A Sagittal T1-weighted FSE showing thinning of the posterior part of the corpus callosum with agenesis of the splenium. Prominent subcutaneous fat deposition ...
EMBO Molecular Medicine
OXA1L mutations cause mitochondrial disease
Kyle Thompson et al
Expanded View Figures A
B
C
Figure EV1. Patient Neuroimaging. A Sagittal T1-weighted FSE showing thinning of the posterior part of the corpus callosum with agenesis of the splenium. Prominent subcutaneous fat deposition can also be seen. B Axial T1 FSPGR reveals that the third ventricle is bigger and the ventricular atrium has a parallel orientation, due to agenesis of the splenium. C MRS of the patient’s brain shows a normal spectroscopy pattern.
◀
Figure EV2. Neuropathology: Bilateral cavitation of the pons, demyelination of the fasciculus gracile tract and downregulation of complex I subunits NDUFS3 and NDUFB8. A The pons demonstrate bilateral cavitation (i and ii), specifically affecting the pedunculopontine nucleus, accompanied by microvascular proliferation (iii), reactive astrogliosis (iv) and microglial activation (v). There is downregulation of NDUFS3 (vi; arrowheads) expression within neurons and the surrounding neuropil (control staining: vii), while SDHA (viii; control shown in ix), COXI (x; control shown in xi) and ATP5B (xii; control shown in xiii) expression is maintained within normal levels. B The neurons of the substantia nigra also reveal a loss of NDUFS3 (i; arrowheads, control shown on right) expression, while SDHA (ii left panel; control shown on right), COXI (iii left panel; control shown on right) and ATP5B (iv left panel; control shown on right) expression levels are comparable to control. C The fasciculus gracile tracts reveal demyelination (i and ii), while the adjacent fasciculus cuneatus is myelinated (iii). Neuronal population density of the motor neurons is maintained, while there is a loss of NDUFB8 (iv) and NDUFS3 expression (v) and intact SDHA (vi), COXI (vii) and ATP5B (viii) expression. Data information: Scale bar = 100 lm.
EV1
EMBO Molecular Medicine e9060 | 2018
ª 2018 The Authors
▸
Kyle Thompson et al
OXA1L mutations cause mitochondrial disease
A
EMBO Molecular Medicine
II
III
IV
V
I
B
C
VI
VII
VIII
IX
X
XI
XII
XIII
I
II
III
IV
II
I
V
VI
III
VII
IV
VIII
Figure EV2.
ª 2018 The Authors
EMBO Molecular Medicine e9060 | 2018
EV2
EMBO Molecular Medicine
OXA1L mutations cause mitochondrial disease
AA
Kyle Thompson et al
BB
PGFA
C
I
II
III
IV
D
I
II
III
IV
E
I
II
III
IV
F
I
II
III
IV
Figure EV3. Neuropathology: Frontal lobe atrophy, corpus callosum hypoplasia and thalamic cavitation. The laminar distribution of neurons in cortical regions is intact, and mitochondrial OXPHOS expression is maintained throughout the frontal, parietal and occipital cortices. A B
Macroscopically, the frontal cortex was atrophic, while the corpus callosum was hypoplastic. There was microcavitation of the thalamus with microvascular proliferation, activated microglia and reactive gliosis, which was revealed with immunohistochemical staining for glial fibrillary acidic protein (PGFA). Scale bars: top panels = 500 lm, bottom left = 200 lm, bottom right = 100 lm. C–F Mitochondrial respiratory chain protein expression is maintained in patient neurons within frontal (C), parietal (D) and occipital (E) cortices comparable with levels observed in control neurons (F), and there is only slight downregulation of NDUFS3 (i) expression, while expression in patient tissues of SDHA (ii), COXI (iii) and ATP5B (iv) is high. Scale bar = 100 lm.
EV3
EMBO Molecular Medicine e9060 | 2018
ª 2018 The Authors
Kyle Thompson et al
OXA1L mutations cause mitochondrial disease
4000
C Picomoles O2 min mg protein / U CS
CI+CIII+CIV / CS
Picomoles O2 min mg protein / U CS
B Picomoles O2 min mg protein / U CS
A
EMBO Molecular Medicine
CIII+CIV / CS
2000
3000
1500
2000
1000
1000
****
0
Ctrl1
OXA1L-IR
Ctrl2
***
500
0
Ctrl1
OXA1L-IR
Ctrl2
CIV / CS 8000
6000
4000
2000
**
0
Ctrl1 OXA1L-IR Ctrl2
Figure EV4. High-resolution respirometry in fly homogenates of CG6404-depleted flies and controls. A CI+CIII+CIV respiration using pyruvate+proline as substrate. B Respiration using sn-glycerol-3-phosphate as substrate (in the presence of rotenone). C CIV respiration using TMPD and ascorbate as substrates (in the presence of rotenone and antimycin A). Data information: Three to five biological replicates per group. Ordinary one-way ANOVA with Tukey’s multiple comparison test. Error bars represent SEM. **P < 0.01, ***P < 0.001, ****P < 0.0001.
Figure EV5. GTEx Portal Expression Profiles for OXA1L Isoforms. All boxplots generated using the Genotype-Tissue Expression Project (GTEx) Analysis Release V7, individual tissue eQTL dataset available through the GTEx Portal (https:// www.gtexportal.org/home/). A
Boxplots of expression levels in transcripts per million (TPM) for OXA1L-213, the main protein coding isoform of OXA1L, across the full available tissue panel. Box plots are shown as median and 25th and 75th percentiles; points are displayed as outliers if they are above or below 1.5 times the interquartile range. B–K Expression levels in TPM for isoforms OXA1L-201 through 212, respectively, across a reduced panel of tissues. The reduced tissue panel includes artery—aorta, artery—coronary, brain—amygdala, brain—cortex, brain—spinal cord, cells—transformed fibroblasts, heart—atrial appendage, heart—left ventricle and muscle—skeletal.
ª 2018 The Authors
EMBO Molecular Medicine e9060 | 2018
EV4
▸
TPM
EV5 2 1.5 1 0.5 0
F 4 3 2 1 0
H
J TPM
D
TPM
TPM TPM 1
0.5 TPM
B
10
5 TPM
TPM
Ad Ad i p i po os s e e-V S i s ub ce cu ra ta l ( ne O A d m e ous r e nt n u A al m) Ar rte Gla te ry nd Br ry ai A n C or -A Ar oro ta nt t n e er ry ar -T y B r i or ai cin Br ib n g ai B ia Br - C ula n - lad l ai au te Am d e n - C dat cor yg r er e (b tex dal eb a (B a el sa A2 la l g 4 Br r H a n ) ai e m gl Br i n ai - C isp a) Br n ai er he -F n e B ro b re -N n r ai e uc Br tal n - llum le ai C o C o us n r te rt B Br a c c r a i H i p x ( e x ai um n - p BA n o B r - P be H y c a 9) m n p ai n uta s ( oth pu - S m ba a s pi en s a l am na (b l g u l c as an s C B el r a or d al gl i ls a g - E Br in ) (c a BV e a - S e r v n g l ia s u i C -tra t - M bst cal ) el ns am ant c-1 ls f i o - T rm m a n ) ra e ar i g y ra ns d fo lym Tis rm p su C ed hoc e er Es vi fibr yte op s C x er - E obla ha vi gu x cto sts s c -G C End erv o as C lo oc ix tro olo n - er es n S vi op - T i g m x Es ha ran oid Es op gea sve h op a l J rs ha gu un e gu s - cti M o s H - M uc n ea rt Fa us osa - A llo cu pi lar t r H ia an is ea l A rt p Tu - L pe be e nd Ki f t V a g dn en e ey tri - C cle or te M x in or Li ve Sa r M liva Lu us r y n g cl e Gla -S n d N er kel ve et Sk - T al in ib ia -N O l ot Pa var Sk Su n nc y in re Ex Pi a s S m - Su p o tu i al n E sed Pr tary lI x ( o nt p S es os up sta tin ed ra te p e - T (Lo ubi er we c) m r in leg al Ile ) u Sp m St leen om ac h Te s Th tis yr oi U d te ru W Va s ho gi le na Bl oo d
TPM
A
OXA1L - 201
OXA1L - 203
OXA1L - 206
OXA1L - 208
OXA1L - 211
2
4
0
EMBO Molecular Medicine e9060 | 2018
TPM
TPM
EMBO Molecular Medicine OXA1L mutations cause mitochondrial disease
1.5
C
0
15
0
6 4 3 2 1 0
E
G
I
K
Kyle Thompson et al
ENSG00000155463.8 Gene Expression
OXA1L - 213
400
300
200
100
0
OXA1L - 202
3
OXA1L - 203
1 2
0
100 80 60 40 20 0
OXA1L - 207
40 30 20 10 0
OXA1L - 209
200 150 100 50 0
OXA1L - 212
Figure EV5.
ª 2018 The Authors