Expanded Mixed Finite Element Method for the Two-Dimensional ...

1 downloads 0 Views 2MB Size Report
Jun 7, 2013 - The error analysis next makes use of three projection operators. The first operator is the Raviart-Thomas projection. (or Brezzi-Douglas-MariniΒ ...
Hindawi Publishing Corporation Journal of Applied Mathematics Volume 2013, Article ID 934973, 9 pages http://dx.doi.org/10.1155/2013/934973

Research Article Expanded Mixed Finite Element Method for the Two-Dimensional Sobolev Equation Qing-li Zhao,1,2 Zong-cheng Li,2 and You-zheng Ding2 1 2

School of Mathematics, Shandong University, Jinan 250100, China School of Science, Shandong Jianzhu University, Jinan 250101, China

Correspondence should be addressed to Qing-li Zhao; [email protected] Received 23 April 2013; Revised 7 June 2013; Accepted 7 June 2013 Academic Editor: Carlos Conca Copyright Β© 2013 Qing-li Zhao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Expanded mixed finite element method is introduced to approximate the two-dimensional Sobolev equation. This formulation expands the standard mixed formulation in the sense that three unknown variables are explicitly treated. Existence and uniqueness of the numerical solution are demonstrated. Optimal order error estimates for both the scalar and two vector functions are established.

1. Introduction In this paper, we consider the following Sobolev equation: 𝑒𝑑 (x, 𝑑) βˆ’ βˆ‡ β‹… {π‘Ž (x, 𝑑) βˆ‡π‘’π‘‘ + 𝑏1 (x, 𝑑) βˆ‡π‘’ (x, 𝑑)} = 𝑓 (x, 𝑑) ,

(x, 𝑑) ∈ Ξ© Γ— (0, 𝑇] ,

𝑒 (x, 𝑑) = 0,

(x, 𝑑) ∈ πœ•Ξ© Γ— [0, 𝑇] ,

𝑒 (x, 0) = 𝑒0 (x) , 2

(1)

x ∈ Ω,

in a bounded domain Ξ© βŠ‚ 𝑅 with Lipschitz continuous boundary πœ•Ξ©. Equation (1) has a wide range of applications in many mathematical and physical problems [1, 2], for example, the percolation theory when the fluid flows through the cracks, the transfer problem of the moisture in the soil, and the heat conduction problem in different materials. So there exists great and actual significance to research Sobolev equation. Up till now, there are some different schemes studied to solve this kind of equation (see [1–4] for instance). The mixed finite element method, which is a finite element method [5] with constrained conditions, plays an important role in the research of the numerical solution for partial differential equations. Its general theory was proposed by Babuska [6] and Brezzi [7]. Falk and Osborn [8] improved their theory and expanded the adaptability of the mixed finite element method. The mixed finite element method

(see [9, 10] for instance) is wildly used for the modeling of fluid flow and transport, as it provides accurate and locally mass conservative velocities. The main motivation of the expanded mixed finite element method [11–15] is to introduce three (or more) auxiliary variables for practical problems, while the traditional finite element method and mixed finite element method can only approximate one and two variables, respectively. The expanded mixed finite element method also has some other advantages except introducing more variables. It can treat individual boundary conditions. Also, this method is suitable for differential equation with small coefficient (close to zero) which does not need to be inverted. Consequently, this method works for the problems with small diffusion or low permeability terms in fluid problems. Using this method, we can get optimal order error estimates for certain nonlinear problems, while standard mixed formulation sometimes gives only suboptimal error estimates. The object of this paper is to present the expanded mixed finite element method for the Sobolev equation. We conduct theoretical analysis to study the existence and uniqueness and obtain optimal order error estimates. The rest of this paper is organized as follows. In Section 2, the mixed weak formulation and its mixed element approximation are considered. In Section 3, we prove the existence and uniqueness of approximation form. In Section 4, some lemmas are given.

2

Journal of Applied Mathematics

In Section 5, optimal order semidiscrete error estimates are established. Throughout the paper, we will use 𝐢, with or without subscript, to denote a generic positive constant which does not depend on the discretization parameter β„Ž. Vectors will be expressed in boldface. At the same time, we show a useful πœ€Cauchy inequality 1 π‘Žπ‘ ≀ πœ€π‘Ž2 + 𝑏2 , 4πœ€

Let n be the unit exterior normal vector to the boundary of Ξ©. Then (8) is formulated in the following expanded mixed weak form: find (𝑒, πœ†, 𝜎) ∈ π‘Š Γ— Ξ› Γ— V, such that (𝑒𝑑 , 𝑀) + (div 𝜎, 𝑀) = (𝑓, 𝑀) , βˆ€π‘€ ∈ π‘Š, 0 < 𝑑 ≀ 𝑇, (πœ†, k) βˆ’ (𝑒𝑑 + 𝑏𝑒, div k) + (c𝑒, k) = 0,

πœ€ > 0.

βˆ€k ∈ V, 0 < 𝑑 ≀ 𝑇,

(2) (𝜎, 𝜏) βˆ’ (π‘Žπœ†, 𝜏) = 0,

2. Mixed Weak Form and Mixed Element Approximation

π‘Š = 𝐿2 (Ξ©) , (3)

denote the Sobolev spaces [16] endowed with the norm 1/π‘ž

σ΅„© 𝛼 σ΅„©π‘ž σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„©π‘“σ΅„©σ΅„©π‘š,π‘ž,Ξ© = ( βˆ‘ 󡄩󡄩󡄩𝐷 π‘“σ΅„©σ΅„©σ΅„©πΏπ‘ž (Ξ©) )

(4)

|𝛼|β‰€π‘š

(the subscript Ξ© will always be omitted). Let π»π‘š (Ξ©) = π‘Šπ‘š,2 (Ξ©) with the norm β€– β‹… β€–π‘š = β€– β‹… β€–π‘š,2 . The notation β€– β‹… β€– will mean β€– β‹… ‖𝐿2 (Ξ©) or β€– β‹… ‖𝐿2 (Ξ©)2 . We denote by ( , ) the inner product in either 𝐿2 (Ξ©) or 𝐿2 (Ξ©)2 ; that is,

Ξ©

(πœ‰, πœ‚) = ∫ πœ‰ β‹… πœ‚π‘‘x. Ξ©

(5)

πœ•Ξ©

𝜎 = π‘Žπœ† = βˆ’π‘Žβˆ‡π‘’π‘‘ βˆ’ 𝑏1 βˆ‡π‘’.

(π‘’β„Ž,𝑑 , 𝑀) + (div πœŽβ„Ž , 𝑀) = (𝑓, 𝑀) , βˆ€π‘€ ∈ π‘Šβ„Ž , 0 < 𝑑 ≀ 𝑇, (πœ†β„Ž , k) βˆ’ (π‘’β„Ž,𝑑 + π‘π‘’β„Ž , div k) + (cπ‘’β„Ž , k) = 0,

(6)

(7)

βˆ€k ∈ Vβ„Ž , 0 < 𝑑 ≀ 𝑇, (πœŽβ„Ž , 𝜏) βˆ’ (π‘Žπœ†β„Ž , 𝜏) = 0,

(x, 𝑑) ∈ Ξ© Γ— (0, 𝑇] ,

𝑒 (x, 𝑑) = 0,

(x, 𝑑) ∈ πœ•Ξ© Γ— (0, 𝑇] ,

𝑒 (x, 0) = 𝑒0 (x) ,

x ∈ Ω.

𝑒0 , 𝑀) , (𝑒 (0) , 𝑀) = (Μƒ

βˆ€π‘€ ∈ π‘Šβ„Ž ,

where

(12)

Vβ„Ž (𝐸) = {k ∈ V : k|𝐸 ∈ Vβ„Ž (𝐸) , βˆ€πΈ ∈ π‘‡β„Ž } .

(x, 𝑑) ∈ Ξ© Γ— (0, 𝑇] ,

𝜎 βˆ’ π‘Žπœ† = 0,

βˆ€πœ ∈ Ξ›β„Ž , 0 < 𝑑 ≀ 𝑇,

Ξ›β„Ž (𝐸) = {𝜏 ∈ Ξ› : 𝜏|𝐸 ∈ Vβ„Ž (𝐸) , βˆ€πΈ ∈ π‘‡β„Ž } ,

(x, 𝑑) ∈ Ξ© Γ— (0, 𝑇] ,

πœ† + βˆ‡π‘’π‘‘ βˆ’ βˆ‡ (𝑏𝑒) + c𝑒 = 0,

(11)

π‘Šβ„Ž (𝐸) = {πœ” ∈ π‘Š : πœ”|𝐸 ∈ π‘Šβ„Ž (𝐸) , βˆ€πΈ ∈ π‘‡β„Ž } ,

Letting c = βˆ’βˆ‡π‘, we rewrite (1) as the following system: 𝑒𝑑 + βˆ‡ β‹… 𝜎 = 𝑓,

(10)

Let π‘‡β„Ž be a quasiregular polygonalization of Ξ© (by triangles or rectangles), with β„Ž being the maximum diameter of the elements of the polygonalization. Let π‘Šβ„Ž Γ— Ξ›β„Ž Γ— Vβ„Ž be a conforming mixed element space with index π‘˜ and discretization parameter β„Ž. π‘Šβ„Ž Γ— Ξ›β„Ž Γ— Vβ„Ž is an approximation to π‘Š Γ— Ξ› Γ— V. There are many conforming (or compatible) mixed element function spaces such as Raviart-Thomas elements [17], BDFM elements [18, 19]. Some RT type mixed elements are listed in Table 1. Here, π‘ƒπ‘˜ (𝑇) is the polynomial up to π‘˜ order in two-dimensional domain used in triangle, while π‘„π‘˜,𝑙 (𝑇) is the polynomial up to π‘˜, 𝑙 in each dimension used in rectangle. Replacing the three variables by their approximation, we get the expanded mixed finite element approximation problem: find (π‘’β„Ž , πœ†β„Ž , πœŽβ„Ž ) ∈ π‘Šβ„Ž Γ— Ξ›β„Ž Γ— Vβ„Ž , such that

To formulate the weak form, let 𝑏 = 𝑏1 /π‘Ž; we introduce two vector variables πœ† = βˆ’βˆ‡π‘’π‘‘ βˆ’ π‘βˆ‡π‘’,

Ξ› = 𝐿2 (Ξ©)2 ,

V = 𝐻 (div, Ξ©) = {k ∈ 𝐿2 (Ξ©)2 | βˆ‡ β‹… k ∈ 𝐿2 (Ξ©)} .

The notation ⟨, ⟩ denotes the 𝐿2 -inner product on the boundary of Ξ© βŸ¨πœ‰, πœ‚βŸ© = ∫ πœ‰πœ‚π‘‘π‘ .

βˆ€π‘€ ∈ π‘Š,

where

For 1 ≀ π‘ž ≀ +∞ and π‘š any nonnegative integer, let

(πœ‰, πœ‚) = ∫ πœ‰πœ‚π‘‘x ,

βˆ€πœ ∈ Ξ›, 0 < 𝑑 ≀ 𝑇,

(𝑒 (0) , 𝑀) = (𝑒0 , 𝑀) ,

π‘Šπ‘š,π‘ž (Ξ©) = {𝑓 ∈ πΏπ‘ž (Ξ©) | 𝐷𝛼 𝑓 ∈ πΏπ‘ž (Ξ©) , |𝛼| ≀ π‘š}

(9)

(8)

The error analysis next makes use of three projection operators. The first operator is the Raviart-Thomas projection (or Brezzi-Douglas-Marini projection) Ξ β„Ž : V β†’ Vβ„Ž ; Ξ β„Ž satisfies (βˆ‡ β‹… (k βˆ’ Ξ β„Ž k) , πœ”β„Ž ) = 0,

βˆ€πœ”β„Ž ∈ π‘Šβ„Ž .

(13)

Journal of Applied Mathematics

3 By (20), it is easy to see that

Table 1: Some RT type mixed elements. Dim 2D 2D

Element Triangle Rectangle

Vβ„Ž (𝐸) RTπ‘˜ (𝑇) = π‘ƒπ‘˜ (𝐸)2 βŠ• xπ‘ƒπ‘˜ (𝐸) RT[π‘˜] (𝑇) = π‘„π‘˜+1,π‘˜ (𝐸) βŠ• π‘„π‘˜,π‘˜+1 (𝐸)

π‘Šβ„Ž (𝐸) π‘ƒπ‘˜ (𝐸) π‘„π‘˜,π‘˜ (𝐸)

σ΅„© σ΅„©σ΅„© π‘Ÿ σ΅„©σ΅„©βˆ‡ β‹… (k βˆ’ Ξ β„Ž k)σ΅„©σ΅„©σ΅„©π‘Ÿ ≀ πΆβ„Ž β€–βˆ‡ β‹… kβ€–π‘Ÿ ,

1 ≀ π‘Ÿ ≀ π‘˜ + 1, 2 0 ≀ π‘Ÿ ≀ π‘˜ + 1.

(14)

(𝜏 βˆ’ π‘…β„Ž 𝜏, πœβ„Ž ) = 0,

βˆ€πœ” ∈ π‘Š, kβ„Ž ∈ Vβ„Ž , βˆ€πœ ∈ Ξ›, πœβ„Ž ∈ Ξ›β„Ž .

Choosing πœ” = div πœŽβ„Ž , k = πœŽβ„Ž , and 𝜏 = πœ†β„Ž in (19), we get

In the third equation of (19), letting 𝜏 = πœŽβ„Ž and 𝜏 = πœ†β„Ž , respectively, then σ΅„© σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„©πœŽβ„Ž σ΅„©σ΅„© ≀ 𝐢 σ΅„©σ΅„©σ΅„©πœ†β„Ž σ΅„©σ΅„©σ΅„© , σ΅„© σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„©πœ†β„Ž σ΅„©σ΅„© ≀ 𝐢 σ΅„©σ΅„©σ΅„©πœŽβ„Ž σ΅„©σ΅„©σ΅„© .

(15)

The other two operators are the standard 𝐿2 -projection [5] π‘ƒβ„Ž and π‘…β„Ž onto π‘Šβ„Ž and Ξ›β„Ž , respectively, (πœ” βˆ’ π‘ƒβ„Ž πœ”, βˆ‡ β‹… kβ„Ž ) = 0,

(16)

σ΅„© σ΅„©2 σ΅„© σ΅„©2 σ΅„© σ΅„©2 π‘Ž0 σ΅„©σ΅„©σ΅„©πœ†β„Ž σ΅„©σ΅„©σ΅„© + σ΅„©σ΅„©σ΅„©div πœŽβ„Ž σ΅„©σ΅„©σ΅„© ≀ πΆσ΅„©σ΅„©σ΅„©π‘’β„Ž σ΅„©σ΅„©σ΅„© +

(18)

In this section, we consider the existence and uniqueness of the solution of (11).

Proof. In fact, this equation is linear; it suffices to show that the associated homogeneous system (π‘’β„Ž,𝑑 , 𝑀) + (div πœŽβ„Ž , 𝑀) = 0,

(27)

From (27), we know σ΅„© 𝑑 σ΅„©σ΅„© 𝑑 𝑑 σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„©σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„©σ΅„©π‘’β„Ž σ΅„©σ΅„© = σ΅„©σ΅„©βˆ« π‘’β„Ž,𝑑 𝑑𝑑󡄩󡄩󡄩 ≀ 𝐢 ∫ σ΅„©σ΅„©σ΅„©π‘’β„Ž,𝑑 σ΅„©σ΅„©σ΅„© 𝑑𝑑 ≀ 𝐢 ∫ σ΅„©σ΅„©σ΅„©π‘’β„Ž σ΅„©σ΅„©σ΅„© 𝑑𝑑. σ΅„©σ΅„© 0 0 σ΅„©σ΅„© 0

(28)

Using Gronwall’s inequality to (28), we can prove π‘’β„Ž = 0. Further, from (26) and (23), we know that πœ†β„Ž = 0, πœŽβ„Ž = 0. The proof is completed.

In the study of parabolic equations, we usually introduce a mixed elliptic projection associated with our equations. Μƒ ,𝜎 Define a map: find (Μƒ π‘’β„Ž , πœ† β„Ž Μƒ β„Ž ) ∈ π‘Šβ„Ž Γ— Ξ›β„Ž Γ— Vβ„Ž , such that Μƒ β„Ž ) , 𝑀) = 0, (div (𝜎 βˆ’ 𝜎

βˆ€π‘€ ∈ π‘Šβ„Ž , 0 < 𝑑 ≀ 𝑇,

βˆ€π‘€ ∈ π‘Šβ„Ž , 0 < 𝑑 ≀ 𝑇,

Μƒ , k) βˆ’ (𝑒 βˆ’ 𝑒̃ + 𝑏 (𝑒 βˆ’ 𝑒̃ ) , div k) + (c (𝑒 βˆ’ 𝑒̃ ) , k) (πœ† βˆ’ πœ† β„Ž 𝑑 β„Ž,𝑑 β„Ž β„Ž

(πœ†β„Ž , k) βˆ’ (π‘’β„Ž,𝑑 + π‘π‘’β„Ž , div k) + (cπ‘’β„Ž , k) = 0,

= 0, (19)

(πœŽβ„Ž , 𝜏) βˆ’ (π‘Žπœ†β„Ž , 𝜏) = 0,

βˆ€k ∈ Vβ„Ž , 0 < 𝑑 ≀ 𝑇,

Μƒ ) , 𝜏) = 0, Μƒ β„Ž , 𝜏) βˆ’ (π‘Ž (πœ† βˆ’ πœ† (𝜎 βˆ’ 𝜎 β„Ž (𝑒 (0) βˆ’ π‘’Μƒβ„Ž (0) , 𝑀) = 0,

βˆ€πœ ∈ Ξ›β„Ž , 0 < 𝑑 ≀ 𝑇,

βˆ€πœ ∈ Ξ›β„Ž , 0 < 𝑑 ≀ 𝑇, βˆ€π‘€ ∈ π‘Šβ„Ž . (29)

βˆ€π‘€ ∈ π‘Šβ„Ž ,

has only the trivial solution. In the first equation of (19), if we take πœ” = π‘’β„Ž,𝑑 and πœ” = div πœŽβ„Ž , respectively, then we have that σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© σ΅„© σ΅„©σ΅„©π‘’β„Ž,𝑑 σ΅„©σ΅„© ≀ σ΅„©σ΅„©div πœŽβ„Ž σ΅„©σ΅„©σ΅„© , σ΅„©σ΅„© σ΅„© σ΅„© σ΅„© σ΅„©σ΅„©div πœŽβ„Ž σ΅„©σ΅„©σ΅„© ≀ σ΅„©σ΅„©σ΅„©π‘’β„Ž,𝑑 σ΅„©σ΅„©σ΅„© .

(26)

4. Some Lemmas

Lemma 1. Equation (11) has a unique solution.

(𝑒 (0) , 𝑀) = 0,

1 σ΅„©σ΅„© σ΅„©2 π‘Ž σ΅„© σ΅„©2 σ΅„©σ΅„©div πœŽβ„Ž σ΅„©σ΅„©σ΅„© + 0 σ΅„©σ΅„©σ΅„©πœ†β„Ž σ΅„©σ΅„©σ΅„© . 2 2 (25)

σ΅„© σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„©πœ†β„Ž σ΅„©σ΅„© ≀ 𝐢 σ΅„©σ΅„©σ΅„©π‘’β„Ž σ΅„©σ΅„©σ΅„© , σ΅„©σ΅„©σ΅„©π‘’β„Ž,𝑑 σ΅„©σ΅„©σ΅„© ≀ 𝐢 σ΅„©σ΅„©σ΅„©π‘’β„Ž σ΅„©σ΅„©σ΅„© . σ΅„© σ΅„© σ΅„© σ΅„©

(17)

3. Existence and Uniqueness of Approximation Form

βˆ€k ∈ Vβ„Ž , 0 < 𝑑 ≀ 𝑇,

(24)

Note that (21), we deserve

The two projections Ξ β„Ž and π‘ƒβ„Ž preserve the commuting property div ∘ Ξ β„Ž = π‘ƒβ„Ž ∘ div : 𝐻1 (Ξ©)2 󳨀→ π‘Šβ„Ž .

(23)

Using the πœ€-Cauchy inequality to (22), we have

They have the approximation properties σ΅„© σ΅„©σ΅„© π‘Ÿ σ΅„©σ΅„©πœ” βˆ’ π‘ƒβ„Ž πœ”σ΅„©σ΅„©σ΅„© ≀ πΆβ„Ž β€–πœ”β€–π‘Ÿ , 0 ≀ π‘Ÿ ≀ π‘˜ + 1, σ΅„©σ΅„© σ΅„©σ΅„© π‘Ÿσ΅„© σ΅„© σ΅„©σ΅„© σ΅„©σ΅„©πœ βˆ’ π‘…β„Ž πœσ΅„©σ΅„© ≀ πΆβ„Ž σ΅„©σ΅„©πœ‡σ΅„©σ΅„©π‘Ÿ , 0 ≀ π‘Ÿ ≀ π‘˜ + 1.

(21)

(π‘Žπœ†β„Ž , πœ†β„Ž ) + (div πœŽβ„Ž , div πœŽβ„Ž ) = (π‘π‘’β„Ž , div πœŽβ„Ž ) βˆ’ (cπ‘’β„Ž , πœŽβ„Ž ) . (22)

The following approximation properties are well known. σ΅„© σ΅„©σ΅„© π‘Ÿ σ΅„©σ΅„©k βˆ’ Ξ β„Ž kσ΅„©σ΅„©σ΅„© ≀ πΆβ„Ž β€–kβ€–π‘Ÿ ,

σ΅„© σ΅„© σ΅„© σ΅„©σ΅„© σ΅„©σ΅„©div πœŽβ„Ž σ΅„©σ΅„©σ΅„© = σ΅„©σ΅„©σ΅„©π‘’β„Ž,𝑑 σ΅„©σ΅„©σ΅„© .

(20)

Similarly to Lemma 1, we can prove that system (29) has a unique solution. Μƒ ,𝜎 Now we give some error estimates of (Μƒ π‘’β„Ž , πœ† β„Ž Μƒ β„Ž ). Define 𝑒 βˆ’ π‘’Μƒβ„Ž = (π‘β„Ž 𝑒 βˆ’ π‘’Μƒβ„Ž ) + (𝑒 βˆ’ π‘β„Ž 𝑒) = 𝑒1 + 𝑒2 , Μƒ , πœ†1 = πœ† βˆ’ πœ† β„Ž

Μƒβ„Ž. 𝜎1 = 𝜎 βˆ’ 𝜎

(30)

4

Journal of Applied Mathematics

System (29) can be rewritten as follows:

It is easy to see that 𝐼1 = (πœ†1 , Ξ β„Ž (π‘Žβˆ‡πœ™))

(div 𝜎1 , 𝑀) = 0,

= (πœ†1 , Ξ β„Ž (π‘Žβˆ‡πœ™) βˆ’ π‘Žβˆ‡πœ™) + (πœ†1 , π‘Žβˆ‡πœ™)

βˆ€π‘€ ∈ π‘Šβ„Ž ,

(πœ†1 , k) βˆ’ (𝑒1,𝑑 + 𝑏 (𝑒1 + 𝑒2 ) , div k) + (c (𝑒1 + 𝑒2 ) , k) = 0, βˆ€k ∈ Vβ„Ž , (𝜎1 , 𝜏) βˆ’ (π‘Žπœ†1 , 𝜏) = 0,

βˆ€πœ ∈ Ξ›β„Ž .

(𝑒 (0) βˆ’ π‘’Μƒβ„Ž (0) , 𝑀) = 0,

βˆ€π‘€ ∈ π‘Šβ„Ž .

𝐸2 = (π‘Žπœ†1 , βˆ‡ (πœ™ βˆ’ π‘β„Ž πœ™)) + (π‘Žπœ†1 , βˆ‡ (π‘β„Ž πœ™))

Lemma 2. Let (𝑒1 , πœ†1 , 𝜎1 ) be the solution of system (31). If 𝑒, πœ†, and 𝜎 are sufficiently smooth, then there exist positive constants 𝐢 such that 𝑑

σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© 1βˆ’π›Ώ σ΅„© σ΅„© 󡄩󡄩𝑒1 σ΅„©σ΅„© ≀ 𝐢 ∫ (β„Ž σ΅„©σ΅„©σ΅„©πœ†1 σ΅„©σ΅„©σ΅„© + β„Ž π‘˜0 σ΅„©σ΅„©σ΅„©πœ†1 σ΅„©σ΅„©σ΅„© + β„Ž 󡄩󡄩󡄩𝑒2 σ΅„©σ΅„©σ΅„© + 󡄩󡄩󡄩𝑒2 σ΅„©σ΅„©σ΅„©βˆ’1 ) 𝑑𝑑, 0 σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© 1βˆ’π›Ώ σ΅„© σ΅„© 󡄩󡄩𝑒1,𝑑 σ΅„©σ΅„© ≀ 𝐢 (β„Ž σ΅„©σ΅„©σ΅„©πœ†1 σ΅„©σ΅„©σ΅„© + β„Ž π‘˜0 σ΅„©σ΅„©σ΅„©πœ†1 σ΅„©σ΅„©σ΅„© + β„Ž 󡄩󡄩󡄩𝑒2 σ΅„©σ΅„©σ΅„© + 󡄩󡄩󡄩𝑒2 σ΅„©σ΅„©σ΅„©βˆ’1 + 󡄩󡄩󡄩𝑒1 σ΅„©σ΅„©σ΅„©) , (32)

where π›Ώπ‘˜0 = 0 for π‘˜ = 0, and π›Ώπ‘˜0 = 0 for π‘˜ β‰₯ 1. Proof. Let πœ™ ∈ 𝐻 following problem:

= (π‘Žπœ†1 , βˆ‡ (πœ™ βˆ’ π‘β„Ž πœ™)) + (𝜎1 , βˆ‡ (π‘β„Ž πœ™))

(36)

= (π‘Žπœ†1 , βˆ‡ (πœ™ βˆ’ π‘β„Ž πœ™)) βˆ’ (div 𝜎1 , (π‘β„Ž πœ™))

Now we consider the estimates of 𝑒1 and 𝑒1,𝑑 .

(Ξ©) β‹‚ 𝐻01 (Ξ©)

= 𝐸1 + 𝐸2 , σ΅„© σ΅„©σ΅„© σ΅„© σ΅„© σ΅„©σ΅„© σ΅„© 𝐸1 ≀ πΆβ„Ž σ΅„©σ΅„©σ΅„©πœ†1 σ΅„©σ΅„©σ΅„© σ΅„©σ΅„©σ΅„©πœ™σ΅„©σ΅„©σ΅„©2 ≀ πΆβ„Ž σ΅„©σ΅„©σ΅„©πœ†1 σ΅„©σ΅„©σ΅„© σ΅„©σ΅„©σ΅„©πœ“σ΅„©σ΅„©σ΅„© ,

(31)

2

= (πœ†1 , Ξ β„Ž (π‘Žβˆ‡πœ™) βˆ’ π‘Žβˆ‡πœ™) + (π‘Žπœ†1 , βˆ‡πœ™)

be the solution of the

= (π‘Žπœ†1 , βˆ‡ (πœ™ βˆ’ π‘β„Ž πœ™)) σ΅„© σ΅„© σ΅„©σ΅„© ≀ 𝐢 σ΅„©σ΅„©σ΅„©πœ†1 σ΅„©σ΅„©σ΅„© σ΅„©σ΅„©σ΅„©βˆ‡ (πœ™ βˆ’ π‘β„Ž πœ™)σ΅„©σ΅„©σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© ≀ πΆβ„Ž1βˆ’π›Ώπ‘˜π‘œ σ΅„©σ΅„©σ΅„©πœ™σ΅„©σ΅„©σ΅„©2 σ΅„©σ΅„©σ΅„©πœ†1 σ΅„©σ΅„©σ΅„© σ΅„© σ΅„©σ΅„© σ΅„© ≀ πΆβ„Ž1βˆ’π›Ώπ‘˜π‘œ σ΅„©σ΅„©σ΅„©πœ“σ΅„©σ΅„©σ΅„© σ΅„©σ΅„©σ΅„©πœ†1 σ΅„©σ΅„©σ΅„© . Now, we estimate 𝐼2 , (c𝑒1 , Ξ β„Ž (π‘Žβˆ‡πœ™)) σ΅„© σ΅„© σ΅„©σ΅„© ≀ 𝐢 󡄩󡄩󡄩𝑒1 σ΅„©σ΅„©σ΅„© σ΅„©σ΅„©σ΅„©Ξ β„Ž (π‘Žβˆ‡πœ™) βˆ’ π‘Žβˆ‡πœ™ + π‘Žβˆ‡πœ™σ΅„©σ΅„©σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© ≀ 𝐢 󡄩󡄩󡄩𝑒1 σ΅„©σ΅„©σ΅„© (β„Ž σ΅„©σ΅„©σ΅„©βˆ‡πœ™σ΅„©σ΅„©σ΅„© + σ΅„©σ΅„©σ΅„©βˆ‡πœ™σ΅„©σ΅„©σ΅„©) σ΅„© σ΅„©σ΅„© σ΅„© ≀ 𝐢 󡄩󡄩󡄩𝑒1 σ΅„©σ΅„©σ΅„© σ΅„©σ΅„©σ΅„©πœ“σ΅„©σ΅„©σ΅„© ,

(37)

(c𝑒2 , Ξ β„Ž (π‘Žβˆ‡πœ™)) = (c𝑒2 , Ξ β„Ž (π‘Žβˆ‡πœ™) βˆ’ π‘Žβˆ‡πœ™) + (c𝑒2 , π‘Žβˆ‡πœ™)

βˆ‡ β‹… (π‘Žβˆ‡πœ™) = πœ“,

βˆ€π‘₯ ∈ Ξ©,

πœ™|πœ•Ξ© = 0.

σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© ≀ 𝐢 (β„Ž 󡄩󡄩󡄩𝑒2 σ΅„©σ΅„©σ΅„© + 󡄩󡄩󡄩𝑒2 σ΅„©σ΅„©σ΅„©βˆ’1 ) σ΅„©σ΅„©σ΅„©πœ“σ΅„©σ΅„©σ΅„© . (33)

We turn to consider 𝐼3 , (βˆ’π‘π‘’1 , div Ξ β„Ž (π‘Žβˆ‡πœ™)) σ΅„© σ΅„©σ΅„© σ΅„© σ΅„© σ΅„©σ΅„© σ΅„© ≀ 𝐢 󡄩󡄩󡄩𝑒1 σ΅„©σ΅„©σ΅„© σ΅„©σ΅„©σ΅„©βˆ‡πœ™σ΅„©σ΅„©σ΅„© ≀ 𝐢 󡄩󡄩󡄩𝑒1 σ΅„©σ΅„©σ΅„© σ΅„©σ΅„©σ΅„©πœ“σ΅„©σ΅„©σ΅„© ,

Then we know

(βˆ’π‘π‘’2 , div Ξ β„Ž (π‘Žβˆ‡πœ™)) σ΅„© σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„©πœ™σ΅„©σ΅„©2 ≀ 𝐢 σ΅„©σ΅„©σ΅„©πœ“σ΅„©σ΅„©σ΅„© .

(34)

≀ βˆ’ ((𝑏 βˆ’ π‘β„Ž0 𝑏) 𝑒2 , div Ξ β„Ž (π‘Žβˆ‡πœ™)) βˆ’

For 0 < 𝑑 ≀ 𝑇, from the second equation of (31), we have that (𝑒1,𝑑 , πœ“) = (𝑒1,𝑑 , div (π‘Žβˆ‡πœ™)) = (𝑒1,𝑑 , div Ξ β„Ž (π‘Žβˆ‡πœ™)) = (πœ† 1 , Ξ β„Ž (π‘Žβˆ‡πœ™)) + (c (𝑒1 + 𝑒2 ) , Ξ β„Ž (π‘Žβˆ‡πœ™)) (35) βˆ’ (𝑏 (𝑒1 + 𝑒2 ) , div Ξ β„Ž (π‘Žβˆ‡πœ™)) = 𝐼1 + 𝐼2 + 𝐼3 .

βˆ‘ ((π‘β„Ž0 𝑏) 𝑒2 , div Ξ β„Ž π‘’βˆˆπ‘‡β„Ž

(38)

(π‘Žβˆ‡πœ™))𝑒

= βˆ’ ((𝑏 βˆ’ π‘β„Ž0 𝑏) 𝑒2 , div Ξ β„Ž (π‘Žβˆ‡πœ™)) σ΅„© σ΅„©σ΅„© σ΅„© ≀ πΆβ„Ž 󡄩󡄩󡄩𝑒2 σ΅„©σ΅„©σ΅„© σ΅„©σ΅„©σ΅„©πœ“σ΅„©σ΅„©σ΅„© , where π‘β„Ž0 𝑏 is the piecewise constant interpolation of function 𝑏. Using the previous estimates, we obtain σ΅„©σ΅„© σ΅„©σ΅„© 󡄩󡄩𝑒1,𝑑 σ΅„©σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© ≀ 𝐢 (β„Ž σ΅„©σ΅„©σ΅„©πœ†1 σ΅„©σ΅„©σ΅„© + β„Ž1βˆ’π›Ώπ‘˜0 σ΅„©σ΅„©σ΅„©πœ†1 σ΅„©σ΅„©σ΅„© + β„Ž 󡄩󡄩󡄩𝑒2 σ΅„©σ΅„©σ΅„© + 󡄩󡄩󡄩𝑒2 σ΅„©σ΅„©σ΅„©βˆ’1 + 󡄩󡄩󡄩𝑒1 σ΅„©σ΅„©σ΅„©) . (39)

Journal of Applied Mathematics

5 Proof. For 0 < 𝑑 ≀ 𝑇, the proof proceeds in three steps as follows. (I) In the first equation of (29), taking πœ” = div 𝜎1 , we know

So we deserve σ΅„© 𝑑 σ΅„©σ΅„© σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„©σ΅„© 󡄩󡄩𝑒1 σ΅„©σ΅„© = σ΅„©σ΅„©βˆ« 𝑒1,𝑑 𝑑𝑑󡄩󡄩󡄩 σ΅„©σ΅„© σ΅„©σ΅„© 0 𝑑

(div 𝜎1 , div 𝜎1 )

σ΅„© σ΅„© ≀ 𝐢 ∫ 󡄩󡄩󡄩𝑒1,𝑑 σ΅„©σ΅„©σ΅„© 𝑑𝑑 0

(40)

= (div 𝜎1 , div (𝜎 βˆ’ Ξ β„Ž 𝜎))

𝑑

σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© ≀ 𝐢 ∫ (β„Ž σ΅„©σ΅„©σ΅„©πœ†1 σ΅„©σ΅„©σ΅„© + β„Ž1βˆ’π›Ώπ‘˜0 σ΅„©σ΅„©σ΅„©πœ†1 σ΅„©σ΅„©σ΅„© + β„Ž 󡄩󡄩󡄩𝑒2 σ΅„©σ΅„©σ΅„© 0

σ΅„©σ΅„© σ΅„© σ΅„© ≀ σ΅„©σ΅„©σ΅„©div 𝜎1 σ΅„©σ΅„©σ΅„© σ΅„©σ΅„©σ΅„©div (𝜎 βˆ’ Ξ β„Ž 𝜎)σ΅„©σ΅„©σ΅„© ,

σ΅„© σ΅„© σ΅„© σ΅„© +󡄩󡄩󡄩𝑒2 σ΅„©σ΅„©σ΅„©βˆ’1 + 󡄩󡄩󡄩𝑒1 σ΅„©σ΅„©σ΅„© ) 𝑑𝑑.

which implies that σ΅„©σ΅„© σ΅„© σ΅„© σ΅„© σ΅„©σ΅„©div 𝜎1 σ΅„©σ΅„©σ΅„© ≀ σ΅„©σ΅„©σ΅„©div (𝜎 βˆ’ Ξ β„Ž 𝜎)σ΅„©σ΅„©σ΅„©

Applying Gronwall’s inequality to (40), we have

≀ πΆβ„Žπ‘Ÿ β€–πœŽβ€–π‘Ÿ+1 ,

σ΅„©σ΅„© σ΅„©σ΅„© 󡄩󡄩𝑒1 σ΅„©σ΅„© 𝑑

σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© ≀ 𝐢 ∫ (β„Ž σ΅„©σ΅„©σ΅„©πœ†1 σ΅„©σ΅„©σ΅„© + β„Ž1βˆ’π›Ώπ‘˜0 σ΅„©σ΅„©σ΅„©πœ†1 σ΅„©σ΅„©σ΅„© + β„Ž 󡄩󡄩󡄩𝑒2 σ΅„©σ΅„©σ΅„© + 󡄩󡄩󡄩𝑒2 σ΅„©σ΅„©σ΅„©βˆ’1 ) 𝑑𝑑. 0

(54)

(41)

0 ≀ π‘Ÿ ≀ π‘˜ + 1.

(55)

Μƒ β„Ž ), πœ”) = 0 and (div(𝜎 βˆ’ Choosing πœ” ∈ π‘Šβ„Ž , note that (div(𝜎 βˆ’ 𝜎 Ξ β„Ž 𝜎), πœ”) = 0, we get Μƒ β„Ž ) = 0. div (Ξ β„Ž 𝜎 βˆ’ 𝜎

Noting the estimates of 𝐼1 , 𝐼2 , and 𝐼3 , the proof is completed.

(56)

Combing (15) with (56), we can prove (43). Μƒ β„Ž , together with (43), we (II) In (29), letting k = Ξ β„Ž 𝜎 βˆ’ 𝜎 obtain

Define ‖𝑒, πœ†, πœŽβ€–π‘Ÿ = β€–π‘’β€–π‘Ÿ + β€–πœ†β€–π‘Ÿ + β€–πœŽβ€–π‘Ÿ , 𝑑

|‖𝑒, πœ†, πœŽβ€–|π‘Ÿ = ∫ (β€–π‘’β€–π‘Ÿ + β€–πœ†β€–π‘Ÿ + β€–πœŽβ€–π‘Ÿ ) 𝑑𝑑.

(42)

Μƒ ,𝜎 Lemma 3. Let (𝑒, πœ†, 𝜎) and (Μƒ π‘’β„Ž , πœ† β„Ž Μƒ β„Ž ) be the solution of (19) and (29), respectively. If 𝑒, πœ†, and 𝜎 are sufficiently smooth, then there exist positive constants 𝐢 such that (I) if π‘˜ β‰₯ 0, then 0 ≀ π‘Ÿ ≀ π‘˜ + 1,

(43)

σ΅„© σ΅„©σ΅„© π‘Ÿ+1βˆ’π›Ώπ‘˜0 |‖𝑒, πœ†, πœŽβ€–|π‘Ÿ , 1 ≀ π‘Ÿ ≀ π‘˜ + 1, (44) σ΅„©σ΅„©π‘β„Ž 𝑒 βˆ’ π‘’Μƒβ„Ž σ΅„©σ΅„©σ΅„© ≀ πΆβ„Ž σ΅„© σ΅„©σ΅„© π‘Ÿ+1βˆ’π›Ώπ‘˜0 ‖𝑒, πœ†, πœŽβ€–π‘Ÿ , 1 ≀ π‘Ÿ ≀ π‘˜ + 1, (45) σ΅„©σ΅„©π‘β„Ž 𝑒𝑑 βˆ’ π‘’Μƒβ„Ž,𝑑 σ΅„©σ΅„©σ΅„© ≀ πΆβ„Ž

σ΅„© σ΅„© σ΅„© σ΅„©σ΅„© 󡄩󡄩𝑒𝑑 βˆ’ π‘’Μƒβ„Ž,𝑑 σ΅„©σ΅„©σ΅„© ≀ πΆβ„Ž (󡄩󡄩󡄩𝑒𝑑 σ΅„©σ΅„©σ΅„©1 + ‖𝑒, πœ†, πœŽβ€–1 + |‖𝑒, πœ†, πœŽβ€–|1 ) , σ΅„©σ΅„©σ΅„©πœ† βˆ’ πœ† Μƒ σ΅„©σ΅„©σ΅„©σ΅„© ≀ πΆβ„Ž (‖𝑒, πœ†, πœŽβ€– + |‖𝑒, πœ†, πœŽβ€–| ) , σ΅„©σ΅„© β„Žσ΅„© 1 1 σ΅„©σ΅„© σ΅„© Μƒ β„Ž σ΅„©σ΅„©σ΅„© ≀ πΆβ„Ž (‖𝑒, πœ†, πœŽβ€–1 + |‖𝑒, πœ†, πœŽβ€–|1 ) , σ΅„©σ΅„©πœŽ βˆ’ 𝜎

(46) (47) (48) (49)

Μƒ , we get In the third equation of (29), choosing 𝜏 = π‘…β„Ž πœ† βˆ’ πœ† β„Ž Μƒ ) = (π‘Ž (πœ† βˆ’ πœ† Μƒ ). Μƒ ),𝑅 πœ† βˆ’ πœ† Μƒ β„Ž , π‘…β„Ž πœ† βˆ’ πœ† (𝜎 βˆ’ 𝜎 β„Ž β„Ž β„Ž β„Ž

(59)

So we know Μƒ ) + (Ξ  𝜎 βˆ’ 𝜎 Μƒ ) Μƒ β„Ž , π‘…β„Ž πœ† βˆ’ πœ† (𝜎 βˆ’ Ξ β„Ž 𝜎, π‘…β„Ž πœ† βˆ’ πœ† β„Ž β„Ž β„Ž Μƒ ),𝑅 πœ† βˆ’ πœ† Μƒ ). = (π‘Ž (πœ† βˆ’ πœ† β„Ž β„Ž β„Ž

(60)

Μƒ ) Μƒ β„Ž , π‘…β„Ž πœ† βˆ’ πœ† (Ξ β„Ž 𝜎 βˆ’ 𝜎 β„Ž Μƒβ„Ž) = (c (π‘’β„Ž βˆ’ π‘’Μƒβ„Ž ) , Ξ β„Ž 𝜎 βˆ’ 𝜎 Μƒ ),𝑅 πœ† βˆ’ πœ† Μƒ ) βˆ’ (𝜎 βˆ’ Ξ  𝜎, 𝑅 πœ† βˆ’ πœ† Μƒ ), = (π‘Ž (πœ† βˆ’ πœ† β„Ž β„Ž β„Ž β„Ž β„Ž β„Ž (61) which implies that Μƒ ) Μƒ β„Ž , π‘…β„Ž πœ† βˆ’ πœ† (Ξ β„Ž 𝜎 βˆ’ 𝜎 β„Ž

(III) if π‘˜ β‰₯ 1, 2 ≀ π‘Ÿ ≀ π‘˜ + 1, then σ΅„©σ΅„© σ΅„© π‘Ÿ 󡄩󡄩𝑒 βˆ’ π‘’Μƒβ„Ž σ΅„©σ΅„©σ΅„© ≀ πΆβ„Ž (β€–π‘’β€–π‘Ÿ + |‖𝑒, πœ†, πœŽβ€–|π‘Ÿβˆ’1 ) ,

Μƒ ,Ξ  𝜎 βˆ’ 𝜎 Μƒ β„Ž ) βˆ’ (c (𝑒 βˆ’ π‘’Μƒβ„Ž ) , Ξ β„Ž 𝜎 βˆ’ 𝜎 Μƒ β„Ž ) = 0. (58) (π‘…β„Ž πœ† βˆ’ πœ† β„Ž β„Ž

Note that (44) and (45), we obtain

(II) if π‘˜ = 0, then σ΅„© σ΅„©σ΅„© 󡄩󡄩𝑒 βˆ’ π‘’Μƒβ„Ž σ΅„©σ΅„©σ΅„© ≀ πΆβ„Ž (‖𝑒‖1 + |‖𝑒, πœ†, πœŽβ€–|1 ) ,

(57)

Hence

0

σ΅„©σ΅„© Μƒ β„Ž )σ΅„©σ΅„©σ΅„©σ΅„© ≀ πΆβ„Žπ‘Ÿ β€–πœŽβ€–π‘Ÿ+1 , σ΅„©σ΅„©div (𝜎 βˆ’ 𝜎

Μƒ ,Ξ  𝜎 βˆ’ 𝜎 Μƒ β„Ž ) βˆ’ (c (𝑒 βˆ’ π‘’Μƒβ„Ž ) , Ξ β„Ž 𝜎 βˆ’ 𝜎 Μƒ β„Ž ) = 0. (πœ† βˆ’ πœ† β„Ž β„Ž

(50)

σ΅„© σ΅„©σ΅„© π‘Ÿ σ΅„© σ΅„© 󡄩󡄩𝑒𝑑 βˆ’ π‘’Μƒβ„Ž,𝑑 σ΅„©σ΅„©σ΅„© ≀ πΆβ„Ž (󡄩󡄩󡄩𝑒𝑑 σ΅„©σ΅„©σ΅„©π‘Ÿ + ‖𝑒, πœ†, πœŽβ€–π‘Ÿ + |‖𝑒, πœ†, πœŽβ€–|π‘Ÿβˆ’1 ) , (51) σ΅„©σ΅„©σ΅„©πœ† βˆ’ πœ† Μƒ σ΅„©σ΅„©σ΅„©σ΅„© ≀ πΆβ„Žπ‘Ÿ (‖𝑒, πœ†, πœŽβ€– + |‖𝑒, πœ†, πœŽβ€–| ) , (52) σ΅„©σ΅„© β„Žσ΅„© π‘Ÿ π‘Ÿβˆ’1 σ΅„©σ΅„© Μƒ β„Ž σ΅„©σ΅„©σ΅„©σ΅„© ≀ πΆβ„Žπ‘Ÿ (‖𝑒, πœ†, πœŽβ€–π‘Ÿ + |‖𝑒, πœ†, πœŽβ€–|π‘Ÿβˆ’1 ) . (53) σ΅„©σ΅„©πœŽ βˆ’ 𝜎

σ΅„© σ΅„©σ΅„© Μƒ β„Ž σ΅„©σ΅„©σ΅„©σ΅„© ≀ 𝐢 󡄩󡄩󡄩𝑒 βˆ’ π‘’Μƒβ„Ž σ΅„©σ΅„©σ΅„© σ΅„©σ΅„©σ΅„©Ξ β„Ž 𝜎 βˆ’ 𝜎

(62)

σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© Μƒ β„Ž σ΅„©σ΅„©σ΅„©σ΅„© . ≀ 𝐢 (󡄩󡄩󡄩𝑒1 σ΅„©σ΅„©σ΅„© + 󡄩󡄩󡄩𝑒2 σ΅„©σ΅„©σ΅„©) σ΅„©σ΅„©σ΅„©Ξ β„Ž 𝜎 βˆ’ 𝜎

Μƒ β„Ž β€–, Now we estimate β€–Ξ β„Ž 𝜎 βˆ’ 𝜎 Μƒ ),Ξ  𝜎 βˆ’ 𝜎 Μƒ β„Ž , Ξ β„Ž 𝜎 βˆ’ 𝜎 Μƒ β„Ž ) = (π‘Ž (πœ† βˆ’ πœ† Μƒβ„Ž) . (𝜎 βˆ’ 𝜎 β„Ž β„Ž

(63)

6

Journal of Applied Mathematics By Lemma 2, if π‘˜ = 0, we have that

It is easy to see that

σ΅„©σ΅„© Μƒ σ΅„©σ΅„©σ΅„©σ΅„© = σ΅„©σ΅„©σ΅„©πœ† σ΅„©σ΅„©σ΅„© σ΅„©σ΅„©πœ† βˆ’ πœ† β„Žσ΅„© σ΅„© 1σ΅„© σ΅„©

2 σ΅„©σ΅„© Μƒ β„Ž σ΅„©σ΅„©σ΅„©σ΅„© σ΅„©σ΅„©Ξ β„Ž 𝜎 βˆ’ 𝜎

Μƒ ),Ξ  𝜎 βˆ’ 𝜎 Μƒ β„Ž ) + (π‘Ž (πœ† βˆ’ πœ† Μƒβ„Ž) = (Ξ β„Ž 𝜎 βˆ’ 𝜎, Ξ β„Ž 𝜎 βˆ’ 𝜎 β„Ž β„Ž

≀ πΆβ„Ž (‖𝑒‖1 + β€–πœ†β€–1 + β€–πœŽβ€–1

Μƒ β„Ž ) + (π‘Ž (πœ† βˆ’ π‘…β„Ž πœ†) , Ξ β„Ž 𝜎 βˆ’ 𝜎 Μƒβ„Ž) = (Ξ β„Ž 𝜎 βˆ’ 𝜎, Ξ β„Ž 𝜎 βˆ’ 𝜎

𝑑

+ ∫ (‖𝑒‖1 + β€–πœ†β€–1 + β€–πœŽβ€–1 ) π‘‘πœ) .

Μƒ ),Ξ  𝜎 βˆ’ 𝜎 Μƒβ„Ž) + (π‘Ž (π‘…β„Ž πœ† βˆ’ πœ† β„Ž β„Ž σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© ≀ 𝐢 (σ΅„©σ΅„©σ΅„©Ξ β„Ž 𝜎 βˆ’ πœŽσ΅„©σ΅„©σ΅„© + σ΅„©σ΅„©σ΅„©πœ† βˆ’ π‘…β„Ž πœ†σ΅„©σ΅„©σ΅„© + 󡄩󡄩󡄩𝑒1 σ΅„©σ΅„©σ΅„© + 󡄩󡄩󡄩𝑒2 σ΅„©σ΅„©σ΅„©) σ΅„© Μƒ β„Ž σ΅„©σ΅„©σ΅„©σ΅„© . Γ— σ΅„©σ΅„©σ΅„©Ξ β„Ž 𝜎 βˆ’ 𝜎

(69)

0

If π‘˜ β‰₯ 1, 2 ≀ π‘Ÿ ≀ π‘˜ + 1, we have that (64)

σ΅„©σ΅„© Μƒ σ΅„©σ΅„©σ΅„©σ΅„© ≀ πΆβ„Žπ‘Ÿ (‖𝑒‖ + β€–πœ†β€– + β€–πœŽβ€– σ΅„©σ΅„©πœ† βˆ’ πœ† β„Žσ΅„© π‘Ÿ π‘Ÿ π‘Ÿ σ΅„© (70)

𝑑

By the properties of projection Ξ β„Ž , we get

+ ∫ (β€–π‘’β€–π‘Ÿβˆ’1 + β€–πœ†β€–π‘Ÿβˆ’1 β€–πœŽβ€–π‘Ÿβˆ’1 ) 𝑑𝑑) . 0

σ΅„©σ΅„© Μƒ β„Ž σ΅„©σ΅„©σ΅„©σ΅„© ≀ πΆβ„Žπ‘Ÿ (β€–π‘’β€–π‘Ÿ + β€–πœ†β€–π‘Ÿ + β€–πœŽβ€–π‘Ÿ + 󡄩󡄩󡄩󡄩𝑒1 σ΅„©σ΅„©σ΅„©σ΅„©) , σ΅„©σ΅„©Ξ β„Ž 𝜎 βˆ’ 𝜎

(65)

0 ≀ π‘Ÿ ≀ π‘˜ + 1,

Μƒ β„Ž β€–, we obtain Using the estimate of β€–Ξ β„Ž 𝜎 βˆ’ 𝜎 σ΅„©σ΅„© Μƒ β„Ž σ΅„©σ΅„©σ΅„©σ΅„© ≀ 𝐢 (β„Žπ‘Ÿ (β€–π‘’β€–π‘Ÿ + β€–πœ†β€–π‘Ÿ + β€–πœŽβ€–π‘Ÿ ) + 󡄩󡄩󡄩󡄩𝑒1 σ΅„©σ΅„©σ΅„©σ΅„©) , σ΅„©σ΅„©πœŽ βˆ’ 𝜎

which proves (49) and (53). Μƒ β€–, Now we estimate β€–π‘…β„Ž πœ† βˆ’ πœ† β„Ž

0 ≀ π‘Ÿ ≀ π‘˜ + 1.

(71)

If π‘˜ = 0, we get

Μƒ ),𝑅 πœ† βˆ’ πœ† Μƒ ) (π‘Ž (π‘…β„Ž πœ† βˆ’ πœ† β„Ž β„Ž β„Ž

σ΅„©σ΅„© Μƒ β„Ž σ΅„©σ΅„©σ΅„©σ΅„© σ΅„©σ΅„©πœŽ βˆ’ 𝜎

Μƒ ,𝑅 πœ† βˆ’ πœ† Μƒ ) = (π‘Ž (πœ† βˆ’ πœ† β„Ž β„Ž β„Ž

≀ πΆβ„Ž (‖𝑒‖1 + β€–πœ†β€–1 + β€–πœŽβ€–1

Μƒ ) + (π‘Ž (π‘…β„Ž πœ† βˆ’ πœ†) , π‘…β„Ž πœ† βˆ’ πœ† β„Ž Μƒ ) + (Ξ  𝜎 βˆ’ 𝜎 Μƒ ) Μƒ β„Ž , π‘…β„Ž πœ† βˆ’ πœ† = (𝜎 βˆ’ Ξ β„Ž 𝜎, π‘…β„Ž πœ† βˆ’ πœ† β„Ž β„Ž β„Ž

(72)

𝑑

+ ∫ (‖𝑒‖1 + β€–πœ†β€–1 + β€–πœŽβ€–1 ) 𝑑𝑑) . 0

Μƒ ) + (π‘Ž (π‘…β„Ž πœ† βˆ’ πœ†) , π‘…β„Ž πœ† βˆ’ πœ† β„Ž Μƒ ) + (c (𝑒 βˆ’ 𝑒̃ ) , Ξ  𝜎 βˆ’ 𝜎 Μƒβ„Ž) = (𝜎 βˆ’ Ξ β„Ž 𝜎, π‘…β„Ž πœ† βˆ’ πœ† β„Ž β„Ž β„Ž Μƒ ) + (π‘Ž (π‘…β„Ž πœ† βˆ’ πœ†) , π‘…β„Ž πœ† βˆ’ πœ† β„Ž σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© Μƒ σ΅„©σ΅„©σ΅„©σ΅„© ≀ (σ΅„©σ΅„©σ΅„©πœŽ βˆ’ Ξ β„Ž πœŽσ΅„©σ΅„©σ΅„© + 𝐢 σ΅„©σ΅„©σ΅„©πœ† βˆ’ π‘…β„Ž πœ†σ΅„©σ΅„©σ΅„©) σ΅„©σ΅„©σ΅„©σ΅„©π‘…β„Ž πœ† βˆ’ πœ† β„Žσ΅„© σ΅„© σ΅„©σ΅„© Μƒ β„Ž σ΅„©σ΅„©σ΅„©σ΅„© + 𝐢 󡄩󡄩󡄩𝑒1 + 𝑒2 σ΅„©σ΅„©σ΅„© σ΅„©σ΅„©σ΅„©Ξ β„Ž 𝜎 βˆ’ 𝜎 σ΅„© σ΅„©2 σ΅„© σ΅„©2 σ΅„© σ΅„©2 σ΅„© σ΅„©2 ≀ 𝐢 (σ΅„©σ΅„©σ΅„©πœŽ βˆ’ Ξ β„Ž πœŽσ΅„©σ΅„©σ΅„© + 󡄩󡄩󡄩𝑒1 σ΅„©σ΅„©σ΅„© + 󡄩󡄩󡄩𝑒2 σ΅„©σ΅„©σ΅„© + σ΅„©σ΅„©σ΅„©π‘…β„Ž πœ† βˆ’ πœ†σ΅„©σ΅„©σ΅„© ) 𝑐 σ΅„© Μƒ σ΅„©σ΅„©σ΅„©σ΅„©2 , + 0 σ΅„©σ΅„©σ΅„©σ΅„©π‘…β„Ž πœ† βˆ’ πœ† β„Žσ΅„© 2

(66)

If π‘˜ β‰₯ 1, 2 ≀ π‘Ÿ ≀ π‘˜ + 1, we get σ΅„©σ΅„© Μƒ β„Ž σ΅„©σ΅„©σ΅„©σ΅„© σ΅„©σ΅„©πœŽ βˆ’ 𝜎 ≀ πΆβ„Žπ‘Ÿ (β€–π‘’β€–π‘Ÿ + β€–πœ†β€–π‘Ÿ + β€–πœŽβ€–π‘Ÿ

(73)

𝑑

+ ∫ (β€–π‘’β€–π‘Ÿβˆ’1 + β€–πœ†β€–π‘Ÿβˆ’1 + β€–πœŽβ€–π‘Ÿβˆ’1 ) 𝑑𝑑) . 0

(III) By Lemma 2, we have that σ΅„©σ΅„© σ΅„© σ΅„© σ΅„© π‘Ÿ+1βˆ’π›Ώπ‘˜0 σ΅„©σ΅„©π‘β„Ž 𝑒 βˆ’ π‘’Μƒβ„Ž σ΅„©σ΅„©σ΅„© = 󡄩󡄩󡄩𝑒1 σ΅„©σ΅„©σ΅„© ≀ πΆβ„Ž 𝑑

Γ— ∫ (β€–π‘’β€–π‘Ÿ + β€–πœ†β€–π‘Ÿ + β€–πœŽβ€–π‘Ÿ ) π‘‘πœ,

where

0

Μƒ ),𝑅 πœ† βˆ’ πœ† Μƒ ) β‰₯ 𝑐 󡄩󡄩󡄩󡄩𝑅 πœ† βˆ’ πœ† Μƒ σ΅„©σ΅„©σ΅„©σ΅„©2 . (π‘Ž (π‘…β„Ž πœ† βˆ’ πœ† β„Ž β„Ž β„Ž 0σ΅„© β„Ž β„Žσ΅„©

(67)

0 ≀ π‘Ÿ ≀ π‘˜ + 1,

σ΅„©σ΅„© σ΅„© σ΅„©σ΅„©π‘β„Ž 𝑒𝑑 βˆ’ π‘’Μƒβ„Ž,𝑑 σ΅„©σ΅„©σ΅„© ≀ πΆβ„Žπ‘Ÿ+1βˆ’π›Ώπ‘˜0 (β€–π‘’β€–π‘Ÿ + β€–πœ†β€–π‘Ÿ + β€–πœŽβ€–π‘Ÿ

From (66) and (67), we know σ΅„©σ΅„© Μƒ σ΅„©σ΅„©σ΅„©σ΅„© ≀ 𝐢 (β„Žπ‘Ÿ (‖𝑒‖ + β€–πœ†β€– + β€–πœŽβ€– ) + 󡄩󡄩󡄩𝑒 σ΅„©σ΅„©σ΅„©) , σ΅„©σ΅„©π‘…β„Ž πœ† βˆ’ πœ† β„Žσ΅„© π‘Ÿ π‘Ÿ π‘Ÿ σ΅„© 1σ΅„© σ΅„© σ΅„©σ΅„© Μƒ σ΅„©σ΅„©σ΅„©σ΅„© ≀ 𝐢 (β„Žπ‘Ÿ (‖𝑒‖ + β€–πœ†β€– + β€–πœŽβ€– ) + 󡄩󡄩󡄩𝑒 σ΅„©σ΅„©σ΅„©) , σ΅„©σ΅„©πœ† βˆ’ πœ† β„Žσ΅„© π‘Ÿ π‘Ÿ π‘Ÿ σ΅„© 1σ΅„© σ΅„© 0 ≀ π‘Ÿ ≀ π‘˜ + 1.

𝑑

+ ∫ (β€–π‘’β€–π‘Ÿ + β€–πœ†β€–π‘Ÿ + β€–πœŽβ€–π‘Ÿ ) 𝑑𝑑) , (68)

0

0 ≀ π‘Ÿ ≀ π‘˜ + 1. (74)

Journal of Applied Mathematics

7

If π‘˜ = 0, we know

(I) if π‘˜ = 0, then

σ΅„©σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© 󡄩󡄩𝑒 βˆ’ π‘’Μƒβ„Ž σ΅„©σ΅„©σ΅„© ≀ 󡄩󡄩󡄩𝑒 βˆ’ π‘β„Ž 𝑒󡄩󡄩󡄩 + 󡄩󡄩󡄩𝑒1 σ΅„©σ΅„©σ΅„© 𝑑

≀ πΆβ„Ž (‖𝑒‖1 + ∫ (‖𝑒‖1 + β€–πœ†β€–1 + β€–πœŽβ€–1 ) 𝑑𝑑) , 0

σ΅„©σ΅„© σ΅„© 󡄩󡄩𝑒𝑑 βˆ’ π‘’Μƒβ„Ž,𝑑 σ΅„©σ΅„©σ΅„©

(75)

σ΅„© σ΅„© ≀ πΆβ„Ž (󡄩󡄩󡄩𝑒𝑑 σ΅„©σ΅„©σ΅„©1 + ‖𝑒‖1 + β€–πœ†β€–1 + β€–πœŽβ€–1 𝑑

+ ∫ (‖𝑒‖1 + β€–πœ†β€–1 + β€–πœŽβ€–1 ) 𝑑𝑑) .

σ΅„© 󡄨󡄩 󡄩󡄨 σ΅„©σ΅„© 󡄩󡄩𝑒 βˆ’ π‘’β„Ž σ΅„©σ΅„©σ΅„© ≀ πΆβ„Ž (‖𝑒‖1 + 󡄨󡄨󡄨󡄩󡄩󡄩𝑒, 𝑒𝑑 , πœ†, πœŽσ΅„©σ΅„©σ΅„©σ΅„¨σ΅„¨σ΅„¨1 ) , σ΅„© σ΅„© σ΅„© σ΅„©σ΅„© 󡄩󡄩𝑒𝑑 βˆ’ π‘’β„Ž,𝑑 σ΅„©σ΅„©σ΅„© ≀ πΆβ„Ž (󡄩󡄩󡄩𝑒, 𝑒𝑑 , πœ†, πœŽσ΅„©σ΅„©σ΅„©1 + |‖𝑒, πœ†, πœŽβ€–|1 ) , σ΅„© σ΅„© σ΅„© 󡄨󡄩 󡄩󡄨 σ΅„©σ΅„© σ΅„©σ΅„©πœ† βˆ’ πœ†β„Ž σ΅„©σ΅„©σ΅„© ≀ πΆβ„Ž (󡄩󡄩󡄩𝑒, 𝑒𝑑 , πœ†, πœŽσ΅„©σ΅„©σ΅„©1 + 󡄨󡄨󡄨󡄩󡄩󡄩𝑒, 𝑒𝑑 , πœ†, πœŽσ΅„©σ΅„©σ΅„©σ΅„¨σ΅„¨σ΅„¨1 ) , σ΅„© σ΅„©σ΅„© σ΅„© σ΅„© 󡄨󡄩 󡄩󡄨 σ΅„©σ΅„©πœŽ βˆ’ πœŽβ„Ž σ΅„©σ΅„©σ΅„© ≀ πΆβ„Ž (󡄩󡄩󡄩𝑒, 𝑒𝑑 , πœ†, πœŽσ΅„©σ΅„©σ΅„©1 + 󡄨󡄨󡄨󡄩󡄩󡄩𝑒, 𝑒𝑑 , πœ†, πœŽσ΅„©σ΅„©σ΅„©σ΅„¨σ΅„¨σ΅„¨1 ) , σ΅„© σ΅„©σ΅„© σ΅„©σ΅„©div (𝜎 βˆ’ πœŽβ„Ž )σ΅„©σ΅„©σ΅„© σ΅„© σ΅„© 󡄨󡄩 󡄩󡄨 ≀ πΆβ„Ž (‖𝑒‖1 + 󡄩󡄩󡄩𝑒𝑑 σ΅„©σ΅„©σ΅„©1 + β€–πœŽβ€–2 + 󡄨󡄨󡄨󡄩󡄩󡄩𝑒, 𝑒𝑑 , πœ†, πœŽσ΅„©σ΅„©σ΅„©σ΅„¨σ΅„¨σ΅„¨1 ) ,

(78) (79) (80) (81) (82)

0

(II) if π‘˜ β‰₯ 1 and 2 ≀ π‘Ÿ ≀ π‘˜ + 1, then

If π‘˜ β‰₯ 1, 2 ≀ π‘Ÿ ≀ π‘˜ + 1, we know σ΅„©σ΅„© σ΅„© 󡄩󡄩𝑒 βˆ’ π‘’Μƒβ„Ž σ΅„©σ΅„©σ΅„© 𝑑

≀ πΆβ„Žπ‘Ÿ (β€–π‘’β€–π‘Ÿ + ∫ (β€–π‘’β€–π‘Ÿβˆ’1 + β€–πœ†β€–π‘Ÿβˆ’1 + β€–πœŽβ€–π‘Ÿβˆ’1 ) 𝑑𝑑) , 0

σ΅„©σ΅„© σ΅„© 󡄩󡄩𝑒𝑑 βˆ’ π‘’Μƒβ„Ž,𝑑 σ΅„©σ΅„©σ΅„©

σ΅„© 󡄨󡄩 󡄩󡄨 σ΅„©σ΅„© π‘Ÿ 󡄩󡄩𝑒 βˆ’ π‘’β„Ž σ΅„©σ΅„©σ΅„© ≀ πΆβ„Ž (β€–π‘’β€–π‘Ÿ + 󡄨󡄨󡄨󡄩󡄩󡄩𝑒, 𝑒𝑑 , πœ†, πœŽσ΅„©σ΅„©σ΅„©σ΅„¨σ΅„¨σ΅„¨π‘Ÿβˆ’1 ) , σ΅„© σ΅„©σ΅„© 󡄩󡄩𝑒𝑑 βˆ’ π‘’β„Ž,𝑑 σ΅„©σ΅„©σ΅„© σ΅„© σ΅„© ≀ πΆβ„Žπ‘Ÿ (󡄩󡄩󡄩𝑒𝑑 σ΅„©σ΅„©σ΅„©π‘Ÿ + β€–π‘’β€–π‘Ÿβˆ’1 + β€–πœ†β€–π‘Ÿβˆ’1 + β€–πœŽβ€–π‘Ÿβˆ’1 𝑑

σ΅„© σ΅„© + ∫ (β€–π‘’β€–π‘Ÿβˆ’1 + 󡄩󡄩󡄩𝑒𝑑 σ΅„©σ΅„©σ΅„©π‘Ÿ + β€–πœ†β€–π‘Ÿβˆ’1 + β€–πœŽβ€–π‘Ÿβˆ’1 ) 𝑑𝑑) ,

σ΅„© σ΅„© ≀ πΆβ„Žπ‘Ÿ (󡄩󡄩󡄩𝑒𝑑 σ΅„©σ΅„©σ΅„©π‘Ÿ + β€–π‘’β€–π‘Ÿβˆ’1 + β€–πœ†β€–π‘Ÿβˆ’1

0

σ΅„© σ΅„©σ΅„© σ΅„©σ΅„©πœ† βˆ’ πœ†β„Ž σ΅„©σ΅„©σ΅„©

𝑑

+ ∫ (β€–π‘’β€–π‘Ÿβˆ’1 + β€–πœ†β€–π‘Ÿβˆ’1 + β€–πœŽβ€–π‘Ÿβˆ’1 ) 𝑑𝑑) . 0

(76)

≀ πΆβ„Žπ‘Ÿ (‖𝑒, πœ†, πœŽβ€–π‘Ÿ 𝑑

σ΅„© σ΅„© + ∫ (󡄩󡄩󡄩𝑒𝑑 σ΅„©σ΅„©σ΅„©π‘Ÿ + β€–π‘’β€–π‘Ÿβˆ’1 + β€–πœ†β€–π‘Ÿβˆ’1 + β€–πœŽβ€–π‘Ÿβˆ’1 ) 𝑑𝑑) , 0

The proof is completed. Remark 4. The estimate results of (46)–(53) are optimal. If π‘˜ β‰₯ 1, the estimate results of (43)–(45) are superconvergent.

5. Main Result

σ΅„© σ΅„©σ΅„© σ΅„©σ΅„©πœŽ βˆ’ πœŽβ„Ž σ΅„©σ΅„©σ΅„© ≀ πΆβ„Žπ‘Ÿ ( ‖𝑒, πœ†, πœŽβ€–π‘Ÿ 𝑑

In this section, we consider error estimates for the continuous-in-time mixed finite element approximation. Define

Μƒ ) + (πœ† Μƒ βˆ’πœ† )=πœ† +πœ† , πœ† βˆ’ πœ†β„Ž = (πœ† βˆ’ πœ† β„Ž β„Ž β„Ž 1 2 σ΅„©σ΅„© σ΅„© σ΅„© σ΅„© 󡄩󡄩𝑒, 𝑒𝑑 , πœ†, πœŽσ΅„©σ΅„©σ΅„©π‘Ÿ = β€–π‘’β€–π‘Ÿ + 󡄩󡄩󡄩𝑒𝑑 σ΅„©σ΅„©σ΅„©π‘Ÿ + β€–πœ†β€–π‘Ÿ + β€–πœŽβ€–π‘Ÿ ,

σ΅„©σ΅„© σ΅„© σ΅„©σ΅„©div (𝜎 βˆ’ πœŽβ„Ž )σ΅„©σ΅„©σ΅„© σ΅„© σ΅„© ≀ πΆβ„Žπ‘Ÿ (󡄩󡄩󡄩𝑒𝑑 σ΅„©σ΅„©σ΅„©π‘Ÿ + β€–πœ†β€–π‘Ÿ + β€–πœŽβ€–π‘Ÿ+1 + β€–π‘’β€–π‘Ÿβˆ’1

π‘’β„Ž βˆ’ π‘’β„Ž ) = 𝑒3 + 𝑒4 , 𝑒 βˆ’ π‘’β„Ž = (𝑒 βˆ’ π‘’Μƒβ„Ž ) + (Μƒ

Μƒ β„Ž ) + (Μƒ 𝜎 βˆ’ πœŽβ„Ž = (𝜎 βˆ’ 𝜎 πœŽβ„Ž βˆ’ πœŽβ„Ž ) = 𝜎1 + 𝜎2 ,

σ΅„© σ΅„© + ∫ (󡄩󡄩󡄩𝑒𝑑 σ΅„©σ΅„©σ΅„©π‘Ÿ + β€–π‘’β€–π‘Ÿβˆ’1 + β€–πœ†β€–π‘Ÿβˆ’1 + β€–πœŽβ€–π‘Ÿβˆ’1 ) 𝑑𝑑) , 0 (83)

𝑑

(77)

σ΅„© σ΅„© + ∫ (󡄩󡄩󡄩𝑒𝑑 σ΅„©σ΅„©σ΅„©π‘Ÿ + β€–π‘’β€–π‘Ÿβˆ’1 + β€–πœ†β€–π‘Ÿβˆ’1 + β€–πœŽβ€–π‘Ÿβˆ’1 ) 𝑑𝑑) . 0 (84)

𝑑

󡄨󡄨󡄩󡄩 󡄩󡄨 σ΅„© σ΅„© 󡄨󡄨󡄩󡄩𝑒, 𝑒𝑑 , πœ†, πœŽσ΅„©σ΅„©σ΅„©σ΅„¨σ΅„¨σ΅„¨π‘Ÿ = ∫ (β€–π‘’β€–π‘Ÿ + 󡄩󡄩󡄩𝑒𝑑 σ΅„©σ΅„©σ΅„©π‘Ÿ + β€–πœ†β€–π‘Ÿ + β€–πœŽβ€–π‘Ÿ ) 𝑑𝑑. 0 Theorem 5. Let (𝑒, πœ†, 𝜎) and (π‘’β„Ž , πœ†β„Ž , πœŽβ„Ž ) be the solution of (9) and (11), respectively. If 𝑒, πœ†, and 𝜎 are sufficiently smooth, then there exist positive constants 𝐢 such that

Proof. From (9) and (19), we have the following error equation: (𝑒4,𝑑 + 𝑒3,𝑑 , 𝑀) + (div 𝜎2 , 𝑀) = 0, βˆ€π‘€ ∈ π‘Šβ„Ž , 0 < 𝑑 ≀ 𝑇,

8

Journal of Applied Mathematics (𝜎2 , 𝜏) βˆ’ (π‘Žπœ†2 , 𝜏) = 0,

Remark 6. The estimate results of (78)–(84) are optimal.

βˆ€πœ ∈ Ξ›β„Ž , 0 < 𝑑 ≀ 𝑇,

Acknowledgments

(πœ†2 , k) βˆ’ (𝑒4,𝑑 + 𝑏𝑒4 , div k) + (c𝑒4 , k) = 0, βˆ€k ∈ Vβ„Ž , 0 < 𝑑 ≀ 𝑇, 𝑒4 (0) = 0. (85) In (85), choosing πœ” = 𝑒4,𝑑 + π‘β„Ž (𝑏𝑒4 ), 𝜏 = πœ†2 , and k = 𝜎2 , we have (πœ†2 , 𝜎2 ) + (𝑒4,𝑑 , 𝑒4,𝑑 ) = βˆ’ (𝑒3,𝑑 , 𝑒4,𝑑 + π‘β„Ž (𝑏𝑒4 )) βˆ’ (𝑒4,𝑑 , π‘β„Ž (𝑏𝑒4 ))

(86)

βˆ’ (c𝑒4 , 𝜎2 ) . In the second equation of (85), letting 𝜏 = 𝜎2 , we know 𝜎2 ≀ πΆπœ†2 .

(87)

Further, using πœ€-inequality to (86), we get σ΅„© σ΅„©2 σ΅„© σ΅„©2 σ΅„©σ΅„© σ΅„©σ΅„©2 σ΅„©σ΅„© σ΅„©σ΅„©2 󡄩󡄩𝑒4,𝑑 σ΅„©σ΅„© + σ΅„©σ΅„©πœ†2 σ΅„©σ΅„© ≀ 𝐢 (󡄩󡄩󡄩𝑒4 σ΅„©σ΅„©σ΅„© + 󡄩󡄩󡄩𝑒3,𝑑 σ΅„©σ΅„©σ΅„© ) . Hence, σ΅„© 𝑑 σ΅„©σ΅„© σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„©σ΅„© 󡄩󡄩𝑒4 σ΅„©σ΅„© = σ΅„©σ΅„©βˆ« 𝑒4,𝑑 π‘‘πœσ΅„©σ΅„©σ΅„© σ΅„©σ΅„© 0 σ΅„©σ΅„© 𝑑

𝑑

σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© ≀ 𝐢 ∫ 󡄩󡄩󡄩𝑒4,𝑑 σ΅„©σ΅„©σ΅„© π‘‘πœ ≀ 𝐢 ∫ (󡄩󡄩󡄩𝑒4 σ΅„©σ΅„©σ΅„© + 󡄩󡄩󡄩𝑒3,𝑑 σ΅„©σ΅„©σ΅„©) 𝑑𝑑. 0 0

(88)

(89)

Using Gronwall’s inequality to (89), we obtain 𝑑

σ΅„©σ΅„© σ΅„©σ΅„© σ΅„© σ΅„© 󡄩󡄩𝑒4 σ΅„©σ΅„© ≀ 𝐢 ∫ 󡄩󡄩󡄩𝑒3,𝑑 σ΅„©σ΅„©σ΅„© 𝑑𝑑. 0

(90)

Further, we know 𝑑

σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„©σ΅„©πœŽ2 σ΅„©σ΅„© + 󡄩󡄩𝑒4,𝑑 σ΅„©σ΅„© + σ΅„©σ΅„©πœ†2 σ΅„©σ΅„© ≀ 𝐢 (󡄩󡄩󡄩𝑒3,𝑑 σ΅„©σ΅„©σ΅„© + ∫ 󡄩󡄩󡄩𝑒3,𝑑 σ΅„©σ΅„©σ΅„© 𝑑𝑑) . 0

(91)

Noting the first equation of (78), we get 𝑑

σ΅„©σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„©σ΅„©div 𝜎2 σ΅„©σ΅„©σ΅„© ≀ 󡄩󡄩󡄩𝑒3,𝑑 σ΅„©σ΅„©σ΅„© + 󡄩󡄩󡄩𝑒4,𝑑 σ΅„©σ΅„©σ΅„© ≀ 𝐢 (󡄩󡄩󡄩𝑒3,𝑑 σ΅„©σ΅„©σ΅„© + ∫ 󡄩󡄩󡄩𝑒3,𝑑 σ΅„©σ΅„©σ΅„© 𝑑𝑑) . (92) 0 So we have that 𝑑

σ΅„©σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© 󡄩󡄩𝑒 βˆ’ π‘’β„Ž σ΅„©σ΅„©σ΅„© ≀ 󡄩󡄩󡄩𝑒3 σ΅„©σ΅„©σ΅„© + 𝐢 ∫ 󡄩󡄩󡄩𝑒3,𝑑 σ΅„©σ΅„©σ΅„© 𝑑𝑑, 0 𝑑

σ΅„©σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© 󡄩󡄩𝑒𝑑 βˆ’ π‘’β„Ž,𝑑 σ΅„©σ΅„©σ΅„© ≀ 𝐢 (󡄩󡄩󡄩𝑒3,𝑑 σ΅„©σ΅„©σ΅„© + ∫ 󡄩󡄩󡄩𝑒3,𝑑 σ΅„©σ΅„©σ΅„© 𝑑𝑑) , 0 𝑑

σ΅„©σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„©σ΅„©πœ† βˆ’ πœ†β„Ž σ΅„©σ΅„©σ΅„© ≀ σ΅„©σ΅„©σ΅„©πœ†1 σ΅„©σ΅„©σ΅„© + 𝐢 (󡄩󡄩󡄩𝑒3,𝑑 σ΅„©σ΅„©σ΅„© + ∫ 󡄩󡄩󡄩𝑒3,𝑑 σ΅„©σ΅„©σ΅„© 𝑑𝑑) , 0

(93)

𝑑

σ΅„© σ΅„© σ΅„©σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„©σ΅„©πœŽ βˆ’ πœŽβ„Ž σ΅„©σ΅„©σ΅„© ≀ σ΅„©σ΅„©σ΅„©πœŽ1 σ΅„©σ΅„©σ΅„© + 𝐢 (󡄩󡄩󡄩𝑒3,𝑑 σ΅„©σ΅„©σ΅„© + ∫ 󡄩󡄩󡄩𝑒3,𝑑 σ΅„©σ΅„©σ΅„© 𝑑𝑑) , 0 σ΅„©σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„©σ΅„©div (𝜎 βˆ’ πœŽβ„Ž )σ΅„©σ΅„©σ΅„© ≀ σ΅„©σ΅„©σ΅„©div 𝜎1 σ΅„©σ΅„©σ΅„© + σ΅„©σ΅„©σ΅„©div 𝜎2 σ΅„©σ΅„©σ΅„© . Together with the results of Lemmas 2 and 3, the proof is completed.

This work is supported by the National Natural Science Foundation of China (nos. 11171190, 11101246, and 11101247) and the Natural Science Foundation of Shandong Province (ZR2011AQ020). The authors thank the anonymous referees for their constructive comments and suggestions, which led to improvements in the presentation.

References [1] N. Li, F. Gao, and T. Zhang, β€œAn expanded mixed finite element method for Sobolev equation,” Journal of Computational Analysis and Applications, vol. 15, no. 3, pp. 535–543, 2013. [2] T. Sun, β€œA Godunov-mixed finite element method on changing meshes for the nonlinear Sobolev equations,” Abstract and Applied Analysis, vol. 2012, Article ID 413718, 19 pages, 2012. [3] R. E. Ewing, β€œNumerical solution of Sobolev partial differential equations,” SIAM Journal on Numerical Analysis, vol. 12, pp. 345–363, 1975. [4] D. Shi and Y. Zhang, β€œHigh accuracy analysis of a new nonconforming mixed finite element scheme for Sobolev equations,” Applied Mathematics and Computation, vol. 218, no. 7, pp. 3176– 3186, 2011. [5] P. G. Ciarlet, The Finite Element Method for Elliptic Equations, North-Holland, Amsterdam, The Netherlands, 1978. [6] I. Babuska, β€œError-bounds for finite element method,” Numerische Mathematik, vol. 16, no. 4, pp. 322–333, 1970. [7] F. Brezzi, β€œOn the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers,” RAIRO Mathematical Modelling and Numerical Analysis, vol. 8, no. 2, pp. 129–151, 1974. [8] R. S. Falk and J. E. Osborn, β€œError estimates for mixed methods,” RAIRO Analyse NumΒ΄erique, vol. 14, no. 3, pp. 249–277, 1980. [9] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, vol. 15 of Springer Series in Computational Mathematics, Springer, Berlin, Germany, 1991. [10] J. E. Roberts and J. M. Thomas, β€œMixed and hybrid methods,” in Handbook of Numerical Analysis, vol. 2, pp. 523–639, NorthHolland, Amsterdam, The Netherlands, 1991. [11] Z. Chen, β€œExpanded mixed finite element methods for linear second-order elliptic problems. I,” RAIRO Mathematical Modelling and Numerical Analysis, vol. 32, no. 4, pp. 479–499, 1998. [12] Z. Chen, β€œExpandedmixed finite elementmethods for quasilinear second-order elliptic problems,” RAIROMathematical Modelling and Numerical Analysis, vol. 32, no. 4, pp. 500–520, 1998. [13] L. Guo and H. Z. Chen, β€œAn expanded characteristic-mixed finite element method for a convection-dominated transport problem,” Journal of Computational Mathematics, vol. 23, no. 5, pp. 479–490, 2005. [14] W. Liu, H. X. Rui, and H. Guo, β€œA two-grid method with expanded mixed element for nonlinear reaction-diffusion equations,” Acta Mathematicae Applicatae Sinica (English Series), vol. 27, no. 3, pp. 495–502, 2011. [15] H. Che, Z. Zhou, and Z. Jiang, β€œH1-Galerkin expanded mixed finite element methods for nonlinear pseudo-parabolic integrodifferential equations,” Numerical Methods for Partial Differential Equations, vol. 29, no. 3, pp. 799–817, 2013.

Journal of Applied Mathematics [16] R. A. Adams, Sobolev Spaces, vol. 65, Academic Press, New York, NY, USA, 1975. [17] P. A. Raviart and J. M. Thomas, β€œA mixed finite element method for 2nd order elliptic problems,” in Mathematical Aspects of Finite Element Methods, vol. 606 of Lecture Notes in Mathematics, pp. 292–315, Springer, Berlin, Germany, 1977. [18] F. Brezzi, J. Douglas Jr., and L. D. Marini, β€œTwo families of mixed finite elements for second order elliptic problems,” Numerische Mathematik, vol. 47, no. 2, pp. 217–235, 1985. [19] F. Brezzi, J. Douglas Jr., M. Fortin, and L. D. Marini, β€œEfficient rectangular mixed finite elements in two and three space variables,” RAIRO Mathematical Modelling and Numerical Analysis, vol. 21, no. 4, pp. 581–604, 1987.

9

Advances in

Operations Research Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Advances in

Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Applied Mathematics

Algebra

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Probability and Statistics Volume 2014

The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Differential Equations Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Submit your manuscripts at http://www.hindawi.com International Journal of

Advances in

Combinatorics Hindawi Publishing Corporation http://www.hindawi.com

Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Journal of

Mathematics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Discrete Mathematics

Journal of

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Discrete Dynamics in Nature and Society

Journal of

Function Spaces Hindawi Publishing Corporation http://www.hindawi.com

Abstract and Applied Analysis

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Journal of

Stochastic Analysis

Optimization

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Suggest Documents