Having no information about the joker dataset, we decided that the most approJ priate approach for this dataset wou1d be to 1oosen our prior be1iefs about the ...
INTRODUCTION TO THE SPATIAL INTERTICLES THE DA
ARTICLES
FAST SPATIAL INTERPOLATION USING SPARSE GAUSSIAN PROCESSES
_______________________________________________________________________________________
_Éå= fåÖê~ã=
kÉìê~ä=`çãéìíáåÖ=oÉëÉ~êÅÜ=dêçìéI=^ëíçå=råáîÉêëáíó= ^ëíçå=qêá~åÖäÉI=_áêãáåÖÜ~ãK=_Q=TbqI=qÜÉ=råáíÉÇ=háåÖÇçã= `çêêÉëéçåÇÉåÅÉ=íçW=áåÖê~ãÄê]~ëíçåK~ÅKìâ=
iÉÜÉä= `ë~íµ=
aÉéíK=çÑ=bãéáêáÅ~ä=fåÑÉêÉåÅÉI=j~ñ=mä~åÅâ=fåëíK=Ñçê=_áçäçÖáÅ~ä=`óÄÉêåÉíáÅë= péÉã~ååëíê~ëëÉ=PUI=TOMTS=qΩÄáåÖÉåI=dÉêã~åó= `çêêÉëéçåÇÉåÅÉ=íçW=Åë~íçä]íìÉÄáåÖÉåKãéÖKÇÉ= a~îáÇ=bî~åë=
=
kÉìê~ä=`çãéìíáåÖ=oÉëÉ~êÅÜ=dêçìéI=^ëíçå=råáîÉêëáíó= ^ëíçå=qêá~åÖäÉI=_áêãáåÖÜ~ãK=_Q=TbqI=qÜÉ=råáíÉÇ=háåÖÇçã= `çêêÉëéçåÇÉåÅÉ=íçW=ÇKàKÉî~åë]~ëíçåK~ÅKìâ=
_______________________________________________________________________________________
The estimation of the natural ambient radioactivity in this entry to the Spatial Interpolation Comparison 2004 (SIC2004) uses Gaussian processes (GP’s) to predict the underlying dispersal process. GP’s enable us to predict easily levels of radioactivity at previously unseen locations and in addition they allow us to assess the uncertainty in the predicted value. To speed up computation time, which is cubic in the number of examples, a sequential, sparse implementation of the Gaussian process inference (SSGP) was used together with a Gaussian observational noise assumption. The examination of the available data led to a covariance function which is a mixture of exponential and squared-exponential functions. The mixture was chosen so that it incorporates both the local ambiguity in the data and also at the same time it captures the larger-scale variation of the observations. A further characteristic of the competition was the availability of 10 days of “prior observations”. The individual sets comprised of data that was recorded at the same time but at different locations across Germany. Consequently in the modelling stage we assumed that the underlying process governing the observations was invariant across the 10 days of “prior observations”, but that each day, i.e. each dataset, should be treated independently. These prior observations were used to infer the parameters of the covariance function, which are called hyper-parameters. Conforming to the Bayesian inference method, the exact values of the hyper-parameters were not fixed; rather we assigned a probability distribution to these parameters, giving a two level inference scheme. The inferred values of the hyper-parameters were used to set up a prior GP, and the same two level inference was employed when evaluating the method on the released SIC2004 dataset. We show that the sparse approximation with the SSGP method can be used instead of the conventional GP’s without significant loss in accuracy leading to a greatly reduced calculation time. We also compare the SSGP performance with
APPLIED GIS, VOLUME 1, NUMBER 2, 2005 MONASH UNIVERSITY EPRESS
15-1
standard machine learning techniques: the SSGP results compare favourably to the other benchmark techniques.
1. INTRODUCTION få=íÜáë=~êíáÅäÉ=ïÉ=ìëÉ=d~ìëëá~å=éêçÅÉëë=EdmF=áåÑÉêÉåÅÉI=~äëç=âåçïå=~ë=hêáÖáåÖ=ãÉíÜçÇë=áå= ÖÉçëí~íáëíáÅë= E`êÉëëáÉ= NVVPFK= qÜÉ= ~Çî~åí~ÖÉ= çÑ= dm= áåÑÉêÉåÅÉ= äáÉë= éêáã~êáäó= áå= áíë= åçåJ é~ê~ãÉíêáÅ= å~íìêÉ= ~åÇ= íÜÉ= áåíêáåëáÅ= ~Äáäáíó= íç= éêçÇìÅÉ= éêçÄ~ÄáäáëíáÅ= éêÉÇáÅíáçåë= ~í= ~åó== äçÅ~íáçåI=ëÉÉå=çê=ìåëÉÉåK=qÜÉ=íÜÉçêÉíáÅ~ä=ÑäÉñáÄáäáíó=áë=ÜáåÇÉêÉÇ=Äó=íÜÉ=~ãçìåí=çÑ=ÅçãéìJ í~íáçå= åÉÉÇÉÇ= íç= çÄí~áå= íÜÉ= éêÉÇáÅíáçåëW= áå= íÜÉ= dm= ~äÖçêáíÜã= ïÉ= åÉÉÇ= íç= ÅçãéìíÉ= íÜÉ= áåîÉêëÉ=Åçî~êá~åÅÉ=ã~íêáñ=çÑ=íÜÉ=Ç~í~I=ïÜáÅÜ=áë=Éèì~ä=áå=ëáòÉ=íç=íÜÉ=ëáòÉ=çÑ=íÜÉ=Ç~í~K=qÜÉ= ê~éáÇ= ~å~äóëáë= çÑ= Ç~í~= áå= ÖÉçëí~íáëíáÅë= áë= éêçÄäÉã~íáÅ= ÄÉÅ~ìëÉ= çÑ= íÜÉ= Åçãéìí~íáçå= çÑ= íÜáë= áåîÉêëáçåK=qÜÉ=ã~íêáñ=áë=åçí=çåäó=éêçÜáÄáíáîÉäó=ëäçï=íç=áåîÉêí=Äìí=~äëç=êÉèìáêÉë=~=ëáÖåáÑáJ Å~åí= ~ãçìåí= çÑ= ÅçãéìíÉê= ãÉãçêó= ëíçê~ÖÉK= ^= åìãÄÉê= çÑ= ÇáÑÑÉêÉåí= ëçäìíáçåë= Ü~îÉ= ÄÉÉå= ~ÇçéíÉÇ= íç= çîÉêÅçãÉ= íÜáë= éêçÄäÉãI= ëìÅÜ= ~ë= é~êíáíáçåáåÖ= íÜÉ= Ç~í~= áåíç= êÉÖáçåë= çê= ëìÄJ ë~ãéäáåÖ= íÜÉ= Ç~í~K= qÜÉëÉ= ãÉíÜçÇë= ~êÉ= ê~íÜÉê= ~ÇJÜçÅ= áå= íÜÉáê= å~íìêÉI= ä~Åâ= ~= ëçìåÇ= íÜÉçJ êÉíáÅ~ä=Ä~ëáë=~åÇ=áí=áë=ìåÅäÉ~ê=ïÜ~í=áåÑçêã~íáçå=áë=ÄÉáåÖ=äçëí=Äó=íÜÉáê=~ééäáÅ~íáçåK= få=íÜáë=ëìÄãáëëáçå=ïÉ=Éãéäçó=íÜÉ=_~óÉëá~å=dm=Ñê~ãÉïçêâ=Ó=~äëç=âåçïå=~ë=hêáÖáåÖ=Ó= íç=Éëíáã~íÉ=íÜÉ=ê~Çáç~Åíáîáíó=äÉîÉäK=qÜÉëÉ=Éëíáã~íÉë=~êÉ=çÄí~áåÉÇ=Ñêçã=~=ä~íÉåí=ÖäçÄ~ä=éçëJ íÉêáçê=dmW=íÜÉ=ãÉ~å=ÑìåÅíáçå=çÑ=íÜÉ=éçëíÉêáçê=éêçÅÉëë=áë=íÜÉ=Éëíáã~íÉ=çÑ=íÜÉ=ê~Çáç~Åíáîáíó= äÉîÉä=~åÇ=íÜÉ=î~êá~åÅÉ=çÑ=íÜÉ=dm=ã~êÖáå~ä=áë=íÜÉ=ìåÅÉêí~áåíó=~ëëçÅá~íÉÇ=íç=íÜáë=éêÉÇáÅíÉÇ= î~äìÉ=E`êÉëëáÉ=NVVPFK= låÉ=çÑ=íÜÉ=çÄàÉÅíáîÉë=çÑ=pf`OMMQ=áë=íç=ÖÉåÉê~íÉ=êÉëìäíë=áå=íÜÉ=ëÜçêíÉëí=~ãçìåí=çÑ=íáãÉK= fåëíÉ~Ç=çÑ=íÜÉ=ÅçåîÉåíáçå~ä=dm=ãÉíÜçÇ=ïáíÜ=~=ëáåÖäÉ=ä~êÖÉ=ã~íêáñ=áåîÉêëáçåI=ïÉ=éêçéçëÉ= íç=ìëÉ=~=ëÉèìÉåíá~ä=Éëíáã~íáçå=ëÅÜÉãÉK=få=íÜáë=ëÉèìÉåíá~ä=ëÅÜÉãÉ=ïÉ=ÅçåëáÇÉê=~=ëáåÖäÉ=ÉäÉJ ãÉåí=çÑ=íÜÉ=Ç~í~ëÉí=~í=~=é~êíáÅìä~ê=íáãÉ=~åÇ=ÄìáäÇ=~=ëÉèìÉåÅÉ=çÑ=áåíÉêãÉÇá~íÉ=éçëíÉêáçêë=ëç= íÜ~í=íÜÉ=ä~ëí=çåÉ=áë=~å=~ééêçñáã~íáçå=íç=íÜÉ=ÖäçÄ~ä=éçëíÉêáçêK=qÜÉ=ëéÉÉÇ=áãéêçîÉãÉåí=áë= ~ÅÜáÉîÉÇ=Äó=~=ëìÄëÉèìÉåí=ãçÇáÑáÅ~íáçå=íç=íÜÉ=~ÄçîÉ=ëÉèìÉåíá~ä=áåÅäìëáçåW=~í=íÜÉ=ÉåÇ=çÑ=~= ëíÉé=íÜÉ=éçëëáÄáäáíó=çÑ=êÉãçîáåÖ=ëçãÉ=áåéìí=äçÅ~íáçåë=Ñêçã=íÜÉ=êÉéêÉëÉåí~íáçå=çÑ=íÜÉ=éçëJ íÉêáçê=éêçÅÉëëK=qÜÉ=êÉãçî~ä=áë=ëìÅÜ=íÜ~í=áí=Öì~ê~åíÉÉë=íÜ~í=íÜÉ=éçëíÉêáçê=ëíáää=áåÅäìÇÉë=íÜÉ= ã~ñáãìã=~ãçìåí=çÑ=“áåÑçêã~íáçåÒ=~Äçìí=íÜÉ=ÅìêêÉåí=Ç~í~=áíÉãK=qÜáë=áíÉê~íáîÉ=êÉãçî~ä= äÉ~Çë=íç=~=ãçÇáÑáÉÇ=ëé~êëÉ=éçëíÉêáçê=ïÜáÅÜ=êÉäáÉë=ãÉêÉäó=çå=~=ëìÄëÉí=çÑ=íÜÉ=íê~áåáåÖ=áåéìíëI= ã~âáåÖ= íÜÉ= çéÉê~íáçåë= íç= ëÅ~äÉ= ÅìÄáÅ~ääó= çåäó= ïáíÜ= íÜÉ= ëáòÉ= çÑ= íÜáë= ëìÄëÉí= E`çêåÑçêÇ= OMMQFK= qÜÉ= ãçÇÉä= ëÉäÉÅíáçå= áë= ~å= áãéçêí~åí= áëëìÉ= áå= íÜÉ= dm= Ñê~ãÉïçêâK= fÇÉ~ääó= çåÉ= ëÜçìäÇ= ÅÜççëÉ=~=ãçÇÉä=Ó=íÜÉ=Åä~ëë=çÑ=éêáçêë=Ó=ïÜáÅÜ=êÉÑäÉÅíë=íÜÉ=ìåÇÉêäóáåÖ=éÜÉåçãÉåçåK=páãáJ ä~êäóI= âåçïäÉÇÖÉ= ~Äçìí= íÜÉ= Ç~í~= ÅçääÉÅíáçå= éêçÅÉëë= ëÜçìäÇ= ÄÉ= ÉåÅçÇÉÇ= áå= íÜÉ= äáâÉäáÜççÇ= ÑìåÅíáçåK= qÜÉêÉ= ï~ë= åç= ëéÉÅáÑáÅ= áåÑçêã~íáçå= ~Äçìí= íÜÉ= Ç~í~= ÅçääÉÅíáçå= ãÉíÜçÇI= íÜìë= ïÉ= ~ëëìãÉÇ=~ÇÇáíáîÉ=d~ìëëá~å=åçáëÉ=áKÉK=~=d~ìëëá~å=äáâÉäáÜççÇ=ÑìåÅíáçå=ïáíÜ=íÜÉ=Éñ~Åí=î~äìÉ= çÑ=íÜÉ=åçáëÉ=î~êá~åÅÉ=ÄÉáåÖ=áåÑÉêêÉÇ=áå=íÜÉ=~äÖçêáíÜãK=táíÜ=íÜÉ=d~ìëëá~å=åçáëÉ=~ëëìãéíáçå= dm=áåÑÉêÉåÅÉ=ÄÉÅçãÉë=~å~äóíáÅ~ääó=íê~Åí~ÄäÉK= táíÜáå= íÜÉ= dm= áåÑÉêÉåÅÉ= E~åÇ= ÖÉçëí~íáëíáÅëF= ~= Åçî~êá~åÅÉ= ÑìåÅíáçåI= ~äëç= âåçïå= ~ë= ~= âÉêåÉä=ÑìåÅíáçå=áå=íÜÉ=ã~ÅÜáåÉ=äÉ~êåáåÖ=ÅçããìåáíóI=áë=ÅÜçëÉå=íç= ãçÇÉä=íÜÉ=î~êá~íáçå=áå= íÜÉ=Ç~í~K=hÉêåÉä=ÑìåÅíáçåë=ëéÉÅáÑó=íÜÉ=êÉä~íáçå=ÄÉíïÉÉå=åÉáÖÜÄçìêáåÖ=áåéìí=äçÅ~íáçåëW=Üçï= ãìÅÜ= íÜÉëÉ= íïç= çÄëÉêî~íáçåë= êÉëÉãÄäÉ= É~ÅÜ= çíÜÉêI= çê= Üçï= ãìÅÜ= áåÑäìÉåÅÉ= ~= ÖáîÉå= Ç~í~= éçáåí=Ü~ë=çå=áíë=“åÉáÖÜÄçìêëÒK=qÜÉó=~êÉ=~å~äçÖçìë=ïáíÜ=Åçî~êá~åÅÉ=ÑìåÅíáçåë=~ë=ìëÉÇ=áå= Åä~ëëáÅ~ä=ÖÉçëí~íáëíáÅë=Ñçê=ÇÉëÅêáÄáåÖ=ëé~íá~ä=î~êá~íáçåK=
15-2
FAST SPATIAL INTERPOLATION ARTICLES
tÉ=~áã=~í=ãçÇÉääáåÖ=íÜÉ=å~íìê~ä=~ãÄáÉåí=ê~Çáç~Åíáîáíó=ãÉ~ëìêÉÇ=áå=íÜÉ=ÉåîáêçåãÉåíK= ^ÅÅçêÇáåÖ=íç=ÉñáëíáåÖ=ëíìÇáÉëI=íÜÉ=ê~Çáç~Åíáîáíó=íóéáÅ~ääó=Çáëéä~óë=åçáëó=~åÇ=ÅçãéäÉñ=ëé~J íá~ä= é~ííÉêåë= êÉä~íÉÇ= íç= ~äíáíìÇÉI= ÖÉçäçÖó= ~åÇ= ïÉ~íÜÉê= Ee~ää= NVUQX= rf`= jÉäÄçêåÉ= OMMQFK= kç=~ÇÇáíáçå~ä=âåçïäÉÇÖÉ=êÉä~íáåÖ=íç=íÜÉëÉ=ÉåîáêçåãÉåí~ä=Ñ~Åíçêë=çê=íÜÉáê=êÉä~íáçåëÜáé=íç= íÜÉ=Ç~í~=ïÉêÉ=ÖáîÉå=íç=é~êíáÅáé~åíëK=páåÅÉ=íÜÉêÉ=áë=åç=éêáåÅáéäÉÇ=ï~ó=áå=íÜÉ=ã~ÅÜáåÉ=äÉ~êåJ áåÖ= Åçããìåáíó= íç= ÇÉíÉêãáåÉ= íÜÉ= “ÄÉëíÒ= âÉêåÉä= ÑìåÅíáçåX= ~åÇ= ëáåÅÉ= ~= âÉêåÉä= ÑìåÅíáçå= áë= ìëì~ääó=ëÉäÉÅíÉÇ=Ñêçã=~=ëã~ää=ëìÄëÉí=çÑ=éêÉJëéÉÅáÑáÉÇ=ÑìåÅíáçåë=ïÜÉêÉ=çÑíÉå=áåíìáíáçå=~åÇ= ÉñéÉêáÉåÅÉ=~êÉ=ÉãéäçóÉÇI=ïÉ=ÇÉÅáÇÉÇ=íÜ~í=ïÉ=ïáää=ìëÉ=íÜÉ=î~êáçÖê~ã=çÑ=íÜÉ=“éêáçê=Ç~í~J ëÉíëÒ= íç= ÜÉäé= ÇÉíÉêãáåÉ= ~å= ~ééêçéêá~íÉ= ÅÜçáÅÉ= çÑ= âÉêåÉä= ÑìåÅíáçå= íÜ~í= ÅçìäÇ= ÄÉëí= ãçÇÉä= íÜÉ=Ç~í~K= lìê=ÅÜçáÅÉ=áë=~=ãáñíìêÉ=çÑ=âÉêåÉä=ÑìåÅíáçåë=ïÜáÅÜ=ÄÉëí=êÉéêÉëÉåíë=íÜÉ=ëíêìÅíìêÉ=çÑ=íÜÉ= ë~ãéäÉ=î~êáçÖê~ã=ëÜçïå=áå=cáÖìêÉ=OK=tÉ=ëÉÉ=íÜ~í=íÜÉ=ëèì~êÉÇ=ÉñéçåÉåíá~ä=âÉêåÉä=ÑìåÅíáçå= ~äçåÉ=áë=åçí=~å=~ééêçéêá~íÉ=ãçÇÉä=íç=Ñáí=íÜáë=ë~ãéäÉ=î~êáçÖê~ãK=låÉ=êÉ~ëçå=íç=ÇáëÅ~êÇ=íÜáë= Åçî~êá~åÅÉ=ÑìåÅíáçå=áë=íÜ~í=ïáíÜáå=íÜÉ=Ç~í~ëÉíë=íÜÉêÉ=~êÉ=áåëìÑÑáÅáÉåí=çÄëÉêî~íáçåë=~í=ëÜçêí= Çáëí~åÅÉë= Ñçê= ìë= íç= áåÑÉê= íÜÉ= éêçÅÉëë= ÄÉÜ~îáçìê= ~í= íÜáë= ê~åÖÉK= páåÅÉ= íÜÉ= äçÅ~íáçåë= ïÜÉêÉ= Éëíáã~íÉë=~êÉ=êÉèìáêÉÇ=Ñçê=íÜÉ=ÅçåíÉëí=~êÉ=çÑíÉå=~í=ëã~ääÉê=ëÉé~ê~íáçå=áåíÉêî~äëI=~åÇ=ëáåÅÉ= ïÉ=ÄÉäáÉîÉ=íÜ~í=íÜÉêÉ=áë=îÉêó=äáííäÉ=î~êá~íáçå=~í=íÜáë=äÉîÉäI=ïÉ=ÇÉÅáÇÉÇ=~=ëèì~êÉÇ=ÉñéçåÉåíá~ä= âÉêåÉä=áë=ãçëí=~ééêçéêá~íÉ=íç=ãçÇÉä=íÜÉ=äçÅ~ä=ÄÉÜ~îáçìêK=eçïÉîÉêI=íÜÉ=äçåÖ=ê~åÖÉ=î~êá~J íáçå=çÑ=íÜÉ=Ç~í~=~ééÉ~êë=íç=ÄÉ=ãçÇÉääÉÇ=ãçêÉ=~ÅÅìê~íÉäó=Äó=~=ëáãéäÉ=ÉñéçåÉåíá~ä=âÉêåÉä= ÑìåÅíáçåI=ÜÉåÅÉ=~=ãáñíìêÉ=çÑ=íÜÉëÉ=íïç=âÉêåÉä=ÑìåÅíáçå=Ü~ë=ÄÉÉå=ìëÉÇK=
2. METHODOLOGY få=íÜáë=ëÉÅíáçå=ïÉ=ÇÉëÅêáÄÉ=íÜÉ=_~óÉëá~å=ãÉíÜçÇçäçÖó=ìëÉÇ=áå=çÄí~áåáåÖ=íÜÉ=êÉëìäíë=Ñçê=íÜÉ= pf`OMMQ=ÉñÉêÅáëÉK=tÉ=~êÉ=ìëáåÖ=d~ìëëá~å=éêçÅÉëëÉë=áå=çìê=ÉñéÉêáãÉåíë=ëáåÅÉ=íÜÉó=éêçîáÇÉ= ÉäÉÖ~åí=åçåJé~ê~ãÉíêáÅ=ëçäìíáçåë=íç=íÜÉ=áåíÉêéçä~íáçå=éêçÄäÉãK=cáêëí=ïÉ=éêÉëÉåí=íÜÉ=ÖÉåJ Éê~ä= Ñê~ãÉïçêâ= íç= çÄí~áå= ~= éçëíÉêáçê= éêçÅÉëëI= íÜÉ= ÇáÑÑáÅìäíáÉë= ~êáëáåÖ= ïÜÉå= ÇÉ~äáåÖ= ïáíÜ= ä~êÖÉ=Ç~í~ëÉíë=~åÇ=íÜÉå=ïÉ=éêÉëÉåí=~=ëçäìíáçå=íç=çîÉêÅçãÉ=íÜÉëÉ=ÇáÑÑáÅìäíáÉëK=tÉ=íÜÉå=íìêå= íç=íÜÉ=ëéÉÅáÑáÅë=çÑ=íÜÉ=pf`OMMQ=Ç~í~=~åÇ=íÜÉ=ãçÇÉääáåÖ=áëëìÉë=ïÉ=áåîÉëíáÖ~íÉÇI=å~ãÉäó=íÜÉ= ÅÜçáÅÉ=çÑ=íÜÉ=âÉêåÉä=ÑìåÅíáçå=Ñçê=íÜÉ=ê~Çá~íáçå=Ç~í~K= qÜÉ=_~óÉëá~å=~ééêç~ÅÜ=íç=ãçÇÉääáåÖ=áë=~å=~ííÉãéí=íç=ìíáäáëÉ=~ää=~î~áä~ÄäÉ=áåÑçêã~íáçå= áå=çêÇÉê=íç=Ñçêã=~=êÉ~äáëíáÅ=ãçÇÉäK=få=ÇçáåÖ=ëçI=éêáçê=âåçïäÉÇÖÉ=ëìÅÜ=~ë=ÉñéÉêáÉåÅÉI=ÉñJ éÉêí=âåçïäÉÇÖÉ=çê=éêÉîáçìë=Ç~í~ëÉíë=Å~å=~ää=ÄÉ=í~âÉå=áåíç=~ÅÅçìåíK=tÉ=ëí~êí=ïáíÜ=~=ÄêáÉÑ= áåíêçÇìÅíáçå=çÑ=íÜÉ=éêçÄ~ÄáäáëíáÅ=_~óÉëá~å=áåÑÉêÉåÅÉK= tÉ=~ëëìãÉ=íÜ~í=ïÉ=~áã=~í=Éëíáã~íáåÖ=~=ÑìåÅíáçå=
f ( x, w) =ïÜÉêÉ= x ∈ R n =áë=íÜÉ=ëÉí=çÑ=
áåéìíë=íç=íÜÉ=ÑìåÅíáçå=~åÇ=ï=áë=~=ëÉí=çÑ=é~ê~ãÉíÉêë=íÜ~í=~êÉ=ìåâåçïå=íç=ìë=éêáçê=íç=ëÉÉáåÖ= íÜÉ=Ç~í~K=tÉ=åÉîÉêíÜÉäÉëë=Ü~îÉ=ëçãÉ=áåÑçêã~íáçå=~Äçìí=íÜÉ=ê~åÖÉ=çÑ=íÜÉëÉ=é~ê~ãÉíÉêë=~åÇ= ~äëç=âåçï=íÜ~íI=ïáíÜáå=íÜáë=ê~åÖÉI=ëçãÉ=î~äìÉë=çÑ= ï=~êÉ= ãçêÉ=éêçÄ~ÄäÉ=íÜ~å=çíÜÉêëX= ïÉ= ÉåÅçÇÉ= íÜáë= âåçïäÉÇÖÉ= áåíç= ~= “éêáçê= ÇáëíêáÄìíáçåÒ= çÑ= íÜÉ= é~ê~ãÉíÉêëI= ïÜáÅÜ= ïáää= ÄÉ= ÇÉJ åçíÉÇ=Äó
p0 ( w) K=qÜÉ=åÉñí=ëíÉé=áå=_~óÉëá~å=áåÑÉêÉåÅÉ=áë=íÜÉ=ëéÉÅáÑáÅ~íáçå=çÑ=íÜÉ=äáâÉäáÜççÇ=
ÑìåÅíáçåI=áKÉK=íÜÉ=åçáëÉ=ãçÇÉä=ïÜÉå=ÅçääÉÅíáåÖ=íÜÉ=Ç~í~K=qÜìëI=Ñçê=íÜÉ=Ç~í~=ëÉí=Åçåí~áåáåÖ= k= Éñ~ãéäÉë= Ó= ë~ãéäÉÇ= áåÇÉéÉåÇÉåíäó= ïÜÉêÉ D
= {( x1 , y1 ), K , ( xN , y N )} = ïÉ= Ü~îÉ= íÜÉ=
ÑçääçïáåÖ=äáâÉäáÜççÇW=
FAST SPATIAL INTERPOLATION ARTICLES
15-3
N
P ( D | w) = ∏ P ( yn | f ( xn , w) )
(1)
n =1
ïÜÉêÉ=
P ( yn | f ( xn , w) ) = áë= íÜÉ= ÇáëíêáÄìíáçå= çÑ= íÜÉ= åçáëÉK= tÉ= ÑìêíÜÉê= ~ëëìãÉ= íÜ~í= íÜÉ=
çÄëÉêî~íáçå= åçáëÉ= áë= d~ìëëá~åI= ïáíÜ= òÉêç= ãÉ~å= ~åÇ= î~êá~åÅÉ= ëáÖã~= ëèì~êÉÇI= ÜÉåÅÉ= ïÉ= Ü~îÉW= 2⎞ ⎛ 1 P ( yn | f ( xn , w), σ 2 ) = exp ⎜ − 2 ( yn − f ( xn , w) ) ⎟ . ⎝ 2σ ⎠
(2)
qÜÉ=Åçãéìí~íáçå=çÑ=íÜÉ=éçëíÉêáçê=éêçÅÉëë=áë=ÇçåÉ=~ÅÅçêÇáåÖ=íç=_~óÉëÛ=êìäÉ=E_Éêå~êÇç= ~åÇ=pãáíÜ=NVVQFI=íÜìë=íÜÉ=~JéçëíÉêáçêá=éêçÄ~Äáäáíó=çÑ=íÜÉ=é~ê~ãÉíÉêë=ï=ÄÉÅçãÉëW=
p p (w | D) =
P ( D | w) p0 ( w)
∫ P( D | w) p0 (w) dw
ïÜÉêÉ=íÜÉ=ÇÉåçãáå~íçê=Ó=~äëç=Å~ääÉÇ=íÜÉ=ÉîáÇÉåÅÉ=
(3)
p( D) = ∫ P( D | w) p0 ( w) dw =Ó=áë=íÜÉ=
åçêã~äáëáåÖ=Ñ~Åíçê=íç=íÜÉ=éçëíÉêáçê=ÇáëíêáÄìíáçåK=qç=ëçäîÉ=Éèì~íáçå=EPF=~é~êí=Ñêçã=âåçïJ áåÖ=íÜÉ=éêáçê=
p0 ( w) I=ïÉ=Ü~îÉ=íç=âåçï=íÜÉ=ÑìåÅíáçå=Ñ~ãáäó f ( x, w) I=áKÉK=íÜÉ=é~ê~ãÉíêáÅ=
Ñçêã= çÑ= íÜÉ= ~ééêçñáã~íçêK= qÜáë= áë= ëáãáä~ê= íç= ÑáñáåÖ= íÜÉ= ÇÉÖêÉÉ= çÑ= íÜÉ= éçäóåçãá~äI= íÜÉ= åìãÄÉê= çÑ= ÅçÉÑÑáÅáÉåíë= áå= íÜÉ= cçìêáÉê= Éñé~åëáçåI= çê= íÜÉ= ~êÅÜáíÉÅíìêÉ= çÑ= íÜÉ= åÉìê~ä= åÉíJ ïçêâK=qÜáë=ÅÜçáÅÉ=áë=~=ê~íÜÉê=ÇáÑÑáÅìäí=çåÉ=íç=ã~âÉK= táíÜáå=íÜÉ=d~ìëëá~å=éêçÅÉëë=EdmF=Ñê~ãÉïçêâ=íÜÉ=éêÉîáçìë=íïç=ëíÉéë=~êÉ=ìåáÑáÉÇW=ïÉ= ëéÉÅáÑó= éêáçêë= çîÉê= íÜÉ= ÑìåÅíáçåë= íÜÉãëÉäîÉëK= qÜáë= äÉ~Çë= íç= ~= åçåJé~ê~ãÉíêáÅ= ëÉíìé= ~åÇ= ÖáîÉë= ãçêÉ= ÑêÉÉÇçã= áå= ã~âáåÖ= éêÉÇáÅíáçåëK= qÜÉ= ~Çî~åí~ÖÉ= áë= íÜ~í= çÑíÉå= Ó= áÑ= íÜÉ= éêáçê= áë= éêçéÉêäó=ÅÜçëÉå=Ó=íÜÉ=ÅçãéäÉñáíó=çÑ=íÜÉ=êÉëìäíáåÖ=dm=áë=ÇêáîÉå=~ìíçã~íáÅ~ääó=Äó=íÜÉ=Ç~í~= ïáíÜçìí=åÉÉÇ=Ñçê=ìëÉê=áåíÉêîÉåíáçåK=qÉÅÜåáÅ~ääóI=dmÛë=Å~å=ÄÉ=îáÉïÉÇ=~ë=~ëëáÖåáåÖ=~=àçáåí= d~ìëëá~å= ÇáëíêáÄìíáçå= Ñçê= ÉîÉêó= ÑáåáíÉ= ÅçääÉÅíáçå= çÑ= ÑìåÅíáçå= î~äìÉë= Em~éçìäáë= ~åÇ= máää~á= OMMOFK= fÑ= ïÉ= ~ëëìãÉ= áåéìí= äçÅ~íáçåë X
f X = [ f ( x1 ),K, f ( xN ) ]
T
=áëW=
p0 ( f X ) =
ïÜÉêÉ=
K N = { K 0 ( xi , x j )}
= { x1 , K , xN } I= íÜÉå= íÜÉ= àçáåí= éêçÄ~Äáäáíó= çÑ=
1
(
N
i , j =1
2π
)
N 2
KN
1 2
⎡ 1 ⎤ exp ⎢ − f XT K N−1 f X ⎥ 2 ⎣ ⎦
(4)
=áë=íÜÉ=âÉêåÉä=ÑìåÅíáçåI=ïÜáÅÜ=~Åíë=~ë=íÜÉ=ã~áå=é~ê~ãÉíÉê=
íç=íÜÉ=d~ìëëá~å=éêçÅÉëë=pÅÜçÉäâçéÑ=~åÇ=pãçä~=OMMOK= qç=çÄí~áå=íÜÉ=éêÉÇáÅíáîÉ=éêçÄ~Äáäáíó=~í=~=íÉëí=äçÅ~íáçå= x* I=çåÉ=Ñáêëí=ÅçåëáÇÉêë=íÜÉ=àçáåí= ÇáëíêáÄìíáçå=çÑ=íÜÉ=ÑìåÅíáçå=î~äìÉë=~í=íÜÉ=áåéìíë=~åÇ=íÜÉ=íÉëí=éçáåíI=ÄìáäÇë=íÜÉ=àçáåí=éçëíÉJ êáçê=çÑ=íÜÉëÉ=î~äìÉë=ìëáåÖ=_~óÉëÛ=êìäÉI==~åÇ==Ñáå~ääó=áåíÉÖê~íÉë=çìí=íÜÉ=ÑìåÅíáçå=î~äìÉë=~í=íÜÉ==
15-4
FAST SPATIAL INTERPOLATION ARTICLES
íê~áåáåÖ=äçÅ~íáçåë=Ó=ïÜáÅÜ=~êÉ=ê~åÇçã=î~êá~ÄäÉë=Ó=íç=~êêáîÉ=~í=íÜÉ=éêçÄ~Äáäáíó=çÑ=íÜÉ=ÑìåÅJ íáçå= î~äìÉ= ~í= ÇáëíêáÄìíáçå=çÑ=
x* K= páåÅÉ= ÄçíÜ= íÜÉ= éêáçê= ~åÇ= íÜÉ= äáâÉäáÜççÇ= áë= d~ìëëá~åI= íÜÉ= éêÉÇáÅíáîÉ= f* = f ( x* ) =áë=~=d~ìëëá~å=ïáíÜ=ãÉ~å=~åÇ=î~êá~åÅÉW= N
µ* = ∑ K 0 ( x* , xi ) α i i =1
(5)
N
σ = K 0 ( x* , x* ) − ∑ K 0 ( x* , xi ) cij K 0 ( x j , x* ) 2 *
i , j =1
(
ïáíÜ= a i =~åÇ= cij =ÄÉáåÖ=ëÅ~ä~ê=ÅçÉÑÑáÅáÉåíë=~åÇ=íÜÉó=~êÉ=ÅçãéìíÉÇ=~ë= α = σ 02 I N + K N
C = (σ 02 I N + K N )
)
−1
y I=
−1
ïÜÉêÉ= ïÉ= ìëÉ= ìåÇÉêäáåáåÖ= íç= ÇÉÑáåÉ= ~= îÉÅíçê= ~åÇ= Å~éáí~ä= äÉííÉêë= Ñçê= = ã~íêáñ=èì~åíáíáÉëK=tÉ=ãÉåíáçå=íÜ~í=íÜÉ=~ÄçîÉ=Éèì~íáçåë=~êÉ=ëáãéäó=~=ÇáÑÑÉêÉåí=ÉñéêÉëëáçå= çÑ=íÜÉ=ÄÉëí=äáåÉ~ê=éêÉÇáÅíçê=Ñçê=íÜÉ=ãÉ~å=~åÇ=î~êá~åÅÉ=ïáíÜáå=íÜÉ=hêáÖáåÖ=Ñê~ãÉïçêâI=~ë= ìëÉÇ=Äó=ÖÉçëí~íáëíáÅá~åë=E`êÉëëáÉ=NVVP=ééK=NMRJNOMFK= ^ë=áí=ï~ë=ãÉåíáçåÉÇI=íÜÉ=ÅÜçáÅÉ=çÑ=íÜÉ=âÉêåÉä=ÑìåÅíáçå=êÉéä~ÅÉë=íÜÉ=ÅÜçáÅÉ=çÑ=íÜÉ=ÑìåÅJ íáçå= Ñ~ãáäóK= ^= Åçããçåäó= ìëÉÇ= âÉêåÉä= áë= íÜÉ= ëèì~êÉÇJÉñéçåÉåíá~ä= âÉêåÉä= ïÜáÅÜ= Ü~ë= íÜÉ= ÑçääçïáåÖ=ÑçêãW= 2⎞ ⎛ 1 K 0 ( x, x ') = A exp ⎜ − 2 x − x ' ⎟ ⎝ 2θ ⎠
ïÜÉêÉ= ÜóéÉêJé~ê~ãÉíÉêë=
(6)
( A, θ ) = ÅÜ~ê~ÅíÉêáëÉ= íÜÉ= êÉëìäíáåÖ= éêçÅÉëë= ~åÇ= íÜÉó= Ü~îÉ= íç= ÄÉ=
ÅÜçëÉå=íç=éêçîáÇÉ=“ÄÉëí=ÑáíÒ=íç=íÜÉ=Ç~í~K=qÜÉ=~ãéäáíìÇÉI=áKÉK=íÜÉ=íóéáÅ~ä=ê~åÖÉ=çÑ=î~êá~íáçå=
áå=íÜÉ=çìíéìí=î~äìÉë=áë=ëéÉÅáÑáÉÇ=Äó A =~åÇ= θ =ëéÉÅáÑáÉë=íÜÉ=äÉåÖíÜJëÅ~äÉ=çÑ=íÜÉ=éêçÅÉëë=çê= íÜÉ= Çáëí~åÅÉ= íç= ïÜáÅÜ= íïç= çÄëÉêî~íáçåë= ïçìäÇ= áåÑäìÉåÅÉ= É~ÅÜ= çíÜÉêK= få= íÜáë= ~êíáÅäÉ= ïÉ== Éãéäçó= íÜÉ= ã~ñáãìã= äáâÉäáÜççÇ= EjiffF= Ñê~ãÉïçêâ= íç= ëÉí= íÜÉ= âÉêåÉä= é~ê~ãÉíÉêë= Ej~ÅJ h~ó= NVVOX= j~Åh~ó= NVVVFK= qÜÉ= éêÉëÉåí~íáçå= çÑ= íÜÉ= ~ìíçã~íÉÇ= ÅÜçáÅÉ= çÑ= íÜÉ= âÉêåÉä= é~ê~ãÉíÉêë=áë=åçí=íÜÉ=~áã=çÑ=íÜáë=ëìÄãáëëáçåX=ÜÉêÉ=ïÉ=çåäó=ÖáîÉ=~å=áåíìáíáîÉ=éáÅíìêÉ=Ó=çåÉ= Å~å=Åçåëìäí=EÉKÖKF=táääá~ãë=~åÇ=o~ëãìëëÉå=ENVVSFI=dáÄÄë=~åÇ=j~Åh~ó=ENVVTF=Ñçê=ÇÉí~áäëK= få= íÜÉ= jiff= Ñê~ãÉïçêâ= íÜÉ= EäçÖJF= çÑ= íÜÉ= ÉîáÇÉåÅÉ= áå= Éèì~íáçå= EPF= áë= ìëÉÇ= íç= ÑáåÇ= íÜÉ= çéíáã~ä=âÉêåÉä=é~ê~ãÉíÉêëK=qç=ëÉÉ=íÜáëI=äÉí=ìë=ÅçåëáÇÉê= θ I=íÜÉ=äÉåÖíÜJëÅ~äÉ=çÑ=íÜÉ=âÉêåÉä= ÑìåÅíáçåK= táíÜ= ~= ÑáñÉÇ= äÉåÖíÜJëÅ~äÉ= íÜÉ= Åçãéìí~íáçå= çÑ= íÜÉ= ÉîáÇÉåÅÉ= áë= ~= Åçåîçäìíáçå= çÑ= d~ìëëá~åëI= íÜìë= ~å~äóíáÅ~ääó= Åçãéìí~ÄäÉK= e~îáåÖ= ~å= ~å~äóíáÅ= ÉñéêÉëëáçå= Ñçê= íÜÉ= EäçÖJF== ÉîáÇÉåÅÉ= P ( D | θ ) I=ïÉ=ã~ñáãáëÉ=áí=ïáíÜ=êÉëéÉÅí=íç= θ K=få=jiff=ïÉ=ÅçåëáÇÉê=íÜÉ=ÉîáÇÉåÅÉ=
íÉêã= ~ë= íÜÉ= “äáâÉäáÜççÇÒ= íç= íÜÉ= ÜóéÉêJé~ê~ãÉíÉêë= ~åÇ= ïÉ= éÉêÑçêã= ~= ã~ñáãìã= ~J éçëíÉêáçêá= é~ê~ãÉíÉê= çéíáãáë~íáçå= Äó= ~ÇÇáåÖ= ~= éêáçê= ~åÇ= ÇáÑÑÉêÉåíá~íáåÖ= íÜÉ= êÉëìäíáåÖ== ÉñéêÉëëáçåK=
FAST SPATIAL INTERPOLATION ARTICLES
15-5
Figure 1 The sparse GP approximation to the posterior process: with conventional GP the approximated posterior mean function is a linear sum of RBF functions at all training points (x signs), with SSGP the sum is relative to the BV set (triangles) and the sum of the 6 RBF functions leads to an accurate approximation of the function – the dashed line on the top is the approximation provided by the posterior mean.
rëáåÖ= ~= ÑáñÉÇ= ëÉí= çÑ= ÜóéÉêJé~ê~ãÉíÉêë= ïÉ= ÅçãéìíÉ= íÜÉ= éçëíÉêáçê= éêçÅÉëëK= låÅÉ= ÅçãJ éìíÉÇI= ïÉ= êÉ~Çáäó= Ü~îÉ= Éëíáã~íÉë= Ñçê= ÄçíÜ= íÜÉ= ÑìåÅíáçå= áíëÉäÑ= ~åÇ= íÜÉ= ìåÅÉêí~áåíó= áå= áíë= î~äìÉ=~í=~=ÖáîÉå=éçáåíK=qÜÉ=éêÉÇáÅíáîÉ=ãÉ~å=áë=ìëÉÇ=áå=~=ã~ñáãìã=~JéçëíÉêáçêá=ëÉííáåÖ=íç= Éëíáã~íÉ=íÜÉ=ìåâåçïå=ÑìåÅíáçåI=áKÉK=í~âáåÖ=íÜÉ=ãÉ~å=çÑ=íÜÉ=éçëíÉêáçê=ÇáëíêáÄìíáçå=~ë= íÜÉ= ~ééêçñáã~íáçå=íç=íÜÉ=ÑìåÅíáçå=EdáÄÄë=~åÇ=j~Åh~ó=NVVTFK=tÉ=ÜáÖÜäáÖÜí=íÜÉ=ã~áå=Çê~ïJ Ä~Åâ= çÑ= íÜÉ= dm= áåÑÉêÉåÅÉW= ~äíÜçìÖÜ= ~å~äóíáÅ~ääó= ~ééÉ~äáåÖI= áí= Å~ååçí= ÄÉ= ìëÉÇ= çå= ä~êÖÉ= Ç~í~ëÉíë=ÇìÉ=íç=íÜÉ=ÜáÖÜ=Åçãéìí~íáçå~ä=Åçëí=çÑ=íÜÉ=ã~íêáñ=áåîÉêëáçåK= få=êÉÅÉåí=óÉ~êë=íÜÉêÉ=Ü~ë=ÄÉÉå=~å=áåÅêÉ~ëÉÇ=çÑ=áåíÉêÉëí=áå=íÉÅÜåáèìÉë=Ñçê=~ééêçñáã~íáçå= íÜ~í=í~âÉ=~Çî~åí~ÖÉ=çÑ=íÜÉ=ÅçåÅÉéí=çÑ=ëé~êëáíó=Etáääá~ãë=~åÇ=pÉÉÖÉê=OMMNX=`ë~íµ=~åÇ=léJ éÉê= OMMOFK= få= íÜÉ= ëÉèìÉåíá~ä= ëé~êëÉ= ~ééêçñáã~íáçå= íç= d~ìëëá~å= éêçÅÉëëÉë= ïÉ= éêçîáÇÉ= ~= éêáåÅáéäÉÇ=~ééêç~ÅÜ=íç=~ééêçñáã~íÉ=íÜÉ=dm=éçëíÉêáçêK=qÜÉ=~ééêçñáã~íáçå=áë=ëìÅÜ=íÜ~í=áå= íÜÉ=ÉåÇI=Ñçê=éêÉÇáÅíáåÖI=ïÉ=Çç=åçí=êÉèìáêÉ=íÜÉ=ïÜçäÉ=ëÉíI=ê~íÜÉê=ïÉ=çåäó=êÉèìáêÉ=~=“ëé~êëÉÒ= ëìÄëÉí=íÜÉêÉçÑK= få=ëé~êëÉ=~ééêçñáã~íáçå=íç=íÜÉ=éçëíÉêáçê=ïÉ=~áã=~í=“ãáåáãáëáåÖÒ=íÜÉ=Åçëí=çÑ=ëíçêáåÖ= íÜÉ=dm=áå=ÅçãéìíÉê=ãÉãçêó=~åÇ=áãéäáÅáíäó=ÇÉÅêÉ~ëáåÖ=íÜÉ=Åçãéìí~íáçå=íáãÉK=qç=~ÅÜáÉîÉ= áíI=ïÉ=~ÇÇ=Éñ~ãéäÉë=íç=íÜÉ=éçëíÉêáçê=dm=çåÉ=Äó=çåÉ=ìëáåÖ=_~óÉëÛ=êìäÉ=áå=~=ëÉèìÉåíá~ä=ã~åJ åÉêK=^í=É~ÅÜ=ëíÉé=ïÉ=ìëÉ=íÜÉ=éçëíÉêáçê=Ñêçã=íÜÉ=éêÉÅÉÇáåÖ=áíÉê~íáçå=~ë=íÜÉ=ÅìêêÉåí=éêáçêK= qÜÉ=ÇÉÅêÉ~ëÉ=áå=Åçãéìí~íáçå=íáãÉ=áë=~ÅÜáÉîÉÇ=ïÜÉå=ïÉ=êÉãçîÉ=~å=áåéìí=äçÅ~íáçå=Ñêçã=íÜÉ= éçëíÉêáçê=Ó=íÜÉ=êÉãçî~ä=ÄÉáåÖ=ÇçåÉ=ëìÅÜ=íÜ~í=íÜÉ=ÇáÑÑÉêÉåÅÉ=ÄÉíïÉÉå=íÜÉ=ÅìêêÉåí=éçëíÉêáçê= ~åÇ=áíë=íêáããÉÇ=~ééêçñáã~íáçå=áë=ãáåáã~äK=tÉ=í~âÉ=áåíç=ÅçåëáÇÉê~íáçå=íÜÉ=éêçÄ~ÄáäáëíáÅ= å~íìêÉ=çÑ=íÜÉ=_~óÉëá~å=áåÑÉêÉåÅÉI=áKÉK=íÜ~í=ïÉ=Ü~îÉ=~ÅÅÉëë=íç=íÜÉ=éçëíÉêáçêë=ÇáëíêáÄìíáçå=çÑ= íÜÉ= ä~íÉåíëI= ÅçåëÉèìÉåíäó= ïÉ= ãáåáãáëÉ= áå= íÜÉ= hìääÄ~ÅâJiÉáÄäÉê= EhiF= ÇáîÉêÖÉåÅÉ= ÄÉíïÉÉå= íÜÉ=íïç=ÇáëíêáÄìíáçåë=E`ë~íµ=OMMOX=`çîÉê=~åÇ=qÜçã~ë=NVVNFK=qÜáë=ÇáîÉêÖÉåÅÉ=ãÉ~ëìêÉë= íÜÉ=ëáãáä~êáíó=çÑ=íïç=éêçÄ~Äáäáíó=ÇáëíêáÄìíáçåë=~åÇ=Å~å=ÄÉ=íÜçìÖÜí=çÑ=~ë=àçáåíäó=ã~íÅÜáåÖ= íÜÉ=Ñáêëí=íïç=ãçãÉåíë=çÑ=íÜÉ=d~ìëëá~åëK=
15-6
FAST SPATIAL INTERPOLATION ARTICLES
lÑíÉå=çåÉ=Å~å=êÉãçîÉI=ïÜáäëí=éÉêÑçêãáåÖ=íÜÉ=ëÉèìÉåíá~ä=ìéÇ~íÉI=~=ä~êÖÉ=éêçéçêíáçå=çÑ= íÜÉ=áåéìí=äçÅ~íáçåë=~åÇ=~í=íÜÉ=ÉåÇ=çÑ=íÜáë=ãçÇáÑáÉÇ=äÉ~êåáåÖ=íÜÉêÉ=áë=~=ëã~ää=ëìÄëÉí=äÉÑí=íç= êÉéêÉëÉåí=íÜÉ=~ééêçñáã~íÉÇ=dmI=ïÉ=Å~ää=íÜáë=ëìÄëÉí=íÜÉ=ëÉí=çÑ=“Ä~ëáë=îÉÅíçêëÒI=çê=_s=ëÉí= ~åÇ=ïÉ=Ü~îÉ=Å~ääÉÇ=íÜÉ=éêçÅÉÇìêÉ=ppdm=Ó=ëÉèìÉåíá~ä=ëé~êëÉ=dm=~äÖçêáíÜãK=qÜÉ=êÉëìäíáåÖ= ~ééêçñáã~íáçå= ìëÉë= çåäó= íÜÉ= _s= ëÉí= áå= ÅçãéìíáåÖ= ÄçíÜ= íÜÉ= éçëíÉêáçê= ãÉ~å= ~åÇ= íÜÉ= EÅçFî~êá~åÅÉK=tÉ=éêçîáÇÉ=~å=áääìëíê~íáçå=áå=cáÖìêÉ=N=ïÜÉêÉ=ïÉ=Å~å=ëÉÉ=íÜÉ=ëé~êëÉ=dm=ÉëíáJ ã~íÉ=çÑ=íÜÉ=ãÉ~å=ÑìåÅíáçå=íçÖÉíÜÉê=ïáíÜ=íÜÉ=íê~áåáåÖ=ëÉí=Eñ=ëáÖåëF=~åÇ=íÜÉ=äçÅ~íáçå=çÑ=íÜÉ= _sÛë=Eíêá~åÖäÉëFK= qÜÉ=ëáÖåáÑáÅ~åí=ÇáÑÑÉêÉåÅÉ=íÜìë=ÄÉíïÉÉå=ÅçåîÉåíáçå~ä=d~ìëëá~å=éêçÅÉëëÉë=~åÇ=íÜÉ=ppdm= ~äÖçêáíÜã= áë= íÜÉ= åÉÉÇ= Ñçê= ä~êÖÉ= ã~íêáñ= áåîÉêëáçå= çéÉê~íáçåëW= íÜÉ= ppdm= ~äÖçêáíÜã= ëÅ~äÉë= ÅìÄáÅ~ääó= çåäó= ïáíÜ= íÜÉ= ëáòÉ= çÑ= íÜÉ= ëã~ääÉê= _s= ëÉíK= páåÅÉ= çåÉ= çÑ= íÜÉ= ã~áå= çÄàÉÅíáîÉë= çÑ= pf`OMMQ=áë=Ñ~ëí=áåíÉêéçä~íáçåI=ïÉ=íÜáåâ=íÜ~í=ppdm=áë=~å=~ííê~ÅíáîÉ=Éëíáã~íáçå=ãÉíÜçÇK= tÉ=åÉñí=ëìãã~êáëÉ=íÜÉ=ã~áå=ëíÉéë=çÑ=íÜÉ=ppdm=~äÖçêáíÜãI=Ñçê=ãçêÉ=áåÑçêã~íáçå=çåÉ= Å~å= Åçåëìäí= E`ë~íµ= OMMOFK= qÜÉ= ~äÖçêáíÜã= Åçåíêçäë= íÜÉ= “åçîÉäíóÒ= ÅçêêÉëéçåÇáåÖ= íç= É~ÅÜ= åÉï=áåéìí=äçÅ~íáçå=Äó=ÅçãéìíáåÖ=íÜÉ=äçëë=ÄÉíïÉÉå=íÜÉ=dm=~ÑíÉê=~ÇÇáåÖ=íÜÉ=çÄëÉêî~íáçå=íç= íÜÉ=dm=Ó=îá~=íÜÉ=äáâÉäáÜççÇ=ÑìåÅíáçå=Ó=~åÇ=~=ëÉÅçåÇ=dm=çÄí~áåÉÇ=Ñêçã=íÜÉ=éêÉîáçìë=éçëíÉJ êáçê= ïÜÉå= çåäó= íÜÉ= äçÅ~íáçå= ÅçêêÉëéçåÇáåÖ= íç= íÜÉ= åÉï= áåéìí= Ü~ë= ÄÉÉå= êÉãçîÉÇI= íÜÉ= “Çáëí~åÅÉÒ= ãÉ~ëìêÉ= áë= íÜÉ= hìääÄ~ÅâJiÉáÄäÉê= ÇáîÉêÖÉåÅÉ= E`çîÉê= ~åÇ= qÜçã~ë= NVVNF= ÄÉJ íïÉÉå= íÜÉ= d~ìëëá~å= ÇáëíêáÄìíáçåë= ÇÉêáîÉÇ= Ñêçã= íÜÉ= êÉëéÉÅíáîÉ= dmÛë= í~âÉå= ~í= íÜÉ= áåéìí= äçÅ~íáçåëK= tÉ= ïáää= Å~ää= íÜáë= èì~åíáíó= íÜÉ= “ëÅçêÉÒ= ~ëëçÅá~íÉÇ= íç= ~= ëéÉÅáÑáÅ= áåéìí= ~åÇ= íÜáë= ëÅçêÉ= Å~å= ÄÉ= ÅçãéìíÉÇ= áêêÉëéÉÅíáîÉ= çÑ= íÜÉ= çêÇÉê= çÑ= áåéìí= ~ÇÇáíáçåK= få= íÜÉ= ~äÖçêáíÜã= çåÉ= Ü~ë=íç=ëÉí=~=íÜêÉëÜçäÇ=î~äìÉ= ε
( e.g. = 10−3 ) =~åÇ=~í=íÜÉ=ÉåÇ=çÑ=ÉîÉêó=ëíÉé=íÜÉ=ëÅçêÉë=~ëëçJ
Åá~íÉÇ= íç= íÜÉ= áåéìíë= áå= íÜÉ= _s= ëÉí= ~êÉ= êÉÅçãéìíÉÇK= fÑ= ~åó= çÑ= íÜÉ= ëÅçêÉë= Ñ~ääë= ÄÉäçï= íÜÉ= íÜêÉëÜçäÇ=î~äìÉI=íÜÉå=íÜÉ=êÉëéÉÅíáîÉ=_s=áë=êÉãçîÉÇ=Ñêçã=íÜÉ=_s=ëÉí=EëáåÅÉ=íÜÉ=~äÖçêáíÜã=áë= ëÉèìÉåíá~äI=áÑ=Äó=ãáëí~âÉ=~=_s=áë=êÉãçîÉÇ=Ñêçã=~å=áãéçêí~åí=êÉÖáçå=áå=íÜÉ=áåéìí=ëé~ÅÉI=~í= ~=ä~íÉê=çÅÅ~ëáçå=_sÛë=ïáää=~ééÉ~ê=ïÜáÅÜ=ïáää=Ñáää=áå=íÜÉ=êÉëéÉÅíáîÉ= êÉÖáçåFK=tÜÉå=~å=ÉëíáJ ã~íÉ= çÑ= íÜÉ= éçëíÉêáçê= dm= áë= ~î~áä~ÄäÉI= çåÉ= éêçÅÉÉÇë= íç= íÜÉ= Éëíáã~íáçå= çÑ= íÜÉ= ÜóéÉêJ é~ê~ãÉíÉêë=íç=íÜÉ=ãçÇÉä=Äó=çéíáãáëáåÖ=íÜÉ=äçÖJÉîáÇÉåÅÉ=çÑ=íÜÉ=Ç~í~K=qÜÉêÉ=áë=åç=~å~äóíáÅ= ëçäìíáçå=~åÇ=ïÉ=Éãéäçó=~=ëÅ~äÉÇ=ÅçåàìÖ~íÉ=Öê~ÇáÉåí=ãÉíÜçÇ=íç=ÑáåÇ=íÜÉ=ÅçêêÉÅí=é~ê~ãÉJ íÉêëK=tÜÉå=íÜÉ=é~ê~ãÉíÉêë=~êÉ=ÑçìåÇI=íÜÉ=ppdm=~äÖçêáíÜã=áë=êÉêìå=ìëáåÖ=íÜÉ=åÉï=ÜóéÉêJ é~ê~ãÉíÉê= î~äìÉëK= tÉ= çÄëÉêîÉÇ= Üçï= íÜÉ= ÜóéÉêJé~ê~ãÉíÉêë= î~êáÉÇ= ~ë= ~= ÑìåÅíáçå= çÑ= íÜÉ= åìãÄÉê= çÑ= êÉJÉëíáã~íáçå= ÅóÅäÉëK= qÜáë= áë= íç= ëÉÉ= Üçï= èìáÅâäó= íÜÉ= ÜóéÉêJé~ê~ãÉíÉêë= ÅçåJ îÉêÖÉÇK= tÉ= ìëÉÇ= íÜÉëÉ= éäçíë= íç= ÇÉÅáÇÉ= íÜÉ= åìãÄÉê= çÑ= íáãÉë= ïÉ= ëÜçìäÇ= ìëÉ= íÜÉ= ppdm= ~äÖçêáíÜãK=tÉ=ÇÉÅáÇÉÇ=íç=ìëÉ=S=ÅóÅäÉëI=É~ÅÜ=ÅóÅäÉ=íÜêçìÖÜ=íÜÉ=~äÖçêáíÜã=í~âáåÖ=~ééêçñáJ ã~íÉäó=PM=ëÉÅçåÇëK= 2.1 USE OF PRIOR INFORMATION
qÜÉ= éêáçê= áåÑçêã~íáçå= ÖáîÉå= íç= íÜÉ= é~êíáÅáé~åíë= çÑ= íÜÉ= “pé~íá~ä= fåíÉêéçä~íáçå= `çãé~êáJ ëçåÒ=ÉñÉêÅáëÉ=ï~ë=NM=Ç~í~ëÉíë=ë~ãéäÉÇ=~í=ëéÉÅáÑáÉÇ=äçÅ~íáçåë=~åÇ=~í=NM=ÇáëíáåÅí=íáãÉëI=~í= É~ÅÜ=íáãÉ=íÜÉêÉ=ïÉêÉ=OMM=Ç~í~=éçáåíë ( xi , yi ) =ë~ãéäÉÇI=íÜìë=íÜÉ=Ñìää=éêáçê=Ç~í~ëÉí= D Ü~ë= ÄÉÉå=ÖáîÉå=ëÉé~ê~íÉÇ=áåíç=NM=é~êíë=~ë
D = {D1 , K, D10 } K=páåÅÉ=íÜÉêÉ=ï~ë=åç=ÑìêíÜÉê=áåJ
Ñçêã~íáçå=íÜ~í=ïçìäÇ=ÅçååÉÅí=íÜÉ=áåÇáîáÇì~ä=ëÉíëI=ïÉ=~ëëìãÉÇ=íÜ~í=íÜÉó=~êÉ=áåÇÉéÉåÇÉåí= Äìí=íÜÉ=ë~ãéäÉë=~Åêçëë=É~ÅÜ=áåÇáîáÇì~ä=ëÉí=~êÉ=ÅçååÉÅíÉÇ=áå=íÜ~í=íÜÉó=ïÉêÉ=çÄëÉêîÉÇ=~í=íÜÉ= ë~ãÉ=íáãÉK=
FAST SPATIAL INTERPOLATION ARTICLES
15-7
_ÉÑçêÉ=ïÉ=éÉêÑçêãÉÇ=~åó=Å~äÅìä~íáçåëI=ïÉ=åçêã~äáëÉÇ=íÜÉ=áåéìíë=~åÇ=çìíéìíë=íç=òÉêç= ãÉ~å= ~åÇ= ìåáí= î~êá~åÅÉK= eçïÉîÉêI= áå= çêÇÉê= íç= ã~áåí~áå= íÜÉ= ÇáêÉÅíáçå~ä= ëíêìÅíìêÉ= çÑ= íÜÉ= Ç~í~I=ïÉ=Å~äÅìä~íÉÇ=íÜÉ=î~êá~åÅÉ=ÖäçÄ~ääóK=tÜÉå=ëÜçïáåÖ=íÜÉ=êÉëìäíëI=íÜÉ=åçêã~äáëÉÇ=Ç~í~= áë=íê~åëÑçêãÉÇ=~åÇ=êÉëÅ~äÉÇ=Ä~Åâ=íç=íÜÉ=çêáÖáå~ä=ÅççêÇáå~íÉëK=
Figure 2 Variogram of the prior data, plotted for 20 lags and the different fits to the empirical one. It can be seen that the variogram corresponding to the RBF provides bad estimates at the origin and the mixture kernel has a more accurate fit to the experimental variogram.
qç=Éñ~ãáåÉ=íÜÉ=ëíêìÅíìêÉ=çÑ=íÜÉ=Ç~í~I=ïÉ=éäçííÉÇ=íÜÉ=î~êáçÖê~ã=Ñçê=É~ÅÜ=çÑ=íÜÉ=éêáçê= Ç~í~ëÉíëI= ÇÉéáÅíáåÖ= íÜÉ= î~êá~íáçå= ÄÉíïÉÉå= çÄëÉêî~íáçåë= ~í= áåÅêÉ~ëáåÖ= ä~Ö= ëÉé~ê~íáçå= ÇáëJ í~åÅÉë=çå=cáÖìêÉ=OW=íÜÉ=ÅäçëÉê=éçáåíë=áå=íÜÉ=áåéìí=ëé~ÅÉ=~êÉ=EuJ~ñáëFI=íÜÉ=ãçêÉ=äáâÉäó=íÜÉ= î~äìÉë= çÑ= íÜÉ= çÄëÉêîÉÇ= ê~Çá~íáçå= ~êÉ= íÜÉ= ë~ãÉ= EëÉãá= î~êá~åÅÉ= çå= íÜÉ= vJ~ñáëFI= íÜáë= ÑìåÅJ íáçå~ä= êÉä~íáçå= áë= ÇÉéáÅíÉÇ= áå= íÜÉ= î~êáçÖê~ãK= tÉ= Ñáêëí= Å~äÅìä~íÉÇ= íÜÉ= ÉñéÉêáãÉåí~ä= î~êáçÖê~ã=Ñêçã=íÜÉ=Ç~í~=EÅêçëëÉëFK=tÉ=Éëíáã~íÉÇ=íÜÉ=î~êáçÖê~ã=Ñçê=É~ÅÜ=çÑ=íÜÉ=Ç~óë=áåÇáJ îáÇì~ääóK= iççâáåÖ= ~í= íÜÉ= ÉãéáêáÅ~ä= î~êáçÖê~ã= ïÉ= ÑáííÉÇ= ëÉîÉê~ä= î~êáçÖê~ã= ãçÇÉäëI= ~= ëèì~êÉÇ= ÉñéçåÉåíá~äI= çê= o_cI= Ñêçã= Éèì~íáçå= ESF= ~åÇ= ~= ëáãéäÉ= ÉñéçåÉåíá~ä= Ü~îáåÖ= íÜÉ= ë~ãÉ=Ñçêã=~ë=íÜÉ=o_c=ÉñÅÉéí=íÜ~í=íÜÉ=áåëíÉ~Ç=çÑ=íÜÉ=ëèì~êÉÇ=Çáëí~åÅÉ=áí=ìëÉë=íÜÉ=~ÄëçäìíÉ= î~äìÉ=áå=íÜÉ=ÉñéçåÉåíá~äK=qÜÉëÉ=ãçÇÉäë=ÑáííÉÇ=íÜÉ=Ç~í~=ïÉää=áå=ÅÉêí~áå=êÉÖáçåëI=~ë=ïÉ=Å~å= ëÉÉK=tÉ=ìëÉÇ=íÜÉ=î~êáçÖê~ã=~ë=~=ãÉ~åë=íç=~ëëáëí=áå=íÜÉ=ãçëí=~ééêçéêá~íÉ=ÅÜçáÅÉ=çÑ=âÉêåÉä= ÑìåÅíáçå=Ñçê=íÜÉ=ppdm=~äÖçêáíÜãK=tÉ=ÇÉÅáÇÉÇ=íÜ~í=~=ãáñíìêÉ=çÑ=âÉêåÉä=ÑìåÅíáçåë=áë=~ééêçJ éêá~íÉ= íç= ãçÇÉä= íÜÉ= ê~Çá~íáçå= Ç~í~K= få= ~ÇÇáíáçå= íç= íÜáëI= áåëéÉÅíáåÖ= íÜÉ= äçÅ~íáçåë= çÑ= íÜÉ= éêáçê=Ç~í~I=áí=ÅçìäÇ=ÄÉ=ëÉÉå=íÜ~í=íÜÉêÉ=ïÉêÉ=áåëìÑÑáÅáÉåí=Ç~í~=éçáåíë=~í=ëÜçêí=áåíÉêî~äë=Ñçê= çìê=ãçÇÉä=íç=äÉ~êå=íÜÉ=ëíêìÅíìêÉ=~í=ëÜçêí=ê~åÖÉë=~ÅÅìê~íÉäóK=_~ëÉÇ=çå=ëíìÇáÉë=~Äçìí=Üçï= ~ãÄáÉåí= ê~Çá~íáçå= ÇáëéÉêëÉë= íÜêçìÖÜ= íÜÉ= ~íãçëéÜÉêÉ= Ee~ää= NVUQX= rf`= jÉäÄçêåÉ= OMMQFI= ïÉ=ÇÉÅáÇÉÇ=~í=íÜÉ=ëÜçêí=ê~åÖÉ=äÉîÉä=íÜ~í=~=ëèì~êÉÇJÉñéçåÉåíá~ä=ãçÇÉä=ïçìäÇ=ÄÉ=~ééêçéêáJ ~íÉK= cçê= äçåÖÉê= ê~åÖÉë= ~å= ÉñéçåÉåíá~ä= ãçÇÉä= ïçìäÇ= Ñáí= íÜÉ= Ç~í~= ÄÉëíK= tÉ= ÉãéäçóÉÇ= ~= äáåÉ~ê=ÅçãÄáå~íáçå=çÑ=íÜÉëÉ=íïç=âÉêåÉä=ÑìåÅíáçåë=É~ÅÜ=ïáíÜ=ÇáÑÑÉêÉåí=ê~åÖÉ=~åÇ=~ãéäáíìÇÉW=
⎡ 1 2 ( x − x ') 2 ⎤ ⎡ 1 2 x −x '⎤ K mix ( x, x ') = π A1 exp ⎢ − ∑ i 2 i ⎥ + (1 − π ) A2 exp ⎢ − ∑ i 2 i ⎥ (7) ⎢⎣ 2 i =1 θ1, j ⎥⎦ ⎢⎣ 2 i =1 θ 2, j ⎥⎦
15-8
FAST SPATIAL INTERPOLATION ARTICLES
π = íÜÉ= ãáñáåÖ= ê~íáç= çÑ= íÜÉ= ëèì~êÉÇ= ÉñéçåÉåíá~ä= âÉêåÉä= ïáíÜ= é~ê~ãÉíÉêë= ( A1 ,θ1,1 ,θ1,2 ) = ~åÇ= íÜ~í= çÑ= íÜÉ= ÉñéçåÉåíá~ä= çåÉ= ïáíÜ= é~ê~ãÉíÉêë= ( A2 ,θ2,1 ,θ2,2 ) K= ^äJ
ïáíÜ=
íÜçìÖÜ=ïÉ=~êÉ=åçí=ìëáåÖ=íÜÉ=î~êáçÖê~ã=íç=Éëíáã~íÉ=íÜÉ=áåáíá~ä=é~ê~ãÉíÉêë=Ñçê=íÜÉ=âÉêåÉäë= ïÉ=ìëÉ=áå=çìê=ãçÇÉäI=ÅÉêí~áå=çÄëÉêî~ÄäÉ=ÑÉ~íìêÉë=çÑ=íÜÉ=î~êáçÖê~ã=êÉä~íÉ=íç=íÜÉ=é~ê~ãÉíÉêë= çÑ=íÜÉ=âÉêåÉä=ÑìåÅíáçåëK=qÜÉ=é~ê~ãÉíÉê=^=êÉä~íÉë=íç=íÜÉ=~ãéäáíìÇÉ=çÑ=íÜÉ=âÉêåÉä=ÑìåÅíáçåI= ïÜáÅÜ=Éèì~íÉë=íç=íÜÉ=éä~íÉ~ì=íÜ~í=íÜÉ=î~êáçÖê~ã=êÉ~ÅÜÉëI=Å~ääÉÇ=íÜÉ=ëáääK=qÜÉ=é~ê~ãÉíÉêë=θ= êÉä~íÉ=íç=íÜÉ=äÉåÖíÜJëÅ~äÉ=ïÜáÅÜ=ÅçêêÉëéçåÇë=íç=íÜÉ=ê~åÖÉ=ÑÉ~íìêÉ=çÑ=íÜÉ=î~êáçÖê~ãW=íÜáë=áë= íÜÉ=éçáåí=ïÜÉêÉ=~å=áåÅêÉ~ëÉ=áå=ëÉé~ê~íáçå=Çáëí~åÅÉ=ÄÉíïÉÉå=é~áêë=åç=äçåÖÉê=Å~ìëÉë=~å=áåJ ÅêÉ~ëÉ= áå= íÜÉ= ~îÉê~ÖÉ= ëèì~êÉÇ= ÇáÑÑÉêÉåÅÉ= ÄÉíïÉÉå= íÜÉ= é~áêëK= lÄëÉêîÉ= íÜ~í= åçï= ïÉ= Ü~îÉ= ãçêÉ=é~ê~ãÉíÉêë=êÉä~íáåÖ=íç=íÜÉ=âÉêåÉä=ÑìåÅíáçåW=
( A ,θ 1
1,1
, θ1,2 , A2 , θ 2,1 ,θ 2,2 , π ) =~åÇ=çåÉ=
Ü~ë= íç= ëÉí= íÜÉëÉ= é~ê~ãÉíÉêë= ÄÉÑçêÉ= íÜÉ= çÄàÉÅíáîÉ= Ç~í~ëÉíë= ~êÉ= ëÉÉåI= áKÉK= Ä~ëÉÇ= çå= íÜÉ= NM= î~äáÇ~íáçå= ëÉíë= ~äçåÉK= tÉ= Ü~îÉ= ìëÉÇ= åçåJáëçíêçéáÅ= Åçî~êá~åÅÉ= ÑìåÅíáçåë= ëáåÅÉ= ïÉ= ÄÉäáÉîÉ= íÜ~í= íÜÉ= î~êá~íáçå= áå= íÜÉ= Ç~í~= áë= åçí= ìåáÑçêã= áå= ~ää= ÇáêÉÅíáçåëK= qÜÉ= áåÅêÉ~ëÉ= áå= Åçãéìí~J íáçå~ä= ÅçãéäÉñáíó= Äó= ìëáåÖ= åçåJáëçíêçéáÅ= Åçî~êá~åÅÉ= ÑìåÅíáçåë= áë= íÜ~í= ïÉ= åçï= Ü~îÉ= ~å= ~ÇÇáíáçå~ä=é~ê~ãÉíÉê=íç=çéíáãáëÉK=qÜÉ=çéíáãáë~íáçå=çÑ=íÜÉëÉ=é~ê~ãÉíÉêë=áë=ÇÉëÅêáÄÉÇ=áå=íÜÉ= åÉñí=ëÉÅíáçåK= 2.2 TUNING THE ALGORITHMS
qç=Éëíáã~íÉ=íÜÉ=ÜóéÉêJé~ê~ãÉíÉêë=íç=ìëÉ=ïáíÜ=íÜÉ=ÅçãéÉíáíáçå=Ç~í~I=ïÉ=íê~áåÉÇ=~=dm=Ñçê= É~ÅÜ=çÑ=íÜÉ=NM=Ç~í~ëÉíëX=íÜÉ=ppdm=~äÖçêáíÜã=ï~ë=ìëÉÇ=Ñçê=íê~áåáåÖK=páåÅÉ=íÜÉ=OMM=íê~áåáåÖ= éçáåíë= Ñçê= É~ÅÜ= Ç~í~ëÉí= ïÉêÉ= áåÇÉéÉåÇÉåí= ~åÇ= áÇÉåíáÅ~ääó= ÇáëíêáÄìíÉÇI= íÜÉ= éçëíÉêáçêë= çÄJ í~áåÉÇ= ~êÉ= ~äëç= áåÇÉéÉåÇÉåí= ÅçåÇáíáçåÉÇ= çå= íÜÉ= éêáçêëK= qÜÉ= çéíáãáë~íáçå= çÑ= ÜóéÉêJ é~ê~ãÉíÉêë= ìëÉÇ= ~ää= çÑ= íÜÉ= éçëíÉêáçê= dmÛë= áå= íÜÉ= Åçãéìí~íáçå= çÑ= íÜÉ= Öê~ÇáÉåíëK= tÉ= ~ëJ ëìãÉÇ=íÜ~í=íÜÉ=“íêìÉ=Öê~ÇáÉåíÒ=áë=~=äáåÉ~ê=ÅçãÄáå~íáçå=çÑ=áåÇáîáÇì~ä=Öê~ÇáÉåíë=~åÇ=ëáåÅÉ= íÜÉêÉ=ï~ë=åç=áåÑçêã~íáçå=~Äçìí=íÜÉ=áåÇáîáÇì~ä=Ç~í~ëÉíëI=ïÉ=~ëëìãÉÇ=~å=Éèì~ä=ïÉáÖÜí=íç= ~ää=çÑ=íÜÉãI=íÜìë=íÜÉ=Öê~ÇáÉåí=ï~ëW=
∂ log P ( D) 1 10 ∂ log P( Dk ) = ∑ (8) ∂s ∂s 10 k =1 ïÜÉêÉ=ë=áë=~=é~ê~ãÉíÉê=çÑ=íÜÉ=ãáñíìêÉ=âÉêåÉä=Ñêçã=Éèì~íáçå=ETF=ïÜáÅÜ=ïÉ=ï~åí=íç=çéíáJ ãáëÉK= få= íÜÉ= ÉñéÉêáãÉåíë= ïÉ= ìëÉÇ= íÜÉ= ëÅ~äÉÇ= ÅçåàìÖ~íÉ= Öê~ÇáÉåí= ~äÖçêáíÜã= Ñêçã= íÜÉ= kbqi^_=é~Åâ~ÖÉ=k~ÄåÉó=OMMOK=få=éÉêÑçêãáåÖ=íÜÉ=Öê~ÇáÉåí=çéíáãáë~íáçå=ïÉ=~ÇÇÉÇ=éêáJ çêë= íç= íÜÉ= é~ê~ãÉíÉêë= çÑ= íÜÉ= ãáñíìêÉ= âÉêåÉäK= qÜÉ= éêáçêë= ïÉêÉ= Ñ~ÅíçêáëáåÖ= ~åÇ= ÉÑÑÉÅíáîÉäó= ëÉêîÉÇ=~ë=éÉå~äíáÉëI=ëáãáä~ê=íç=íÜÉ=éÉå~äáëÉÇ=êÉÖêÉëëáçå=Ñê~ãÉïçêâI=éêÉîÉåíáåÖ=íÜÉ=âÉêåÉä= é~ê~ãÉíÉêë= Ñêçã= ÖçáåÖ= íç= “~Äåçêã~äÒ= î~äìÉëI= ÉKÖK= íÜ~í= ïçìäÇ= ã~âÉ= íÜÉ= éçëíÉêáçê= ãÉ~å= Åçää~éëáåÖ=íç=~=ëìã=çÑ=ÇÉäí~=ÑìåÅíáçåëK=páåÅÉ=~ää=é~ê~ãÉíÉêë=Ü~îÉ=íç=ÄÉ=éçëáíáîÉI=ïÉ=ÅÜçëÉ= íç= éìí= ~= éêáçê= çå= íÜÉáê= äçÖJî~äìÉ= ~åÇ= ïÉ= ÅÜççëÉ= íç= Ü~îÉ= ïáÇÉ= d~ìëëá~å= ÇáëíêáÄìíáçåëI= ãÉ~åáåÖ=íÜ~í=íÜÉ=ÜóéÉêJéêáçêë=çîÉê=íÜÉ=äçÖJî~äìÉë=çÑ=dm=ïÉêÉ=d~ìëëá~åë=ïáíÜ=~=ä~êÖÉ=î~êáJ ~åÅÉK=
FAST SPATIAL INTERPOLATION ARTICLES
15-9
Figure 3 Illustration of combining the observations. The dots on the same horizontal planes show the observations made at the same time. An SSGP fit has been performed for each set of observations on separate planes and the hyperparameter selection is based on optimising a weighted sum of gradients at each individual level.
qç=Éî~äì~íÉ=íÜÉ=ÅçãÄáåÉÇ=ppdm=éÉêÑçêã~åÅÉI=ïÉ=éÉêÑçêãÉÇ=äÉ~îÉJçåÉJçìí=Åêçëë=î~äáJ Ç~íáçå=çå=íÜÉ=NM=Ç~í~ëÉíëW=åáåÉ=Ç~óë=çÑ=Ç~í~=ïÉêÉ=ìëÉÇ=íç=Éëíáã~íÉ=íÜÉ=dm=é~ê~ãÉíÉêë=~åÇ= íÜÉ=çåÉ=Ç~ó=äÉÑí=çìí=ìëÉÇ=íç=ãÉ~ëìêÉ=íÜÉ=Éêêçê=êÉä~íÉÇ=íç=íÜÉ=é~ê~ãÉíÉêë=ïÉ=ÑçìåÇK=cçê=íÜÉ= äÉÑí=çìí=Ç~ó=ïÉ=ìëÉÇ=íÜÉ=ÜóéÉêJé~ê~ãÉíÉêë=êÉëìäíáåÖ=Ñêçã=íÜÉ=åáåÉ=Ç~óë=~ë=íÜÉ=ãÉ~å=î~äìÉ= Ñçê=íÜÉ=ÜóéÉêJéêáçêë=çÑ=íÜÉ=dm=~åÇ=ÇÉÅêÉ~ëÉÇ=íÜÉáê=ÅçêêÉëéçåÇáåÖ=î~êá~åÅÉëI=~ÅâåçïäÉÇÖJ áåÖ=íÜ~í=ëçãÉ=áåÑçêã~íáçå=Ü~ë=~äêÉ~Çó=ÄÉÉå=~ÅèìáêÉÇ=~Äçìí=íÜÉ=é~ê~ãÉíÉêë=íÜÉãëÉäîÉë=Äìí= ïÉ=~êÉ=ëíáää=ìåÅÉêí~áå=~Äçìí=íÜÉáê=~Åíì~ä=î~äìÉëK=qÜáë=ëÉíìé=Éå~ÄäÉë=íÜÉ=êÉJÉëíáã~íáçå=çÑ=íÜÉ= ÜóéÉêJé~ê~ãÉíÉêë=íç=ìëÉ=ïáíÜ=íÜÉ=ÅçãéÉíáíáçå=Ç~í~K= tÉ= ãÉåíáçå= ~å= áãéçêí~åí= ~Çî~åí~ÖÉ= çÑ= íÜÉ= _~óÉëá~å= ãÉíÜçÇçäçÖó= ÉñéäçáíÉÇ= áå= íÜáë= ÅçåíêáÄìíáçåI= å~ãÉäó= íÜÉ= Ñ~Åí= íÜ~í= íÜÉêÉ= áë= åç= åÉÉÇ= íç= Ü~îÉ= ~= ëÉé~ê~íÉ= î~äáÇ~íáçå= ëÉí= íç= ~ëëÉëë= íÜÉ= éÉêÑçêã~åÅÉ= çÑ= íÜÉ= ãÉíÜçÇI= ~åÇ= ~ää= Ç~í~= Å~å= ÄÉ= ìëÉÇ= Ñçê= ~ÅÅìê~íÉ= ÜóéÉêJ é~ê~ãÉíÉê= Éëíáã~íáçå= ìëáåÖ= íÜÉ= ã~êÖáå~ä= Ç~í~= äáâÉäáÜççÇ= Ej~Åh~ó= NVVOFK= qÜáë= ëÅÉå~êáç= ï~ë= ìëÉÇ= Ñçê= íÜÉ= pf`OMMQ= “pé~íá~ä= fåíÉêéçä~íáçå= `çãé~êáëçåKÒ= fí= Ü~ë= ÄÉÉå= íÜÉ= ÇçåÉ= áå= íÜÉ= ÑçääçïáåÖ= ã~ååÉêW= ïÉ= ìëÉÇ= íÜÉ= NM= “éêáçêÒ= Ç~í~ëÉíë= íç= íê~áå= íÜÉ= íÉå= dmÛë= ~åÇ= íÜÉå= ÅçãÄáåÉÇ=íÜÉ=áåÇáîáÇì~ä=Öê~ÇáÉåíë=~ë=áå=Éèì~íáçå=EUF=ïÜáÅÜ=ïÉêÉ=ÑÉÇ=áåíç=~=ÅçåàìÖ~íÉ=Öê~J ÇáÉåí= çéíáãáë~íáçå= ~äÖçêáíÜã= ~åÇ= åÉï= ÜóéÉêJé~ê~ãÉíÉêë= ïÉêÉ= çÄí~áåÉÇK= qÜÉ= éêÉîáçìë= ëíÉéë=ïÉêÉ=êÉéÉ~íÉÇ=~=åìãÄÉê=çÑ=íáãÉë=EPMFI=~åÇ=íÜÉ=é~ê~ãÉíÉêë=ÑçìåÇ=íÜáë=ï~ó=Ü~îÉ=ÄÉÉå= áåëÉêíÉÇ=~ë=ãÉ~åë=áå=íÜÉ=ÜóéÉêJéêáçêë=Ñçê=íÜÉ=dm=ïÉ=ìëÉÇ=Ñçê=íÜÉ=ÅçãéÉíáíáçå=Ç~í~ëÉíë=N= ~åÇ=OK=e~îáåÖ=åç=áåÑçêã~íáçå=~Äçìí=íÜÉ=àçâÉê=Ç~í~ëÉíI=ïÉ=ÇÉÅáÇÉÇ=íÜ~í=íÜÉ=ãçëí=~ééêçJ éêá~íÉ= ~ééêç~ÅÜ= Ñçê= íÜáë= Ç~í~ëÉí= ïçìäÇ= ÄÉ= íç= äççëÉå= çìê= éêáçê= ÄÉäáÉÑë= ~Äçìí= íÜÉ= ÜóéÉêJ é~ê~ãÉíÉêë=ïÉ=ïÉêÉ=ìëáåÖ=áå=çìê=ãçÇÉä=ëáåÅÉ=ïÉ=Ü~Ç=~ÄëçäìíÉäó=åç=áÇÉ~=~Äçìí=ïÜ~í=íÜáë= ÑáäÉ=ïçìäÇ=Åçåí~áåK=
3. RESULTS qÜáë=ëÉÅíáçå=Åçåí~áåë=íÜÉ=êÉëìäíë=çÑ=çìê=ÉñéÉêáãÉåíë=~åÇ=Åçãé~êÉë=~=î~êáÉíó=çÑ=ÄÉåÅÜã~êâ= ãÉíÜçÇë= íç= ëÉÉ= íÜÉ= ÉÑÑÉÅíáîÉåÉëë= çÑ= íÜÉ= ppdm= ~äÖçêáíÜãK= rëáåÖ= j~íä~Ä= ïáíÜ= íÜÉ= ppdm= íççäÄçñ=E`ë~íµ=OMMPF=ãçÇáÑáÉÇ=íç=ãáåáãáëÉ=íÜÉ=ÅçãÄáåÉÇ=Öê~ÇáÉåíI=ïÉ=éêÉÇáÅíÉÇ=íÜÉ=î~äJ ìÉë= ~í= íÜÉ= ìåâåçïå= äçÅ~íáçåë= ìëáåÖ= íÜÉ= ãÉíÜçÇçäçÖó= ÇÉëÅêáÄÉÇ= ~ÄçîÉK= kÉíä~Ä= Ek~ÄåÉó= OMMOFI=~=j~íä~Ä=íççäÄçñ=ï~ë=ìëÉÇ=íç=éêçîáÇÉ=ÄÉåÅÜã~êâ=êÉëìäíë=ìëáåÖ=~=î~êáÉíó=çÑ=çíÜÉê= ã~ÅÜáåÉ= äÉ~êåáåÖ= íÉÅÜåáèìÉë= EjìäíáJä~íÉê= mÉêÅÉéíêçå= EjimF= ~åÇ= o~Çá~ä= _~ëáë= cìåÅíáçåë= Eo_cF=E_áëÜçé=NVVRFFK=qÜÉ=íê~áåáåÖ=çÑ=íÜÉ=jim=ï~ë=~ÅÜáÉîÉÇ=ìëáåÖ=É~êäó=ëíçééáåÖ=íç=ÅçåJ íêçä=íÜÉ=ÉÑÑÉÅíáîÉ=ÅçãéäÉñáíó=çÑ=íÜÉ=åÉíïçêâK=pí~åÇ~êÇ=d~ìëëá~å=éêçÅÉëëÉë=ïÉêÉ=~äëç=ìëÉÇ=
15-10
FAST SPATIAL INTERPOLATION ARTICLES
ëç= íÜ~í= íÜÉ= ÅÜçáÅÉ= íç= ìëÉ= ~= ãáñíìêÉ= çÑ= âÉêåÉä= ÑìåÅíáçåë= ÅçìäÇ= ÄÉ= î~äáÇ~íÉÇK= fí= ëÜçìäÇ= ÄÉ= åçíÉÇ=íÜ~í=íÜÉ=ëÅ~äÉë=çå=áåÇáîáÇì~ä=ìåÅÉêí~áåíó=ã~éë=~êÉ=ÇáÑÑÉêÉåíI=ëç=íÜ~í=íÜÉ=ìåÅÉêí~áåíó= Å~å=ÄÉ=ãçêÉ=É~ëáäó=Ö~ìÖÉÇI=ÜçïÉîÉê=Ñçê=~ää=çÑ=íÜÉ=fëçäáåÉ=äÉîÉä=ã~éëI=íÜÉ=Åçåíçìê=ëÅ~äÉ=áë= Åçåëí~åíK= 3.1. OVERALL RESULTS N = 808
Min
Max
Mean
Median
Std. dev.
Observed
57.00
180.00
98.01
98.80
20.02
SSGP
68.82
125.41
96.75
98.96
14.41
GP (mixture)
67.07
127.20
96.58
98.65
14.98
GP (sqexp)
69.26
123.77
96.87
99.19
14.32
RBF
68.22
129.55
96.85
98.66
14.58
MLP
66.05
129.13
96.80
98.07
14.65
Table 1 Comparison of the estimated and measured values (nSv/h) 1st Dataset.
N = 808
Min
Max
mean
Median
Std. dev.
Observed
57.00
1528.20
105.42
98.95
83.71
SSGP
74.25
634.49
100.78
95.68
39.22
GP (mixture)
87.09
150.81
106.13
102.46
15.51
GP (sqexp)
80.80
161.73
108.51
101.28
22.53
RBF
82.22
160.73
108.22
101.77
21.91
MLP
-129.18
760.02
102.41
94.71
80.03
Table 2 Comparison of the estimated and measured values (nSv/h) 2nd Dataset.
MAE
ME
Pearson’s r
RMSE
SSGP
9.10
-1.27
0.788
12.46
GP (mixture)
9.08
-1.44
0.787
12.47
GP (sqexp)
9.47
-1.15
0.776
12.75
RBF
9.49
-1.19
0.776
12.71
MLP
9.48
-1.22
0.775
12.73
Table 3 Comparison of the errors for 1st Dataset.
MAE
ME
Pearson’s r
RMSE
SSGP
18.55
-4.64
0.856
54.22
GP (mixture)
21.77
0.72
0.350
79.57
GP (sqexp)
22.53
3.09
0.331
79.16
RBF
22.73
3.21
0.334
79.31
MLP
48.41
-3.01
0.384
90.89
Table 4 Comparison of the errors for 2nd Dataset.
FAST SPATIAL INTERPOLATION ARTICLES
15-11
ESTIMATIONS FOR SSGP METHOD 190 600000
600000
180 170 500000
500000
160 150 400000
400000
140 130 300000
300000
120 110 200000
200000
100 90 100000
100000
80 70 0
0
60 0
100000
0
200000
100000
200000
Figure 4 Isoline levels (nSv/h) for the 1st set (left) and the 2nd set (right) using SSGP.
UNCERTAINTY IN SSGP METHOD 690
165 600000
600000
680
160 155 500000
670 500000
660
150 145
400000
650
400000
640
140 135
300000
630
300000
620
130 125
200000
610
200000
600
120 115
100000
590
100000
580
110 0
105 0
100000
200000
100
570
0
560 0
100000
200000
Figure 5 Isoline levels showing the uncertainty in the estimations obtained for the 1st set (left) and the 2nd set (right) using SSGP. Notice that the grey-levels are different in the two subfigures.
15-12
FAST SPATIAL INTERPOLATION ARTICLES
ESTIMATIONS FOR GP (MIXTURE) METHOD
600000
190
600000
180 170
500000
500000
160 150 400000
400000
140 130 300000
300000
120 110 200000
200000
100 90 100000
100000
80 70 0
0
60 0
100000
0
200000
100000
200000
Figure 6 Isoline levels (nSv/h) for the 1st set (let) and the 2nd set (right) Using GP.
UNCERTAINTY IN GP (MIXTURE) METHOD
188
165 600000
600000
186
160
184
155 500000
500000
182
150 145
400000
180
400000
178
140 135
300000
176 300000
174
130 125
200000
172
200000
170
120 115
100000
168
100000
166
110 105
0
164
0
162
100 0
100000
200000
0
100000
200000
Figure 7 Isoline levels showing the uncertainty associated to the estimations obtained st nd for the 1 set (left) and the 2 set (right) using GP. Notice that the greylevels are different in the two subfigures.
FAST SPATIAL INTERPOLATION ARTICLES
15-13
3.2. DETECTING ANOMALIES AND OUTLIERS
Figure 8 3D map showing extreme values found in the 2nd set (vertical scale in nSv/h)
3.3. CALCULATION TIME Time taken 1st Dataset
3m28s
2nd Dataset
4m27s Table 5
Calculation Time.
3.4. LEARNED HYPER-PARAMETERS FOR SSGP 1st Dataset
2nd Dataset
SqExp x range
0.02
0.03
SqExp y range
0.24
0.24
SqExp amplitude
0.05
0.05
Exp x range
1.89
0.10
Exp y range
1.11
0.00
Exp amplitude
0.90
60.12
Noise
0.30
41.59
Table 6 SSGP Learnt Hyper-parameters
4. DISCUSSION qÜÉ=êÉëìäíë=Ñçê=íÜÉ=åçêã~ä=Ç~í~ëÉí=áå=q~ÄäÉ=N=ëÜçï=íÜ~í=íÜÉ=ê~åÖÉ=ÄÉíïÉÉå=íÜÉ=ãáåáãìã= ~åÇ= ã~ñáãìã= î~äìÉë= íç= ÄÉ= ãìÅÜ= ëÜçêíÉê= áå= ~ää= çÑ= çìê= ãÉíÜçÇë= íÜ~å= íÜÉ= çÄëÉêîÉÇ= Ç~í~= ~åÇ=íÜÉ=Éëíáã~íÉë=~êÉ=äÉëë=î~êáÉÇK=^ää=íÜÉ=ã~ñáãìã=Éëíáã~íÉë=~êÉ=çÑ=~=ëáãáä~ê=ã~ÖåáíìÇÉ= ïÜáÅÜ=ïçìäÇ=ëìÖÖÉëí=~=äáãáíÉÇ=~ãçìåí=çÑ=áåÑçêã~íáçå=áå=íÜÉ=íê~áåáåÖ=Ç~í~ëÉíK=`çãé~êáåÖ= íÜÉ=Éêêçêë=Eq~ÄäÉ=PF=ÄÉíïÉÉå=íÜÉ=ppdm=~åÇ=íÜÉ=dm=EãáñíìêÉF=ãÉíÜçÇI=áí=Å~å=ÄÉ=ëÉÉå=íÜ~í= íÜÉëÉ=ãÉíÜçÇë=Ü~îÉ=~=ëáãáä~ê=éÉêÑçêã~åÅÉK=fí=áë=ÅäÉ~ê=Ñêçã=íÜáë=íÜ~í=äáííäÉ=áåÑçêã~íáçå=Ü~ë=
15-14
FAST SPATIAL INTERPOLATION ARTICLES
ÄÉÉå=äçëí=Äó=áãéçëáåÖ=ëé~êëáíó=áå=êÉéêÉëÉåíáåÖ=íÜÉ=dmK=pÉäÉÅíáåÖ=íÜÉ=åìãÄÉê=çÑ=Ä~ëáë=îÉÅJ íçêë= íç= êÉéêÉëÉåí= íÜÉ= dm= Äó= áë= ~åçíÜÉê= í~ëâ= çåÉ= ãìëí= í~âÉ= áåíç= ÅçåëáÇÉê~íáçåK= cçê= íÜáë= ÉñÉêÅáëÉ=ïÉ=ÅÜççëÉ=íç=ìëÉ=UM=_sÛëK=rëáåÖ=íÜÉ=éêáçê=Ç~í~ëÉíëI=~= ãáåáã~ä=åìãÄÉê=çÑ=_sÛë= ï~ë=ÅÜçëÉå=íÜ~í=ïçìäÇ=çéíáã~ääó=êÉéêÉëÉåí=íÜÉ=dm=ïáíÜ=ãáåáã~ä=ÉêêçêK= tÜÉå=Åçãé~êáåÖ=íÜÉ=íïç=dm=ãÉíÜçÇë=íÜ~í=ïÉêÉ=íÉëíÉÇ=áí=Å~å=ÄÉ=ëÉÉå=íÜ~í=íÜÉ=âÉêåÉä= ÑìåÅíáçå=ãáñíìêÉ=ãÉíÜçÇ=éêÉÇáÅíë=íÜÉ=íêìÉ=î~äìÉë=ãçêÉ=~ÅÅìê~íÉäó=íÜ~å=íÜÉ=ëèì~êÉÇ=ÉñéçJ åÉåíá~äI= ïÜáÅÜ= ëìééçêíë= çìê= ìåÇÉêäóáåÖ= ~ëëìãéíáçåë= ~Äçìí= íÜÉ= ëíêìÅíìêÉ= çÑ= íÜÉ= Ç~í~K= e~îáåÖ=éêáçê=âåçïäÉÇÖÉ=~Äçìí=íÜÉ=Åçî~êá~åÅÉ=ëíêìÅíìêÉ=çÑ=~ãÄáÉåí=Ä~ÅâÖêçìåÇ=ê~Çá~íáçå= ÅäÉ~êäó=áë=~Çî~åí~ÖÉçìë=áå=éêÉÇáÅíáçåK=qÜÉ=dm=EëèÉñéF=ãÉíÜçÇ=ï~ë=ìëÉÇ=~ë=~=ÄÉåÅÜã~êâ= ~åÇ=ÇçÉë=åçí=í~âÉ=áåíç=~ÅÅçìåí=~åó=éêáçê=áåÑçêã~íáçå=~Äçìí=íÜÉ=ÇáëéÉêë~ä=éêçÅÉëë=ÉñÅÉéí= ÜóéÉêJé~ê~ãÉíÉêë=íÜ~í=Ñáí=~=ëèì~êÉÇ=ÉñéçåÉåíá~ä=ãçÇÉä=íç=íÜÉ=Ç~í~K=qÜáë=ãÉíÜçÇ=Ü~ë=ëáãáJ ä~ê=éÉêÑçêã~åÅÉ=íç=íÜÉ=jim=~åÇ=o_c=ãÉíÜçÇë=ïÜáÅÜ=~äëç=Çç=åçí=í~âÉ=áåíç=~ÅÅçìåí=~åó= ~ëëìãéíáçåë=~Äçìí=íÜÉ=ÇáëéÉêë~ä=éêçÅÉëëK= qÜÉ= å~íìêÉ= çÑ= íÜÉ= ëÉÅçåÇ= Ç~í~ëÉí= ï~ë= ìåâåçïå= éêáçê= íç= íÜÉ= áåíÉêéçä~íáçå= ÉñÉêÅáëÉK= åÇ qÜÉ= O = Ç~í~ëÉí= Éëíáã~íÉë= Eq~ÄäÉë= O= C= QF= ~êÉ= éççêI= Äìí= íÜáë= é~êíáÅìä~ê= ~äÖçêáíÜã= áë= ~= ëãççíÜÉê=~åÇ=áë=åçí=ÇÉëáÖåÉÇ=íç=ÅçéÉ=ïáíÜ=ÉñíêÉãÉ=î~äìÉë=ëáåÅÉ=áíÛë=Ä~ëÉÇ=çå=íÜÉ=~ëëìãéJ íáçå= íÜ~í= çÄëÉêî~íáçåë= ÅäçëÉê= íçÖÉíÜÉê= ~êÉ= ãçêÉ= äáâÉäó= íç= ÄÉ= ëáãáä~ê= íÜ~å= íÜçëÉ= ÑìêíÜÉê= ~é~êíK=qÜÉ=jim=ãÉíÜçÇ=ëÜçïÉÇ=íÜÉ=ïçêëí=éêÉÇáÅíáçå=ÉêêçêI=ÖáîáåÖ=åÉÖ~íáîÉ=Éëíáã~íÉë=~í= ëçãÉ=çÑ=äçÅ~íáçåëX=íÜáë=áë=åçí=ëìêéêáëáåÖ= ëáåÅÉ=áí=áë=~= ã~ÅÜáåÉ=äÉ~êåáåÖ=ãÉíÜçÇ=íÜ~í= ÇçÉë= åçí=í~âÉ=áåíç=~ÅÅçìåí=~åó=éêáçê=âåçïäÉÇÖÉ=~Äçìí=íÜÉ=ìåÇÉêäóáåÖ=éêçÅÉëë=ïÉ=~êÉ=éêÉÇáÅíJ áåÖK=qÜÉ=j^b=Éêêçê=Ñçê=íÜÉëÉ=íïç=ÄÉåÅÜã~êâë=áë=~=äçí=ÜáÖÜÉê=íÜ~å=~åó=çÑ=íÜÉ=dm=ãçÇÉäëX= ÜçïÉîÉê= íÜÉ= éêÉÇáÅíáçåë= ïáíÜ= íÜÉ= jim= ~êÉ= ëäáÖÜíäó= ãçêÉ= ÅçêêÉä~íÉÇ= ïáíÜ= íÜÉ= çÄëÉêîÉÇ= Ç~í~=íÜ~å=íÜÉ=íïç=ëí~åÇ~êÇ=dm=ãçÇÉäëK=qÜÉ=ppdm=ãÉíÜçÇ=ëÜçïë=íÜÉ=ëã~ääÉëí=j^b=~åÇ= íÜÉ=éêÉÇáÅíáçåë=~êÉ=ÅçêêÉä~íÉÇK=qÜÉ=ppdm=ëíáää=ÇáÇ=åçí=ã~å~ÖÉ=íç=ÅçãÉ=ÅäçëÉ=íç=éêÉÇáÅíáåÖ= íÜÉ=ã~ñáãìã=~ë=ëÉÉå=áå=íÜÉ=çÄëÉêîÉÇ=Ç~í~I=Äìí=íÜáë=áë=íç=ÄÉ=ÉñéÉÅíÉÇ=ëáåÅÉ=dmDë=~êÉ=éççê= ~í=éêÉÇáÅíáåÖ=ÉñíêÉãÉ=î~äìÉëK= iççâáåÖ=~í=íÜÉ=j^b=~åÇ=ojpb=Éêêçê=Ñçê=íÜÉ=íïç=Ç~í~ëÉíëI=áí=Å~å=ÄÉ=ëÉÉå=áå=íÜÉ=Ñáêëí= Ç~í~ëÉí=íÜ~í=íÜÉ=ojpb=áë=ëäáÖÜíäó=ä~êÖÉê=íÜ~å=íÜÉ=j^bK=eçïÉîÉê=Ñçê=íÜÉ=ëÉÅçåÇ=Ç~í~ëÉíI= ojpb=áë=ãìÅÜ=ÜáÖÜÉê=íÜ~å=íÜÉ=j^bI=íÜáë=áë=ÄÉÅ~ìëÉ=íÜÉ=ojpb=áë=ãçêÉ=ëÉåëáíáîÉ=íç=ÜáÖÜ= êÉëáÇì~äëK=qÜÉ=Éëíáã~íÉë=~êÉ=~ää=ëäáÖÜíäó=åÉÖ~íáîÉäó=Äá~ëÉÇ=Ñçê=íÜÉ=Ñáêëí=Ç~í~ëÉíK=cçê=íÜÉ=ëÉÅJ çåÇ= Ç~í~ëÉí= áí= Å~å= ÄÉ= ëÉÉå= íÜÉ= Äá~ë= áå= Éëíáã~íÉë= Ü~ë= Öêçïå= ãìÅÜ= ä~êÖÉê= ÇÉéÉåÇ= çå= íÜÉ= ~äÖçêáíÜã=ìëÉÇK= qÜÉ=Åçåíçìê=éäçíë=EcáÖìêÉ=QF=ëÜçï=íÜÉ=Éëíáã~íÉë=çîÉê=íÜÉ=ïÜçäÉ=~êÉ~=çå=íÜÉ=íïç=Ç~í~J ëÉíëK= qÜÉ= ëÉÅçåÇ= Ç~í~ëÉí= éäçí= ÅäÉ~êäó= ëÜçïë= Äáò~êêÉ= ÄÉÜ~îáçìê= áå= çåÉ= ÇáêÉÅíáçå= ïáíÜ= íÜÉ= éêÉÇáÅíáçå= çÑ= íÜÉ= ÇáëéÉêë~ä= çÑ= íÜÉ= Åçåí~ãáå~åí= áåíêçÇìÅÉÇK= qÜÉ= ÜóéÉêJé~ê~ãÉíÉêë= äÉ~êåí= Äó= íÜÉ= ppdm= ~ë= áí= ÅóÅäÉë= íÜêçìÖÜ= íÜÉ= åÉï= Ç~í~= ~êÉ= ëÜçïå= áå=q~ÄäÉ= SK= qÜÉ= äÉ~êåí= ÜóéÉêJ é~ê~ãÉíÉêë= êÉÑÉê= íç= íÜÉ= åçêã~äáëÉÇ= Ç~í~I= ëáåÅÉ= ÇìêáåÖ= íÜÉ= ~äÖçêáíÜã= íÜÉ= Ç~í~= ìëÉÇ= Ü~ë= ÄÉÉå= åçêã~äáëÉÇK= iççâáåÖ= ~í= íÜÉ= äÉ~êåí= ÜóéÉêJé~ê~ãÉíÉêë= áí= Å~å= ÄÉ= ëÉÉå= íÜ~í= íÜÉ= âÉêåÉä= ÑìåÅíáçå=ê~åÖÉ=áå=íÜÉ=ó=ÇáêÉÅíáçå=Ü~ë=Åçää~éëÉÇ=íç=òÉêçK=qÜáë=~ÅÅçìåíë=Ñçê=íÜÉ=ÉääáéíáÅ=ëÜ~éÉ= çÑ=íÜÉ=çìíäáÉêë=~åÇ=íÜÉ=ÑÉ~íìêÉë=áå=íÜÉ=éäçíK=fí=áë=ìåâåçïå=ïÜó=íÜÉ=ÜóéÉêJé~ê~ãÉíÉê=çéíáJ ãáë~íáçå= Ü~ë= êÉëìäíÉÇ= áå= íÜÉëÉ= é~ê~ãÉíÉêëK= få= cáÖìêÉ= U= íÜÉ= å~êêçï= ÇáëéÉêë~ä= áë= ÅäÉ~êäó= îáëáÄäÉK= qÜÉ=äÉ~êåí=ÜóéÉêJé~ê~ãÉíÉêë=ëÜçï=~å=áåÅêÉ~ëÉÇ=åçáëÉ=äÉîÉäK=qÜÉ=åçáëÉ=ÅçêêÉëéçåÇë=íç= íÜÉ=åìÖÖÉí=ÑÉ~íìêÉ=çÑ=íÜÉ=î~êáçÖê~ãK=qÜáë=äÉ~êåí=åçáëÉ=é~ê~ãÉíÉê=ïáää=Å~ìëÉ=íÜÉ=áåíÉêéçä~J íáçå= íç= åçí= çåäó= ÄÉÅçãÉ= ãçêÉ= ìåÅÉêí~áåI= Äìí= ~äëç= Å~ìëÉ= íÜÉêÉ= íç= ÄÉ= ~= ëã~ääÉê= ê~åÖÉ= çÑ= î~êá~íáçå= ÄÉíïÉÉå= íÜÉ= éêÉÇáÅíÉÇ= éçáåíëK= iççâáåÖ= ~í= íÜÉ= ìåÅÉêí~áåíó= ã~éë= EcáÖìêÉ= RF= áí= áë=
FAST SPATIAL INTERPOLATION ARTICLES
15-15
ÅäÉ~ê= íÜ~í= éêÉÇáÅíáçåë= ïáíÜ= íÜÉ= ëÉÅçåÇ= Ç~í~ëÉí= ~êÉ= ÉñíêÉãÉäó= ìåÅÉêí~áåK= qÜÉ= ê~åÖÉ= ~åÇ= é~ííÉêå= çÑ= ìåÅÉêí~áåíó= Ñçê= íÜÉ= Ñáêëí= Ç~í~= ëÉí= ~êÉ= ëáãáä~ê= íç= íÜÉ= ìåÅÉêí~áåíó= áå= íÜÉ= êÉëìäíë= Å~äÅìä~íÉÇ=áå=íÜÉ=dm=ãçÇÉä=EcáÖìêÉ=TFK=qÜÉ=ìåÅÉêí~áåíó=ãÉ~ëìêÉÇ=áå=íÜÉ=dm=Ñçê=íÜÉ=ëÉÅçåÇ= Ç~í~ëÉí=ëÜçïë=~=ëáãáä~êI=Äìí=äÉëë=ÇÉÑáåÉÇ=é~ííÉêå=íç=íÜ~í=ëÜçïå=áå=íÜÉ=Ñáêëí=Ç~í~ëÉíK=cáÖìêÉ= S= ëÜçïë= íÜÉ= éêÉÇáÅíáçå= çÑ= íÜÉ= ÇáëéÉêëÉÇ= Åçåí~ãáå~åí= ìëáåÖ= íÜÉ= dmK= qÜÉ= é~ííÉêå= çÑ= íÜÉ= ÇáëéÉêë~ä=áë=äÉëë=ÉääáéíáÅ=~åÇ=ÅäçëÉê=íç=íÜÉ=é~ííÉêå=çÑ=ÇáëéÉêë~ä=çåÉ=ïçìäÇ=ÉñéÉÅíK= qÜÉ=Å~äÅìä~íáçå=íáãÉ=áë=ëÜçïå=áå=q~ÄäÉ=RK=cçê=íÜÉ=éìêéçëÉë=çÑ=íÜáë=ÅçåíÉëíI=íÜÉ=~äÖçJ êáíÜã= ï~ë= ëÉí= íç= ÅóÅäÉ= íÜêçìÖÜ= íÜÉ= ppdm= ~äÖçêáíÜã= ëÉîÉå= íáãÉë= íç= ~ÅÜáÉîÉ= áãéêçîÉÇ= Éëíáã~íÉëK=páåÅÉ=ãìÅÜ=çÑ=íÜÉ=~äÖçêáíÜã=~åÇ=ÜóéÉêJé~ê~ãÉíÉêë=ïÉêÉ=íìåÉÇ=ìëáåÖ=íÜÉ=éêáçê= Ç~í~=ÄÉÑçêÉ=íÜÉ=~Åíì~ä=ÅçåíÉëí=Ç~í~=ï~ë=ã~ÇÉ=~î~áä~ÄäÉI=éêÉÇáÅíáåÖ=~í=ìåâåçïå=äçÅ~íáçåë= ÅçìäÇ=ÄÉ=ÇçåÉ=~ÑíÉê=çåÉ=çê=íïç=ÅóÅäÉë=íÜêçìÖÜ=íÜÉ=~äÖçêáíÜã=ïáíÜçìí=~=ÖêÉ~í=äçëë=áå=~ÅÅìJ ê~Åó=~åÇ=ÜÉåÅÉ=ÑìêíÜÉê=êÉÇìÅáåÖ=Åçãéìí~íáçå=íáãÉK=^ää=ÉñéÉêáãÉåíë=ïÉêÉ=Å~êêáÉÇ=çìí=çå=~= O= dÜò= m`= ìëáåÖ= j~íä~Ä= SKR= ~åÇ= íÜÉ= ppdm= ~åÇ= kÉíä~Ä= j~íä~Ä= íççäÄçñÉë= E`ë~íµ= OMMPX= k~ÄåÉó=OMMOFK= 5. CONCLUSIONS
qÜÉ= ëé~êëÉ= ÉñíÉåëáçå= íç= íÜÉ= d~ìëëá~å= éêçÅÉëëÉë= éêçîáÇÉë= ~= Ñ~ëíI= ëí~íáëíáÅ~ääó= éêáåÅáéäÉÇ= ~ééêç~ÅÜ=íç=ëé~íá~ä=áåíÉêéçä~íáçåK=^ë=ïáíÜ=ã~åó=ãÉíÜçÇë=çÑ=ëé~íá~ä=áåíÉêéçä~íáçåI=çìíäáÉêë= ~êÉ=é~êíáÅìä~êäó=ÇáÑÑáÅìäí=íç=ãçÇÉäK=qÜÉêÉ=Ü~îÉ=ÄÉÉå=î~êáçìë=~ééêç~ÅÜÉë=~í=ãçÇÉääáåÖ=ãçêÉ= ~ÅÅìê~íÉäó=çìíäáÉêë=ëìÅÜ=~ë=ìëáåÖ=ÅçãÄáå~íáçåë=çÑ=éêÉÇáÅíáçå=ãçÇÉäëI=çåÉ=ëìÅÜ=ãçÇÉä=ìëÉë= ~= äáåÉ~ê= ÅçãÄáå~íáçå= çÑ= ~= åìãÄÉê= çÑ= ãÉíÜçÇë= ïÜÉêÉ= Äó= íÜÉ= ä~êÖÉ= ëÅ~äÉ= ÇáëÅçåíáåìçìë= î~êá~íáçå= áë= ãçÇÉääÉÇ= ìëáåÖ= Ñ~ëí= ï~îÉäÉí= áåíÉêéçä~íáçå= ~åÇ= íÜÉ= êÉëáÇì~äë= ~êÉ= áåíÉêéçä~íÉÇ= ìëáåÖ= ëí~åÇ~êÇ= âêáÖáåÖ= íÉÅÜåáèìÉë= EaÉãó~åçî= Éí= ~äK= OMMNFK= qÜáë= Éåíêó= ï~ë= íç= ëÜçï= íÜÉ= ~Çî~åí~ÖÉë= çÑ= íÜÉ= ppdm= ãçÇÉäK= qÜÉ= ppdm= ÅçìäÇ= ÄÉ= ÅçìéäÉÇ= ïáíÜ= ÉñáëíáåÖ= ~äÖçêáíÜãë= íç= éêÉÇáÅí=ãçêÉ=ÉÑÑÉÅíáîÉäó=ïÜÉêÉ=ÉñíêÉãÉ=î~äìÉë=~êÉ=ãçêÉ=äáâÉäóK= låÅÉ= íÜÉ= å~íìêÉ= çÑ= íÜÉ= Åçî~êá~åÅÉ= ëíêìÅíìêÉ= áë= ìåÇÉêëíççÇI= íÜáë= ãÉíÜçÇ= áë= ÉåíáêÉäó= ~ìíçã~íáÅK= qÜÉêÉ= ~êÉ= ~= ä~êÖÉ= åìãÄÉê= çÑ= íìåÉ~ÄäÉ= é~ê~ãÉíÉêë= íÜ~í= çåÉ= Å~å= ëÉí= íç= ãçêÉ= ~ÅÅìê~íÉäó=éêÉÇáÅí=ìåâåçïå=Ç~í~K=få=ÉãÉêÖÉåÅó=ÅçåÇáíáçåë=íÜÉ=ppdm=~äÖçêáíÜã=ÅçìäÇ=ÄÉ= ìëÉÇ=íç=éêÉÇáÅíI=ïáíÜ=~ÅÅìê~Åó=ÅçããÉåëìê~íÉ=ïáíÜ=~å=çêÇáå~êó=dm=~äÖçêáíÜã=~åÇ=ïáíÜáå= ~= ëáÖåáÑáÅ~åíäó= ëÜçêíÉê= éÉêáçÇ= çÑ= íáãÉK= páåÅÉ= íÜÉ= Åçãéìí~íáçå~ä= ÅçãéäÉñáíó= çåäó= ëÅ~äÉë= ïáíÜ=íÜÉ=åìãÄÉê=çÑ=Ä~ëáë=îÉÅíçêëI=éêÉÇáÅ~íáçå=ïáíÜ=çêÇáå~êáäó=éêçÜáÄáíáîÉäó=ä~êÖÉ=Ç~í~ëÉíë= Å~å=ÄÉÅçãÉ=ã~å~ÖÉ~ÄäÉK=cçê=ëáíì~íáçåë=ïÜÉêÉ=íÜÉêÉ=~êÉ=ÉñíêÉãÉ=î~äìÉëI=íáÖÜíÉê=î~êá~åÅÉë= çå= íÜÉ= éêáçê= ÄÉäáÉÑë= ~Äçìí= íÜÉ= ÜóéÉêJé~ê~ãÉíÉêë= çê= íìêåáåÖ= çÑÑ= ÜóéÉêJé~ê~ãÉíÉê= êÉJ Éëíáã~íáçå=ã~ó=~ääçï=~=ãçêÉ=~ÅÅìê~íÉ=Éëíáã~íÉ=çÑ=íÜÉ=Ç~í~I=ÜçïÉîÉê=éêÉÇáÅíáçå=áå=äçÅ~J íáçåë=ïÜÉêÉ=íÜÉêÉ=~êÉ=ÉñíêÉãÉ=î~äìÉë=ïáää=ëíáää=éÉêÑçêã=éççêäóK= ^åçíÜÉê=~Çî~åí~ÖÉ=çÑ=~=ëé~êëÉ=ãçÇÉä=~ë=éêÉîáçìëäó=ãÉåíáçåÉÇ=áë=íÜÉ=Åçãé~Åí=ï~ó=áå= ïÜáÅÜ= íÜÉ= dm= áë= êÉéêÉëÉåíÉÇ= Äó= ~= ëìÄëÉí= çÑ= Ä~ëáë= îÉÅíçêëK= få= ÉÑÑÉÅíI= íÜÉëÉ= Ä~ëáë= îÉÅíçêë= ÅçãéêÉëë= íÜÉ= Ç~í~= ëç= íÜ~í= íê~åëãáëëáçå= ïçìäÇ= êÉèìáêÉ= ëáÖåáÑáÅ~åíäó= äÉëë= Ä~åÇïáÇíÜK= qÜÉ= êÉ~ä=~Çî~åí~ÖÉ=çÑ=íÜáë=ÅçãéêÉëëáçå=Å~å=ÄÉ=~ééêÉÅá~íÉÇ=ãçêÉ=áÑ=çåÉ=ÅçåëáÇÉêë=íÜÉ=íê~åëãáëJ ëáçå=çÑ=ëìÅÜ=Ç~í~=Ñêçã=~=ë~íÉääáíÉK= cìêíÜÉê=ïçêâ=íÜ~í=áë=ÅìêêÉåíäó=ÄÉáåÖ=ÅçãéäÉíÉÇ=áë=~å=áãéäÉãÉåí~íáçå=çÑ=íÜÉ=ppdm=~äJ ÖçêáíÜã=Ñçê=é~ê~ääÉä=éêçÅÉëëçê=ÅçãéìíÉê= ëóëíÉãëK=cìêíÜÉê=Åçãéìí~íáçå~ä=ëéÉÉÇ=áåÅêÉ~ëÉë= ïáää= ã~âÉ= ppdmÛë= ~å= ÉñíêÉãÉäó= ~ííê~ÅíáîÉ= ëçäìíáçå= áå= ÉãÉêÖÉåÅó= ëáíì~íáçåë= ïÜÉêÉ= èìáÅâ= éêÉÇáÅíáçåë=~êÉ=åÉÉÇÉÇ=~åÇ=íÜÉ=Ç~í~ëÉí=áë=ÉñíêÉãÉäó=ä~êÖÉK=cçê=ëÅÉå~êáçë=ïÜÉêÉÄó=íÜÉêÉ=áë=~= å~íìê~ä=Åçåí~ãáå~åí=áåíêçÇìÅÉÇ=áåíç=íÜÉ=~êÉ~I=~ë=áå=íÜÉ=àçâÉê=ëÉíI=çåÉ=Å~ååçí=êÉ~ääó=éêÉJ ÇáÅí= ïáíÜ= ~åó= ÖêÉ~í= ÇÉÖêÉÉ= çÑ= ÅÉêí~áåíó= Üçï= íÜÉ= Ç~í~= ïáää= ÄÉ= ÇáëíêáÄìíÉÇI= Äìí= ~å=
15-16
FAST SPATIAL INTERPOLATION ARTICLES
~ëëìãéíáçå=Ü~ë=íç=ÄÉ=ã~âÉ=áå=~Çî~åÅÉK=cìêíÜÉê=áåîÉëíáÖ~íáçå=ÅçìäÇ=äççâ=áåíç=íÜÉ=ìëÉ=çÑ= ÇáÑÑÉêÉåí=åçáëÉ=ãçÇÉäë=ïÜáÅÜ=ïçìäÇ=~ääçï=Ñçê=Éñ~ãéäÉ=êçÄìëí=Éëíáã~íáçå=çÑ=íÜÉ=ê~Çáç~ÅJ íáîáíó= äÉîÉäK= `êÉëëáÉ= ëí~íÉë= íÜ~í= íÜÉêÉ= áë= åç= êÉ~ä= íÉëí= êÉÖ~êÇáåÖ= íÜÉ= åçåJd~ìëëá~åáíó= çÑ= íÜÉ= ìåÇÉêäóáåÖ=éÜÉåçãÉåçåI=ÜçïÉîÉê=ÜÉ=ÇçÉë=ëìÖÖÉëí=íÜÉ=ìëÉ=çÑ=ÇáÑÑÉêÉåí=äçëë=ÑìåÅíáçåëK=qÜÉ= ÅçåëáÇÉê~íáçå= çÑ= êçÄìëí= ãçÇÉäë= áë= áãéçêí~åí= ëáåÅÉ= áí= ÅçìäÇ= äÉ~Ç= íç= ~= ÄÉííÉê= éêÉÇáÅíáîÉ= ãçÇÉäK=cçê=íÜáë=çåÉ=ÅçìäÇ=ÅçåëáÇÉê=íÜÉ=i~éä~ÅÉ=åçáëÉ=ãçÇÉä=çê=çíÜÉê=~ÇÇáíáîÉ=åçáëÉ=ãçÇJ Éäë=Ü~îáåÖ=~=ÜÉ~îó=í~áä=äáâÉ=íÜÉ=píìÇÉåíJí=åçáëÉ=ãçÇÉä=EoçìëëÉÉìï=~åÇ=iÉêçó=NVUTFK=
REFERENCES _Éêå~êÇçI=gKjI=pãáíÜ=^Kc=ENVVQFI=_~óÉëá~å=qÜÉçêóK=gçÜå=táäÉó=C=pçåëK= _áëÜçé=`Kj=ENVVRFI=kÉìê~ä=kÉíïçêâë=Ñçê=m~ííÉêå=oÉÅçÖåáíáçåK=kÉï=vçêâI=kKvK=lñÑçêÇ=råáîÉêëáíó= mêÉëëK= `çêåÑçêÇ=aI=`ë~íµ=iI=lééÉê=j=EOMMQFI=ÚpÉèìÉåíá~äI=_~óÉëá~å=dÉçëí~íáëíáÅëW=^=mêáåÅáéäÉÇ=jÉíÜçÇ=Ñçê= i~êÖÉ=a~í~=pÉíëÛI=qÉÅÜåáÅ~ä=oÉéçêíI=^ëíçå=råáîÉêëáíóK= `çîÉê=qKjI=qÜçã~ë=gK^=ENVVNFI=bäÉãÉåíë=çÑ=fåÑçêã~íáçå=qÜÉçêóI=gçÜå=táäÉó=C=pçåëK= `êÉëëáÉ=kK^=ENVVPFI=pí~íáëíáÅë=Ñçê=pé~íá~ä=a~í~K=gçÜå=táäÉó=~åÇ=ëçåëK= `ë~íµ=iI=lééÉê=j=EOMMOFI=pé~êëÉ=låJiáåÉ=d~ìëëá~å=mêçÅÉëëÉëK=kÉìê~ä=`çãéìí~íáçå=îçäK=NQI=ééK= SQNJSSVK=ÜííéWLLïïïKåÅêÖK~ëíçåK~ÅKìâLm~éÉêë= `ë~íµ=iK=EOMMOFI=Úd~ìëëá~å=mêçÅÉëëÉë=J=fíÉê~íáîÉ=pé~êëÉ=^ééêçñáã~íáçåëÛK=mÜa=íÜÉëáëI=^ëíçå== råáîÉêëáíóK= `ë~íµ=i=EOMMPFI=ppdm=qççäÄçñK=ÜííéWLLïïïKåÅêÖK~ëíçåK~ÅKìâLmêçàÉÅíëLppdm= aÉãó~åçî=sI=pçäí~åá=pI=h~åÉîëâá=jI=`~åì=pI=j~áÖå~å=jI=p~îÉäáÉî~=bI=qáãçåáå=sI=máë~êÉåâç=s= EOMMNFI=Út~îÉäÉí=~å~äóëáë=êÉëáÇì~ä=âêáÖáåÖ=îëK=åÉìê~ä=åÉíïçêâ=êÉëáÇì~ä=âêáÖáåÖÛK=píçÅÜ~ëíáÅ= båîáêçåãÉåí~ä=oÉëÉ~êÅÜ=~åÇ=oáëâ=^ëëÉëëãÉåí=NRK= dáÄÄë=jI=j~Åh~ó=aKgK`=ENVVTFI=ÚbÑÑáÅáÉåí=áãéäÉãÉåí~íáçå=çÑ=d~ìëëá~å=éêçÅÉëëÉëÛI=qÉÅÜåáÅ~ä== oÉéçêíI=`~îÉåÇáëÜ=i~Äçê~íçêóI=`~ãÄêáÇÖÉ=råáîÉêëáíóK= e~ää=bKg=ENVUQFI=o~Çá~íáçå=~åÇ=iáÑÉ=OåÇ=bÇK=mÉêÖ~ãçå=mêÉëëI=kÉï=vçêâK= fë~~âë=bKeI=pêáî~ëí~î~=oKj=ENVUVFI=^å=fåíêçÇìÅíáçåë=íç=^ééäáÉÇ=dÉçëí~íáëíáÅëI=lñÑçêÇ=råáîÉêëáíó= mêÉëëK= j~Åh~ó=aKgK`=ENVVOFI=_~óÉëá~å=áåíÉêéçä~íáçåK=kÉìê~ä=`çãéìí~íáçå=îçäK=QI=ééK=QNRJQQTI=qÜÉ=jfq= mêÉëëK= j~Åh~ó=aKgK`=ENVVVFI=`çãé~êáëçå=çÑ=^ééêçñáã~íÉ=jÉíÜçÇë=Ñçê=e~åÇäáåÖ=eóéÉêJé~ê~ãÉíÉêëK= kÉìê~ä=`çãéìí~íáçå=îçäK=NNI=ééK=NMPRJNMSUI=qÜÉ=jfq=mêÉëëK= k~ÄåÉó=fKq=EOMMOFI=kbqi^_W=^äÖçêáíÜãë=Ñçê=m~ííÉêå=oÉÅçÖåáíáçåI=péêáåÖÉê=sÉêä~Ö= ÜííéWLLïïïKåÅêÖK~ëíçåK~ÅKìâLåÉíä~ÄLI=^ëíçå=råáîÉêëáíóK= m~éçìäáë=^I=máää~á=pKr=EOMMOFI=mêçÄ~ÄáäáíóI=o~åÇçã=s~êá~ÄäÉëI=~åÇ=píçÅÜ~ëíáÅ=mêçÅÉëëÉëI=jÅdê~ïJ eáääK= oçìëëÉÉìï=mKgI=iÉêçó=^Kj=ENVUTF=oçÄìëí=oÉÖêÉëëáçå=~åÇ=lìíäáÉê=aÉíÉÅíáçåI=gçÜå=táäÉó=C=pçåëK== pÅÜçÉäâçéÑ=_I=pãçä~=^Kg=EOMMOFI=iÉ~êåáåÖ=ïáíÜ=hÉêåÉäëI=qÜÉ=jfq=mêÉëëK= rf`I=jÉäÄçìêåÉI=^ìëíê~äá~K=kìÅäÉ~ê=fëëìÉë=_êáÉÑáåÖ=m~éÉê=NTI=j~êÅÜ=OMMQK= ÜííéWLLïïïKìáÅKÅçãK~ìLåáéNTKÜíãä= táääá~ãë=`KhKfI=o~ëãìëëÉå=`Kb=ENVVSFI=Úd~ìëëá~å=éêçÅÉëëÉë=Ñçê=êÉÖêÉëëáçåÛK=få=mêçÅÉÉÇáåÖë=çÑ=íÜÉ= kÉìê~ä=fåÑçêã~íáçå=mêçÅÉëëáåÖ=póëíÉãëI=îçäK=UI=qÜÉ=jfq=mêÉëëK=ïïïKåáéëKÅÅ= táääá~ãë=`KhKfI=pÉÉÖÉê=j=EOMMNFI=ÚrëáåÖ=íÜÉ=kóëíêçã=ãÉíÜçÇ=íç=ëéÉÉÇ=ìé=hÉêåÉä=j~ÅÜáåÉëÛK=få== mêçÅÉÉÇáåÖë=çÑ=íÜÉ=kÉìê~ä=fåÑçêã~íáçå=mêçÅÉëëáåÖ=póëíÉãëI=îçäK=NPI=qÜÉ=jfq=mêÉëëK= ïïïKåáéëKÅÅ= = Cite this article as: Ingram, Ben; Csató, Lehel; Evans, David. ‘Fast spatial interpolation using sparse Gaussian processes’. Applied GIS, Vol 1, No 2, 2005. pp. 15-01 to 15-17. DOI: 10.2104/ag050015 Copyright © 2005 Ben Ingram, Lehel Csató and David Evans
FAST SPATIAL INTERPOLATION ARTICLES
15-17