Finite Element Methods. Spring 2017. FE Formulation of 2D Elasticity Problem. Consider an elastic 2D plate as shown in F
ES 622
Finite Element Methods
Spring 2017
FE Formulation of 2D Elasticity Problem. Consider an elastic 2D plate as shown in Figure 1. Compute the displacement field using one isoparametric linear quadrilateral element.
Figure 1: Elastic plate in 2D. The governing equation for this problem is Z Z Z 1 T T Π(u) = DdΩ − u bdΩ − uT tdΓ. 2 Ω Ω ΓN
(1)
We start by writing picking nodes, assigning nodal coordinates and degrees-of-freedom (DOFs). Since this is a 2D elasticity problem, each node will have 2 DOFs (displacements in x and y directions), as shown in Figure 2. Let us write the table of nodal coordinates for the real and the reference elements along with
Figure 2: Node and DOF numbers. quadrature abscissas (we use 2 quadrature points in each direction). I xI yI
1 0 0
2 1 0
3 1 1
4 0 1
ξI ηI
1 -1 -1
2 1 -1
3 1 1
4 -1 1
ξIquad ηIquad
1 √ −1/ 3 √ −1/ 3
2 √ 1/ 3 √ 1/ 3
The shape functions written for the reference element read N1 = 0.25(1 − ξ)(1 − η)
N2 = 0.25(1 + ξ)(1 − η)
N3 = 0.25(1 + ξ)(1 + η)
N4 = 0.25(1 − ξ)(1 + η)
We write another table of some values that will be useful in further computations:
Gaurav (
[email protected])
IIT Gandhinagar
1
ES 622
Finite Element Methods
K (I, J) (ξIquad , ηJquad ) N1 N2 N3 N4 N1,ξ N1,η N2,ξ N2,η N3,ξ N3,η N4,ξ N4,η xξ xη yξ yη j ξx ξy ηx ηy b N1,x b1,y N b2,x N b2,y N b3,x N b3,y N b N4,x b4,y N
1 (1,1) (-0.5774,-0.5774) 0.6220 0.1667 0.0447 0.1667 -0.3943 -0.3943 0.3943 -0.1057 0.1057 0.1057 -0.1057 0.3943 0.5 0.0 0.0 0.5 0.25 2 0 0 2 -0.7887 -0.7887 0.7887 -0.2113 0.2113 0.2113 -0.2113 0.7887
2 (1,2) (-0.5774,0.5774) 0.1667 0.0447 0.1667 0.6220 -0.1057 -0.3943 0.1057 -0.1057 0.3943 0.1057 -0.3943 0.3943 0.5 0.0 0.0 0.5 0.25 2 0 0 2 -0.2113 -0.7887 0.2113 -0.2113 0.7887 0.2113 -0.7887 0.7887
Spring 2017
3 (2,1) (0.5774,-0.5774) 0.1667 0.6220 0.1667 0.0447 -0.3943 -0.1057 0.3943 -0.3943 0.1057 0.3943 -0.1057 0.1057 0.5 0.0 0.0 0.5 0.25 2 0 0 2 -0.7887 -0.2113 0.7887 -0.7887 0.2113 0.7887 -0.2113 0.2113
4 (2,2) (0.5774,0.5774) 0.0447 0.1667 0.6220 0.1667 -0.1057 -0.1057 0.1057 -0.3943 0.3943 0.3943 -0.3943 0.1057 0.5 0.0 0.0 0.5 0.25 2 0 0 2 -0.2113 -0.2113 0.2113 -0.7887 0.7887 0.7887 -0.7887 0.2113
Using these values, we can compute the B matrix each Gauss point (refer to class notes for exact form of B bI . Computing BT DB at all Gauss points and adding them yields the 8 × 8 stiffness matrix as in terms of N u1 u1 1.1538 v1 0.4808 u2 −0.7692 K = v2 0.0962 u3 −0.5769 v3 −0.4808 u4 0.1923 v4 −0.0962
v1 0.4808 1.1538 −0.0962 0.1923 −0.4808 −0.5769 0.0962 −0.7692
u2 −0.7692 −0.0962 1.1538 −0.4808 0.1923 0.0962 −0.5769 0.4808
v2 0.0962 0.1923 −0.4808 1.1538 −0.0962 −0.7692 0.4808 −0.5769
u3 −0.5769 −0.4808 0.1923 −0.0962 1.1538 0.4808 −0.7692 0.0962
v3 −0.4808 −0.5769 0.0962 −0.7692 0.4808 1.1538 −0.0962 0.1923
u4 0.1923 0.0962 −0.5769 0.4808 −0.7692 −0.0962 1.1538 −0.4808
v4 −0.0962 −0.7692 0.4808 11 −0.5769 × 10 N/m 0.0962 0.1923 −0.4808 1.1538
(2) DOFs u1 , v1 , u4 and v4 are fixed. Applying these boundary conditions yields the following 4 × 4 stiffness
Gaurav (
[email protected])
IIT Gandhinagar
2
ES 622
Finite Element Methods
Spring 2017
matrix:
u2 v2 u3 v3 u2 0.0962 1.1538 −0.4808 0.1923 11 K = v2 −0.4808 1.1538 −0.0962 −0.7692 × 10 N/m u3 0.1923 −0.0962 1.1538 0.4808 v3 0.0962 −0.7692 0.4808 1.1538 Since only nodal loads are specified, the force vector can be simply written as u2 10 v 0 × 103 N. F= 2 u3 0 v3 10
(3)
(4)
Solving for the displacement vector d, we get u2 0.2032 v 0.2863 × 10−6 m. d= 2 u3 −0.1435 v3 0.3204
Gaurav (
[email protected])
IIT Gandhinagar
(5)
3