 𝜆, 𝜎1 ) , div (𝜎 − 𝜎ℎ ) ≤ 𝐶ℎ (‖𝑢‖1 + 𝑢𝑡 1 + ‖𝜎‖2 + 𝑢, 𝑢𝑡 , 𝜆, 𝜎1 ) ,
(78) (79) (80) (81) (82)
0
(II) if 𝑘 ≥ 1 and 2 ≤ 𝑟 ≤ 𝑘 + 1, then
If 𝑘 ≥ 1, 2 ≤ 𝑟 ≤ 𝑘 + 1, we know 𝑢 − 𝑢̃ℎ 𝑡
≤ 𝐶ℎ𝑟 (‖𝑢‖𝑟 + ∫ (‖𝑢‖𝑟−1 + ‖𝜆‖𝑟−1 + ‖𝜎‖𝑟−1 ) 𝑑𝑡) , 0
𝑢𝑡 − 𝑢̃ℎ,𝑡
𝑟 𝑢 − 𝑢ℎ ≤ 𝐶ℎ (‖𝑢‖𝑟 + 𝑢, 𝑢𝑡 , 𝜆, 𝜎𝑟−1 ) , 𝑢𝑡 − 𝑢ℎ,𝑡 ≤ 𝐶ℎ𝑟 (𝑢𝑡 𝑟 + ‖𝑢‖𝑟−1 + ‖𝜆‖𝑟−1 + ‖𝜎‖𝑟−1 𝑡
+ ∫ (‖𝑢‖𝑟−1 + 𝑢𝑡 𝑟 + ‖𝜆‖𝑟−1 + ‖𝜎‖𝑟−1 ) 𝑑𝑡) ,
≤ 𝐶ℎ𝑟 (𝑢𝑡 𝑟 + ‖𝑢‖𝑟−1 + ‖𝜆‖𝑟−1
0
𝜆 − 𝜆ℎ
𝑡
+ ∫ (‖𝑢‖𝑟−1 + ‖𝜆‖𝑟−1 + ‖𝜎‖𝑟−1 ) 𝑑𝑡) . 0
(76)
≤ 𝐶ℎ𝑟 (‖𝑢, 𝜆, 𝜎‖𝑟 𝑡
+ ∫ (𝑢𝑡 𝑟 + ‖𝑢‖𝑟−1 + ‖𝜆‖𝑟−1 + ‖𝜎‖𝑟−1 ) 𝑑𝑡) , 0
The proof is completed. Remark 4. The estimate results of (46)–(53) are optimal. If 𝑘 ≥ 1, the estimate results of (43)–(45) are superconvergent.
5. Main Result
𝜎 − 𝜎ℎ ≤ 𝐶ℎ𝑟 ( ‖𝑢, 𝜆, 𝜎‖𝑟 𝑡
In this section, we consider error estimates for the continuous-in-time mixed finite element approximation. Define
̃ ) + (𝜆 ̃ −𝜆 )=𝜆 +𝜆 , 𝜆 − 𝜆ℎ = (𝜆 − 𝜆 ℎ ℎ ℎ 1 2 𝑢, 𝑢𝑡 , 𝜆, 𝜎𝑟 = ‖𝑢‖𝑟 + 𝑢𝑡 𝑟 + ‖𝜆‖𝑟 + ‖𝜎‖𝑟 ,
div (𝜎 − 𝜎ℎ ) ≤ 𝐶ℎ𝑟 (𝑢𝑡 𝑟 + ‖𝜆‖𝑟 + ‖𝜎‖𝑟+1 + ‖𝑢‖𝑟−1
𝑢ℎ − 𝑢ℎ ) = 𝑢3 + 𝑢4 , 𝑢 − 𝑢ℎ = (𝑢 − 𝑢̃ℎ ) + (̃
̃ ℎ ) + (̃ 𝜎 − 𝜎ℎ = (𝜎 − 𝜎 𝜎ℎ − 𝜎ℎ ) = 𝜎1 + 𝜎2 ,
+ ∫ (𝑢𝑡 𝑟 + ‖𝑢‖𝑟−1 + ‖𝜆‖𝑟−1 + ‖𝜎‖𝑟−1 ) 𝑑𝑡) , 0 (83)
𝑡
(77)
+ ∫ (𝑢𝑡 𝑟 + ‖𝑢‖𝑟−1 + ‖𝜆‖𝑟−1 + ‖𝜎‖𝑟−1 ) 𝑑𝑡) . 0 (84)
𝑡
𝑢, 𝑢𝑡 , 𝜆, 𝜎𝑟 = ∫ (‖𝑢‖𝑟 + 𝑢𝑡 𝑟 + ‖𝜆‖𝑟 + ‖𝜎‖𝑟 ) 𝑑𝑡. 0 Theorem 5. Let (𝑢, 𝜆, 𝜎) and (𝑢ℎ , 𝜆ℎ , 𝜎ℎ ) be the solution of (9) and (11), respectively. If 𝑢, 𝜆, and 𝜎 are sufficiently smooth, then there exist positive constants 𝐶 such that
Proof. From (9) and (19), we have the following error equation: (𝑢4,𝑡 + 𝑢3,𝑡 , 𝑤) + (div 𝜎2 , 𝑤) = 0, ∀𝑤 ∈ 𝑊ℎ , 0 < 𝑡 ≤ 𝑇,
8
Journal of Applied Mathematics (𝜎2 , 𝜏) − (𝑎𝜆2 , 𝜏) = 0,
Remark 6. The estimate results of (78)–(84) are optimal.
∀𝜏 ∈ Λℎ , 0 < 𝑡 ≤ 𝑇,
Acknowledgments
(𝜆2 , k) − (𝑢4,𝑡 + 𝑏𝑢4 , div k) + (c𝑢4 , k) = 0, ∀k ∈ Vℎ , 0 < 𝑡 ≤ 𝑇, 𝑢4 (0) = 0. (85) In (85), choosing 𝜔 = 𝑢4,𝑡 + 𝑝ℎ (𝑏𝑢4 ), 𝜏 = 𝜆2 , and k = 𝜎2 , we have (𝜆2 , 𝜎2 ) + (𝑢4,𝑡 , 𝑢4,𝑡 ) = − (𝑢3,𝑡 , 𝑢4,𝑡 + 𝑝ℎ (𝑏𝑢4 )) − (𝑢4,𝑡 , 𝑝ℎ (𝑏𝑢4 ))
(86)
− (c𝑢4 , 𝜎2 ) . In the second equation of (85), letting 𝜏 = 𝜎2 , we know 𝜎2 ≤ 𝐶𝜆2 .
(87)
Further, using 𝜀-inequality to (86), we get 2 2 2 2 𝑢4,𝑡 + 𝜆2 ≤ 𝐶 (𝑢4 + 𝑢3,𝑡 ) . Hence, 𝑡 𝑢4 = ∫ 𝑢4,𝑡 𝑑𝜏 0 𝑡
𝑡
≤ 𝐶 ∫ 𝑢4,𝑡 𝑑𝜏 ≤ 𝐶 ∫ (𝑢4 + 𝑢3,𝑡 ) 𝑑𝑡. 0 0
(88)
(89)
Using Gronwall’s inequality to (89), we obtain 𝑡
𝑢4 ≤ 𝐶 ∫ 𝑢3,𝑡 𝑑𝑡. 0
(90)
Further, we know 𝑡
𝜎2 + 𝑢4,𝑡 + 𝜆2 ≤ 𝐶 (𝑢3,𝑡 + ∫ 𝑢3,𝑡 𝑑𝑡) . 0
(91)
Noting the first equation of (78), we get 𝑡
div 𝜎2 ≤ 𝑢3,𝑡 + 𝑢4,𝑡 ≤ 𝐶 (𝑢3,𝑡 + ∫ 𝑢3,𝑡 𝑑𝑡) . (92) 0 So we have that 𝑡
𝑢 − 𝑢ℎ ≤ 𝑢3 + 𝐶 ∫ 𝑢3,𝑡 𝑑𝑡, 0 𝑡
𝑢𝑡 − 𝑢ℎ,𝑡 ≤ 𝐶 (𝑢3,𝑡 + ∫ 𝑢3,𝑡 𝑑𝑡) , 0 𝑡
𝜆 − 𝜆ℎ ≤ 𝜆1 + 𝐶 (𝑢3,𝑡 + ∫ 𝑢3,𝑡 𝑑𝑡) , 0
(93)
𝑡
𝜎 − 𝜎ℎ ≤ 𝜎1 + 𝐶 (𝑢3,𝑡 + ∫ 𝑢3,𝑡 𝑑𝑡) , 0 div (𝜎 − 𝜎ℎ ) ≤ div 𝜎1 + div 𝜎2 . Together with the results of Lemmas 2 and 3, the proof is completed.
This work is supported by the National Natural Science Foundation of China (nos. 11171190, 11101246, and 11101247) and the Natural Science Foundation of Shandong Province (ZR2011AQ020). The authors thank the anonymous referees for their constructive comments and suggestions, which led to improvements in the presentation.
References [1] N. Li, F. Gao, and T. Zhang, “An expanded mixed finite element method for Sobolev equation,” Journal of Computational Analysis and Applications, vol. 15, no. 3, pp. 535–543, 2013. [2] T. Sun, “A Godunov-mixed finite element method on changing meshes for the nonlinear Sobolev equations,” Abstract and Applied Analysis, vol. 2012, Article ID 413718, 19 pages, 2012. [3] R. E. Ewing, “Numerical solution of Sobolev partial differential equations,” SIAM Journal on Numerical Analysis, vol. 12, pp. 345–363, 1975. [4] D. Shi and Y. Zhang, “High accuracy analysis of a new nonconforming mixed finite element scheme for Sobolev equations,” Applied Mathematics and Computation, vol. 218, no. 7, pp. 3176– 3186, 2011. [5] P. G. Ciarlet, The Finite Element Method for Elliptic Equations, North-Holland, Amsterdam, The Netherlands, 1978. [6] I. Babuska, “Error-bounds for finite element method,” Numerische Mathematik, vol. 16, no. 4, pp. 322–333, 1970. [7] F. Brezzi, “On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers,” RAIRO Mathematical Modelling and Numerical Analysis, vol. 8, no. 2, pp. 129–151, 1974. [8] R. S. Falk and J. E. Osborn, “Error estimates for mixed methods,” RAIRO Analyse Num´erique, vol. 14, no. 3, pp. 249–277, 1980. [9] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, vol. 15 of Springer Series in Computational Mathematics, Springer, Berlin, Germany, 1991. [10] J. E. Roberts and J. M. Thomas, “Mixed and hybrid methods,” in Handbook of Numerical Analysis, vol. 2, pp. 523–639, NorthHolland, Amsterdam, The Netherlands, 1991. [11] Z. Chen, “Expanded mixed finite element methods for linear second-order elliptic problems. I,” RAIRO Mathematical Modelling and Numerical Analysis, vol. 32, no. 4, pp. 479–499, 1998. [12] Z. Chen, “Expandedmixed finite elementmethods for quasilinear second-order elliptic problems,” RAIROMathematical Modelling and Numerical Analysis, vol. 32, no. 4, pp. 500–520, 1998. [13] L. Guo and H. Z. Chen, “An expanded characteristic-mixed finite element method for a convection-dominated transport problem,” Journal of Computational Mathematics, vol. 23, no. 5, pp. 479–490, 2005. [14] W. Liu, H. X. Rui, and H. Guo, “A two-grid method with expanded mixed element for nonlinear reaction-diffusion equations,” Acta Mathematicae Applicatae Sinica (English Series), vol. 27, no. 3, pp. 495–502, 2011. [15] H. Che, Z. Zhou, and Z. Jiang, “H1-Galerkin expanded mixed finite element methods for nonlinear pseudo-parabolic integrodifferential equations,” Numerical Methods for Partial Differential Equations, vol. 29, no. 3, pp. 799–817, 2013.
Journal of Applied Mathematics [16] R. A. Adams, Sobolev Spaces, vol. 65, Academic Press, New York, NY, USA, 1975. [17] P. A. Raviart and J. M. Thomas, “A mixed finite element method for 2nd order elliptic problems,” in Mathematical Aspects of Finite Element Methods, vol. 606 of Lecture Notes in Mathematics, pp. 292–315, Springer, Berlin, Germany, 1977. [18] F. Brezzi, J. Douglas Jr., and L. D. Marini, “Two families of mixed finite elements for second order elliptic problems,” Numerische Mathematik, vol. 47, no. 2, pp. 217–235, 1985. [19] F. Brezzi, J. Douglas Jr., M. Fortin, and L. D. Marini, “Efficient rectangular mixed finite elements in two and three space variables,” RAIRO Mathematical Modelling and Numerical Analysis, vol. 21, no. 4, pp. 581–604, 1987.
9
Advances in
Operations Research Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Advances in
Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Journal of
Applied Mathematics
Algebra
Hindawi Publishing Corporation http://www.hindawi.com
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Journal of
Probability and Statistics Volume 2014
The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
International Journal of
Differential Equations Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Volume 2014
Submit your manuscripts at http://www.hindawi.com International Journal of
Advances in
Combinatorics Hindawi Publishing Corporation http://www.hindawi.com
Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Journal of
Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
International Journal of Mathematics and Mathematical Sciences
Mathematical Problems in Engineering
Journal of
Mathematics Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Discrete Mathematics
Journal of
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Discrete Dynamics in Nature and Society
Journal of
Function Spaces Hindawi Publishing Corporation http://www.hindawi.com
Abstract and Applied Analysis
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
International Journal of
Journal of
Stochastic Analysis
Optimization
Hindawi Publishing Corporation http://www.hindawi.com
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Volume 2014