Fermilab

0 downloads 0 Views 338KB Size Report
Jul 24, 2000 - A pair of upstream sweep magnets will sweep the 120 GeV proton beam. ..... at 625 kHz from a power supply located on the floor of the AP0 ...
Fermilab

FERMILAB-TM-2120 August 2000 Fermilab-TM-2120

Beam Sweeping System )0%LHQLRVHN -%LHOLFNL‚ )HUPL1DWLRQDO$FFHOHUDWRU/DERUDWRU\%DWDYLD,/86$ $&KHUHSDNKLQ2.XUQDHY ,+(33URWYLQR5XVVLD -'LQNHO &UHDWLYH'HVLJQV,QF2DN%URRN,/86$ -XO\

7KLVDUWLFOHGHVFULEHVDV\VWHPIRUUDSLGO\VZHHSLQJDKLJKHQHUJ\SDUWLFOHEHDPLQDFLUFXODU SDWKRQDWDUJHW7KHVZHHSLQJV\VWHPGHIOHFWVWKHEHDPLQDVLQJOHWXUQURWDWLQJILHOG PDJQHWWKDWFRPELQHVGHIOHFWLRQLQERWKSODQHVLQWRDVLQJOHXQLW7KHPDJQHWFXUUHQWLVXS WRN$LQDPSOLWXGHDQGWKHVZHHSWLPHLV—V7KHPDJQHWFRQVLVWVRIFRQGXFWRUV WZLVWHGWRSURYLGHDXQLIRUPOLQHLQWHJUDOGHIOHFWLQJPDJQHWLFILHOGDUUDQJHGLQVLGHD SUHVVHGSRZGHUPDJQHWLFFRUH7KHSXOVHGSRZHUVXSSO\SURYLGHVWKHFXUUHQWWRWKHKLJK UDGLDWLRQDUHDRIWKHWDUJHWYDXOWWKURXJKVHYHUDOPHWHUVRIVWULSOLQHDQGFRD[LDOFDEOHE\ PHDQVRIDPDJQHWLFSXOVHFRPSUHVVLRQFLUFXLWEDVHGRQVDWXUDWLQJ1L)HDQG0HWJODVWDSH FRUHV$WWKH)HUPLODE$QWLSURWRQ6RXUFHLQFUHDVLQJSURWRQEHDPLQWHQVLWLHVLQFLGHQWRQWKH DQWLSURWRQSURGXFWLRQWDUJHWWKUHDWHQWRGHOLYHUHQHUJ\GHQVLWLHVVXIILFLHQWWRORFDOO\PHOWWKH WDUJHWLQDVLQJOHSXOVH7KHSXUSRVHRIWKHVZHHSPDJQHWLVWRVSUHDGWKHKRWVSRWRQWKH WDUJHWZLWKDVZHHSUDGLXVRIXSWRPPJUHDWO\UHGXFLQJWKHSHDNHQHUJ\GHSRVLWLRQ

3$&6&RGHV3M$FW

INTRODUCTION

$W)HUPLODEDQWLSURWRQVDUHFROOHFWHGIURPWKHLQWHUDFWLRQRID*H9SURWRQEHDPZLWK DVROLGQLFNHOWDUJHW7KH0DLQ,QMHFWRUSURGXFWLRQF\FOHKDVDUHSHWLWLRQUDWHRIVHFRQGV DQGDEHDPSXOVHOHQJWKRIµV7KHHIILFLHQF\RIFROOHFWLQJDQWLSURWRQVIURPWKHWDUJHW ULVHVDVWKHVL]HRIWKHSURWRQEHDPVSRWRQWKHWDUJHWLVUHGXFHG+RZHYHUDWWKHVDPHWLPH WKHSHDNHQHUJ\GHSRVLWLRQRQWDUJHWULVHV8QGHU0DLQ,QMHFWRUFRQGLWLRQV [ SURWRQV LQDµVSXOVH WKHVSRWVL]HZLOOKDYHWREHLQFUHDVHGWRDWOHDVWPPWRNHHSSHDN HQHUJ\GHSRVLWLRQQHDUFXUUHQWOHYHOV7REULQJWKHGHQVLW\RIHQHUJ\GHSRVLWLRQZLWKD PPVSRWVL]HGRZQWRFXUUHQWO\H[LVWLQJOHYHOVDV\VWHPWRVZHHSWKHEHDPVSRWRQWKH WDUJHW>5HI@KDVEHHQGHYHORSHG6HYHUDOXSJUDGHVKDYHEHHQSURSRVHGIRUWKH0DLQ ,QMHFWRUDVSDUWRIWKH7HYSURMHFW>5HI@7KHVHXSJUDGHVHJVOLSVWDFNLQJZLOOUHVXOW LQLQFUHDVHVLQSURWRQLQWHQVLW\RIIDFWRUVRIWRDERYHWKHLQLWLDOLQWHQVLW\RI[ SURWRQVSHUSXOVHRQWDUJHWLQWKHDQWLSURWRQSURGXFWLRQSURFHVV8QGHUWKHVHFRQGLWLRQV VZHHSLQJEHFRPHVLQFUHDVLQJO\LPSRUWDQWDQGODUJHUVZHHSUDGLLDUHUHTXLUHGWRUHVWRUHWKH DQWLSURWRQ\LHOGWRWKHOHYHODFKLHYDEOHDWORZLQWHQVLW\ 



)LJXUHVKRZVDOD\RXWRIWKHXSJUDGHGWDUJHWVWDWLRQ7KHXSVWUHDPVZHHSPDJQHWVZLOOEH LQVWDOOHGDWWKHHQGRIWKH$3EHDPOLQHWXQQHO DIWHUTXDGUXSROHPDJQHW34% 7KH$3 EHDPOLQHWUDQVSRUWVDQGIRFXVHVWKH*H9SURWRQVIURPWKH0DLQ,QMHFWRURQWRWKH WDUJHW$SDLURIXSVWUHDPVZHHSPDJQHWVZLOOVZHHSWKH*H9SURWRQEHDP7KLV ORFDWLRQLVWKHIRFDOSRLQWRIWKHSURWRQOLWKLXPOHQVZKLFKPD\EHQHFHVVDU\WRIRFXVWKH *H9SURWRQEHDPRQWDUJHW$QWLSURWRQVFUHDWHGLQWKHWDUJHWDUHFROOHFWHGE\DOLWKLXP OHQVDQGGHIOHFWHGE\WKHSXOVHGPDJQHWLQWRWKH$3EHDPOLQHIRULQMHFWLRQLQWRWKH 'HEXQFKHU$VLQJOHGRZQVWUHDPVZHHSPDJQHWSODFHGLQDGRXEOHPRGXOHEHWZHHQWKH FROOHFWLRQOHQVDQGWKHSXOVHGPDJQHWQHDUWKHIRFDOSRLQWRIWKHFROOHFWLRQOHQVZLOOUHGLUHFW WKH*H9DQWLSURWRQVH[LWLQJWKHFROOHFWLRQOHQVSDUDOOHOWRWKH$3EHDPOLQH

120 GeV Proton Beam

PQ9B

Pulsed Magnet Li Lens

Li Lens Upstream sweep magnets

Target

Downstream sweep magnet

8 GeV Antiprotons

Figure 1. Major components in the target vault of the upgraded target station. Not shown are the pretarget SEM and the beam dump.



HIGH INTENSITY TARGETRY

0HDVXUHPHQWVRI\LHOGZLWKEHDPVSRWSRVLWLRQRQWKHWDUJHWVKRZD*DXVVLDQVKDSHG\LHOG FXUYH< [ < \ LQERWKKRUL]RQWDODQGYHUWLFDOGLPHQVLRQVZLWK σ x PPDQG σ y PP7KHVKDSHRIWKH\LHOGGLVWULEXWLRQLVGHWHUPLQHGE\WKHDFFHSWDQFHDQGODWWLFH IXQFWLRQVRIWKH'HEXQFKHUDQGWKH$3EHDPOLQH,IWKHLQFRPLQJSURWRQEHDPLVDOVRD 2 2 *DXVVLDQ 2 / π σ −1 bx exp (−x / 2σ bx )LQERWKSODQHVZLWKFKDUDFWHULVWLFVSRWVL]H σ bx DQG σ by  WKHQWKHGHSHQGHQFHRIWKH\LHOGRQVSRWVL]HQRUPDOL]HGWRWKH\LHOGIRUDQLQILQLWHVLPDO SRLQWEHDPLV 

Y = ∫ Y (x)I(x)Y(y)I(y)dxdy

ZKLFKLQWHJUDWHVWR Y =

σx σy σ + σ2b 2 x

x



σ 2y + σ 2b



y

7KLVFXUYHLVSORWWHGLQ)LJIRUDFLUFXODUEHDPVSRW$OVRVKRZQDUH0$56FDOFXODWLRQV RIHQHUJ\GHSRVLWLRQLQDFRSSHUWDUJHWDVDIXQFWLRQRIEHDPVL]HIRU1 [ SURWRQV SHUSXOVH>@$VPDOOIUDFWLRQ W\SLFDOO\OHVVWKDQ RIWKHGHSRVLWHGHQHUJ\LVUHOHDVHGDV DVWUHVVZDYHE\WKHHODVWLFSURSHUWLHVRIWKHPHWDOWKHUHPDLQGHULVGHSRVLWHGORFDOO\IRUD WLPHPXFKORQJHUWKDQDEHDPSXOVH7KHVSRWVL]HXQGHUFXUUHQWRSHUDWLQJFRQGLWLRQVLV DERXW σ bx PP σ by PP(VWLPDWHVRIWKHSHDNLQVWDQWDQHRXVHQHUJ\ GHSRVLWLRQIRUWKHKLJKHVWLQWHQVLW\DFKLHYHGWRGDWH [ LQGLFDWHDQHQHUJ\ GHSRVLWLRQRIDERXW-J7KLVLVDERYHWKHPHOWLQJSRLQWRIFRSSHU DERXW-J  DQGFORVHWRWKHPHOWLQJSRLQWRIQLFNHO DERXW-J /RFDOGLVLQWHJUDWLRQRIWKHWDUJHW KDVEHHQREVHUYHGZKHQWKHWDUJHWURWDWLRQPHFKDQLVPIDLOHG7KHGDPDJHZDVFDXVHGE\ WKHFRPELQDWLRQRIWKHLQWHJUDWHGUDGLDWLRQGRVDJHWRWKHDIIHFWHGVSRWDQGWKHUHSHWLWLYH WKHUPDODQGPHFKDQLFDOVWUHVVHV:KHQWKHWDUJHWZDVVORZO\URWDWHGWRUHJXODUO\H[SRVH IUHVKPDWHULDOWRWKHEHDPOHVVVHYHUHGDPDJHZDVREVHUYHG,QRUGHUWRPDLQWDLQSHDN HQHUJ\GHSRVLWLRQEHORZSUHVHQWOHYHOVDIWHUWKH0DLQ,QMHFWRUEHJLQVRSHUDWLRQLWZLOOEH QHFHVVDU\WRLQFUHDVHWKHVSRWVL]H7KHDOWHUQDWLYHLVWRVZHHSWKHEHDPRQWKHWDUJHWDQG UHGXFHWKHVSRWVL]HWRWKHVPDOOHVWDWWDLQDEOHOHDGLQJWRDLQFUHDVHLQ\LHOG 



7KHHIIHFWLYHVL]HRIWKHHQHUJ\GHSRVLWLRQSURILOHLVFRPSDUDEOHWRRUODUJHUWKDQWKHEHDP VSRWVL]H)RUDFLUFXODU*DXVVLDQHQHUJ\GHSRVLWLRQSURILOHZLWKHTXDOYDULDQFHσ LQERWK SODQHVVZHSWLQDFLUFOHRIUDGLXVUWKHUDGLDOHQHUJ\GHSRVLWLRQSURILOHFDQEHVKRZQWREH

 r 2 + r20   r r0   2  E(r ) = exp − 2  I0  2σ   σ 





ZKHUH,LVWKHPRGLILHG%HVVHOIXQFWLRQ7KHHQHUJ\GHSRVLWLRQFXUYH (T LVVKRZQLQ )LJIRUQRVZHHSDQGWZRUDWLRVRIVZHHSUDGLXVWRWKHHQHUJ\GHSRVLWLRQVSRWVL]H 

σ = σ . ,QFUHDVLQJDPSOLWXGHRIEHDPVZHHSUDSLGO\UHGXFHVSHDNHQHUJ\GHSRVLWLRQIRU r0 / σ h QHDU7KHHIIHFWLVWKDWDVZHHSUDGLXVRIPPUHGXFHVWKHSHDNHQHUJ\ GHSRVLWLRQWRDERXW-JIRU[ SURWRQVSHUSXOVH>@7KLVOHYHORIHQHUJ\GHSRVLWLRQ LVOLNHO\WREHDFFHSWDEOHIRUUHOLDEOHRSHUDWLRQLQQLFNHOWDUJHWV+RZHYHUFRQWLQXHG LQFUHDVHLQVZHHSUDGLXVKDVDZHDNHUHIIHFWRQSHDNHQHUJ\GHSRVLWLRQDVWKHKHDW GHSRVLWLRQSURILOHEHFRPHVKROORZ K



1

0.8 Ni melting point 1000

0.6 Cu melting point

0.4

0.2

Maximum Energy Deposition (J/g)

Normalized Antiproton Yield

104

100

0

0.1

0.2 0.3 0.4 Beam spot sizeσ =σ (mm) bx

0.5

0.6

by

Figure 2. Scaling of yield (curve) and peak energy deposition (points with error bars) in the target for proton beam intensity of 5 x 1012 as a function of beam spot size. The values for energy deposition were taken from Ref. 3. 7KHFDOFXODWLRQVRISDUWLFOHGLVWULEXWLRQDQG\LHOGSUHVHQWHGLQ)LJXUHVWKURXJKEHORZ ZHUHSHUIRUPHGZLWKWKHSURJUDP0&/(16>5HI@0&/(16GRHVD0RQWH&DUOR VLPXODWLRQRISDUWLFOHVHPDQDWLQJIURPWKHWDUJHWDQGIROORZVWKHPWRWKHDFFHSWDQFH DSHUWXUHRIWKHGRZQVWUHDP$3EHDPOLQHDQG'HEXQFKHUULQJ,WLVEDVHGRQSUHYLRXV ZRUN>5HI@RQDQWLSURWRQSDUWLFOHGLVWULEXWLRQVDQGVHFRQGDU\SURGXFWLRQEXWFRQWDLQVD UHDOLVWLFOHQVPRGHOWRDOORZGLUHFWFRPSDULVRQZLWKH[SHULPHQWDOGDWDZLWKRXWDIRUFHG DVVXPSWLRQRIDXQLIRUPOHQVJUDGLHQW$EHUUDWLRQVLQWKHOHQVVWURQJO\LQIOXHQFHWKHVKDSH RIWKH\LHOGFXUYHV7KHSURJUDPDOVRDOORZVWKHFDOFXODWLRQRISDUWLFOHGLVWULEXWLRQVUDGLDOO\ RXWVLGHRIWKHOHQV,WLVXVHGWRPRGHOHIIHFWVRIYDU\LQJWDUJHWVWDWLRQJHRPHWULHVEHDP VZHHSLQJ$3DQG'HEXQFKHUDSHUWXUHHWF$VVXPSWLRQVXVHGLQWKHFDOFXODWLRQV H[FHSW DVQRWHGRWKHUZLVH LQFOXGHDQupgraded AP2/Debuncher (32 π mm-mrad acceptance, matched at the target), 2000 V lens voltage, and a 0.15-mm spot size.



1

Relative Heat Deposition

No sweep 0.8

0.6

r0 /σh = 2 0.4

r0 /σh = 4

0.2

0 0

1

2

3

4

5

6

r/σh

Figure 3. Effect of beam sweeping on the local energy deposition profile for an initially Gaussian energy deposition. Curves are for no sweep, and two ratios of sweep radius to the spot size σh of the energy deposition profile. ,QWKHDEVHQFHRIEHDPVZHHSLQJWKH\LHOGGHJUDGHVDVWKHLQWHQVLW\LQFUHDVHVEHFDXVHWKH EHDPVSRWVL]HPXVWEHLQFUHDVHG6ZHHSLQJDOORZVUHGXFWLRQLQVSRWVL]HDQGUHVWRUDWLRQRI \LHOG$VWKHEHDPLQWHQVLW\LQFUHDVHVVZHHSLQJEHFRPHVLQFUHDVLQJO\LPSRUWDQWDQGWKH VZHHSUDGLXVUHTXLUHGWRFRPSOHWHO\UHVWRUH\LHOGWRDJLYHQOHYHOLQFUHDVHV)LJVKRZV HVWLPDWHVRI\LHOGIRUVHYHUDOVZHHSUDGLLDQGEHDPLQWHQVLWLHVDVVXPLQJDFLUFXODUVZHHS DQGYDU\LQJVSRWVL]HWRPDLQWDLQDIL[HGHQHUJ\GHSRVLWLRQRI-J7KHVHFDOFXODWLRQV VKRZWKHPXFKJUHDWHULPSRUWDQFHWREHDWWDFKHGWRWKHVZHHSLQJV\VWHPDVEHDPLQWHQVLW\ RQWDUJHWLQFUHDVHVEH\RQGWKDWSURSRVHGIRULQLWLDO0DLQ,QMHFWRURSHUDWLRQ7KHSRWHQWLDO HIIHFWRIWKHVZHHSLQJV\VWHPLVWRLQFUHDVHWKH\LHOGE\DERXWDW× DWPP VZHHSUDGLXV DW× DWPPVZHHSUDGLXV DQGDW× DWPP VZHHSUDGLXV  $KLVWRJUDPRIWKHUDGLDOGLVWULEXWLRQRIFROOHFWHGSDUWLFOHVDWWKHOHQVDQGWKHVZHHSPDJQHW LVSORWWHGLQ)LJXUH6ZHHSLQJWKHEHDPKDVQRVLJQLILFDQWHIIHFWRQWKHGLVWULEXWLRQ7KH DVVXPSWLRQVUHSUHVHQWRSHUDWLRQZLWKRSWLPDOOHQVWLPLQJ UHODWLYHSKDVHGLIIHUHQFHEHWZHHQ



5 10 -5

12

Yield into Debuncher

4 10 -5

5 x 10

1 x 1013 3 10

-5

2 x 1013 2 10 -5

1 10 -5

0 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sweep radius [mm]

Figure 4. Yield vs. sweep radius at three incident proton intensities. Beam spot size is adjusted to fix energy deposition at 800 J/g. Lens voltage is 2400 V. WKHEHJLQQLQJRIWKHOHQVFXUUHQWSXOVHDQGWKHWLPHRIWKHEHDPSXOVH DQGDUHODWLYHO\ODUJH $3'HEXQFKHUWUDQVYHUVHDFFHSWDQFHDSHUWXUHRIπPPPUDG $VWKHDFFHSWDQFH DSHUWXUHLQFUHDVHVWKHGLVWULEXWLRQRIDFFHSWDQFHEHFRPHVZLGHU 1RWHWKDWDPRGHVW IUDFWLRQRIWKHFROOHFWHGSDUWLFOHV RUOHVV H[LWWKHOHQVRXWVLGHRIWKHFXUUHQWFDUU\LQJ OLWKLXPFRUHRIWKHOHQV PP 7KHFDOFXODWLRQLQFOXGHVVFDWWHULQJDQGDEVRUSWLRQLQWKH WLWDQLXPVKHOOVXUURXQGLQJWKHOLWKLXPEXWGRHVQRWLQFOXGHWKHHIIHFWRIDVWHHOFROODUDWWKH GRZQVWUHDPHQGRIWKHOHQVZKLFKKDVDQLQQHUUDGLXVRIPP7KLVFROODUHVVHQWLDOO\ HOLPLQDWHVWKHSDUWLFOHVEH\RQGPP7KHUHIRUHWKHVZHHSPDJQHWQHHGVWREHGHVLJQHG WRDFFHSWSDUWLFOHVXSWRDUDGLXVRIDERXWPPDOWKRXJKWKHJUHDWPDMRULW\RISDUWLFOHVDUH ZHOOLQVLGHWKLVUDGLXV 7KHHIIHFWRIEHDPVZHHSRQ\LHOGDQGILHOGXQLIRUPLW\UHTXLUHPHQWVDUHFDOFXODWHGLQ)LJXUH )RUH[DPSOHWKHFXUYHODEHOHGUHSUHVHQWVWKH\LHOGDVDIXQFWLRQRIGRZQVWUHDP VZHHSDQJOHIRUDIL[HGXSVWUHDPVZHHSUDGLXVRIPP$WWKHRSWLPDOVZHHSDQJOH DERXWPUDG WKH\LHOGLVUHVWRUHGWRLWVOHYHOIRUQRVZHHS1RWHWKDWHYHQLQWKH DEVHQFHRIDGRZQVWUHDPVZHHSWKH\LHOGLVRQO\UHGXFHGE\7KLVLQGLFDWHVWKDWWKH EHDPLVUHODWLYHO\LQVHQVLWLYHWRILHOGXQLIRUPLW\DILHOGHUURULQWKLVFDVHUHGXFHV \LHOGE\RQO\)LHOGXQLIRUPLW\EHFRPHVPRUHLPSRUWDQWDVWKHVZHHSUDGLXVLQFUHDVHV



Normalized yield per bin

0.02

0.015

0.01

0.005

0 0

0.2

0.4

0.6

0.8

1

1.2

Radius [cm]

 )LJXUH5DGLDOGLVWULEXWLRQRIFROOHFWHGDQWLSURWRQVDWWKHGRZQVWUHDPVZHHSPDJQHW7KH OHQVSKDVHLV7KHRXWHUUDGLXVRIWKHOLWKLXPSRUWLRQRIWKHFROOHFWLRQOHQVLVFP7KH WRWDOQXPEHURIDQWLSURWRQVFROOHFWHGLV

1.1 Upstream sweep radius = 0 1

0.33

0.5

0.75 mm

Normalized yield

0.9 0.8 0.7 0.6 0.5 0.4 0.3 -2

-1

0

1

2

3

4

5

6

Downstream sweep angle [mrad]

Figure 6. Yield as a function of downstream sweep angle for several sweep radii.



1.02 no sweep

1

Normalized yield

0.98 0.5mm, 2.2mrad 0.96 0.75mm, 3.3mrad

0.94 0.92

focal point of lens

0.9 0.88 0.86 0

0.2

0.4

0.6

0.8

1

Distance from lens to center of sweep magnet [m]

)LJXUH @7KHPDJQHWLFILHOGGXHWRWZRSDLUVRIFXUUHQWFDUU\LQJFRQGXFWRUVRULHQWHG °DSDUWLVURWDWLQJRQD[LVLIWKHFXUUHQWLQWKHWZRSDLUVRIFRQGXFWRUVLV,FRV ωW DQG ,VLQ ωW )LJXUHVKRZVWKHPDJQHWLFILHOGOLQHVDVFDOFXODWHGE\32,6621DWIRXUWLPHVLQ WKHF\FOH 



(b)

(a)

(d)

(c)

Figure 9. Local magnetic field structure for a 2-phase rotating-field sweep magnet. Current to horizontal pair of conductors has a cos(ωt) time dependence; current to vertical pair of conductors has a sin(ωt) time dependence. Field distribution is shown for (a) ωt=0, (b) ωt= π /12, (c) ωt= π /6, (d) ωt= π /4. A magnetic core surrounds the conductors. Dimensions are in cm.

7KHORFDOILHOGXQLIRUPLW\LQLWVHOILVQRWVXIILFLHQWIRUXVHDVDVZHHSPDJQHW+RZHYHULI WKHFRQGXFWRUVDUHWZLVWHGVXFKWKDWWKHD[LDOFXUUHQWFRPSRQHQWLQWHJUDWHGRYHUWKHOHQJWK RIWKHPDJQHWKDVWKHGLVWULEXWLRQI0sin(ωt-θ), WKHOLQHLQWHJUDORIWKHILHOGDORQJWKHEHDP SDWKLVXQLIRUPDQGURWDWLQJ7KHFRQFHSWXDOGHVLJQIRUWKHZLQGLQJVLVLQGLFDWHGLQ)LJXUH 7KHZLQGLQJVDUHLQWKHIRUPRIWZRVLQJOHWXUQFLUFXLWVSODFHGV\PPHWULFDOO\DW GHJUHHLQWHUYDOV(DFKFLUFXLWKDVDWZLVWRIGHJUHHVRYHUWKHOHQJWKRIWKHPDJQHW7KH VKDSHRIWKHFRQGXFWRUVLVz = (z0/2) sin(θ), ZKHUHz0LVWKHD[LDOOHQJWKRIWKHPDJQHWDQG z LVGHILQHGDVWKHD[LDOFHQWHURIWKHPDJQHW7KHH[WHUQDOSRZHUVXSSO\FRQQHFWLRQV IRUWKHWZRFLUFXLWVDUHLQGLFDWHGUHVSHFWLYHO\E\WKHEODFNDQGVKDGHGFLUFOHV7KHILUVW FLUFXLW EODFN KDVDFXUUHQWIORZLQJDWWKHLQVWDQWSLFWXUHGLQGLFDWHGE\WKHDUURZVHQWHULQJ WKHPDJQHWDWθ = 180° EODFNFLUFOH DQGOHDYLQJDW° RU° 7KHFXUUHQWIORZVIURP WKHPLGSODQHDWWKHHQGULQJVZKHUHLWURWDWHV°DQGUHWXUQVWRWKHPLGSODQHWRWKH RSSRVLWHWHUPLQDORIWKHFLUFXLW$VWLPHSURJUHVVHVWKHVHFRQGFLUFXLW JUD\ EHJLQVWRFDUU\ 

FXUUHQWLQWKHVDPHPDQQHUDQGWKHRYHUDOOFXUUHQWGLVWULEXWLRQURWDWHVLIWKHFXUUHQWLQWKH WZRFLUFXLWVLVSURSHUO\SKDVHG7KHHQGULQJVDUHFRPPRQWRWKHWZRFLUFXLWVDQGLIWKH PDJQHWLVGULYHQE\DELSRODUSRZHUVXSSO\DUHDWJURXQGSRWHQWLDO7KLVPDJQHWGHVLJQLV VLPSOHDQGPHFKDQLFDOO\UREXVW7KHUHDUHQREUHDNVLQWKHZLQGLQJVIRUSRZHUVXSSO\ OHDGVDQGVLQFHWKHYROWDJHLVQRPLQDOO\]HURDWWKHHQGVWKHUHLVQRQHHGWRDOORFDWHVSDFH WRSURYLGHHOHFWULFDOLQVXODWLRQIURPQHLJKERULQJGHYLFHVLQWKHWDUJHWVWDWLRQ

3

Longitudinal Position

3

2

2

1

0

100 200 Angle [degrees]

300

Figure 10. Shape of windings. The black curves represent one circuit, the gray curves represent the orthogonal circuit. Direction of current flow is indicated in one of the circuits.

7KHDYHUDJHGHIOHFWLQJILHOGUHTXLUHPHQWLVN*FRUUHVSRQGLQJWRDPPVZHHS UDGLXVRQWKHGRZQVWUHDPVZHHSPDJQHW%HFDXVHRIWKHWZLVWLQWKHFRQGXFWRUVWKHSHDN ILHOGRQD[LVPXVWEHDIDFWRUπ WLPHVODUJHUWKDQWKHDYHUDJHILHOGRUN*7KHUDWLR RIWKHPDJQHWFXUUHQWWRWKHORFDOPDJQHWLFILHOGRQD[LVFDOFXODWHGE\32,6621IRUD VWUDLJKWFRQGXFWRULV$*DXVV7KXVWRSURYLGHWKHGHVLUHGILHOGWKHSHDNFXUUHQW 

UHTXLUHGIURPWKHSRZHUVXSSO\LVN$DQGWKHSHDNLQGXFWLYHYROWDJHGURSDFURVVWKH PDJQHWLVN9 SHDNYROWDJHWRJURXQGN9 IRUDPDJQHWLQGXFWDQFHRI—+ $FURVVVHFWLRQDOYLHZRIWKHVZHHSPDJQHWLVVKRZQLQ)LJXUH7KHFOHDUERUHRIWKH PDJQHWLVPP7KHFRQGXFWRUVDUHKROORZ PP GLDPHWHUDOXPLQXPWXEHV +ROORZDOXPLQXPWXEHVZHUHFKRVHQWRPLQLPL]HWKHEHDPLQGXFHGKHDWLQJRIWKH FRQGXFWRUVDQGWRDOORZWKHSDVVDJHRIFRROLQJDLUWKURXJKWKHFHQWHURIWKHFRQGXFWRUV$ FHUDPLFWXEHSURYLGHVHOHFWULFDOLQVXODWLRQEHWZHHQWKHFRQGXFWRUDVVHPEO\DQGWKH PDJQHWLFFRUHV1RYDFXXPZDOOLVUHTXLUHGEHFDXVHWKHEHDPLVWUDQVSRUWHGWKURXJKDLU IURPXSVWUHDPRIWKHWDUJHWWRGRZQVWUHDPRIWKHSXOVHGPDJQHW0RO\EGHQXP3HUPDOOR\ 3RZGHU 033 FRUHVZHUHFKRVHQIRUWKHVZHHSPDJQHW7KHVHFRUHVFRQVLVWRISHUPDOOR\ SRZGHUFHPHQWHGDQGSUHVVHGZLWKDQLQRUJDQLFFHUDPLFW\SHLQVXODWLRQ7KH\IHDWXUHD UHODWLYHO\KLJK&XULHWHPSHUDWXUH 7F!°& DQGJRRGWKHUPDOFRQGXFWLYLW\7KHFRUHV DUHSUHVVILWLQWRDZDWHUFRROHGQLFNHOKRXVLQJ1LFNHOZDVFKRVHQIRUWKHSLSHPDWHULDO EHFDXVHLWKDVWKHVDPHWKHUPDOH[SDQVLRQFRHIILFLHQWDVWKH033FRUH

Figure 11. Sweeping magnet cross section. 0$56DQG&$6,0FDOFXODWLRQVRIHQHUJ\GHSRVLWLRQE\KDGURQDQGHOHFWURPDJQHWLF

FDVFDGHVVXSSRUWHGE\PHDVXUHPHQWVRQWKHKLJKYROWDJHWHVWPRGXOHVKRZVLJQLILFDQW KHDWLQJRILURQDQGIHUULWHPDJQHWFRUHVGRZQVWUHDPRIWKHWDUJHW7RWDOKHDWLQJLQFUHDVHV OLQHDUO\ZLWKSDUWLFOHIOX[DQGLVDVWURQJIXQFWLRQRIWKHUDGLXVRIWKHPDJQHWFRUH6WHDG\ VWDWHWHPSHUDWXUHULVHRIWKHFRUHLVGHWHUPLQHGE\WKHUPDOFRQGXFWLYLW\RIWKHPDWHULDODQG WKHUDWHDWZKLFKKHDWLVUHPRYHGDWWKHVXUIDFH )RXUPDJQHWLFPDWHULDOVZHUHFRQVLGHUHGIRUXVHLQWKHPDJQHWLF\RNHEHIRUHFKRRVLQJWKH SRZGHUFRUHPDWHULDO



)HUULWHV)HUULWHVKDYHSRRUWKHUPDOFRQGXFWLYLW\DORZ&XULHWHPSHUDWXUHDORZ VDWXUDWHGPDJQHWLFIOX[GHQVLW\DQGH[KLELWVKRUWWHUPUDGLDWLRQHIIHFWV>5HI@,WZRXOGEH QHFHVVDU\WRRSHUDWHDIHUULWHFRUHPDJQHWZLWKDODUJHLQQHUUDGLXV FP FRUHDQGFDUHIXOO\ FRROWKHIHUULWH0DLQWDLQLQJDGHTXDWHFRROLQJXQGHUWKHVHFRQGLWLRQVZRXOGEHYHU\ GLIILFXOW 6LOLFRQVWHHOODPLQDWLRQ$VWDFNRIWKLQODPLQDWLRQVZLWKWKLFNQHVVµPRUOHVVLVD SRWHQWLDOFDQGLGDWHIRUWKHPDJQHW\RNH([SHFWHGYROWDJHSHUODPLQDWLRQIRUµP ODPLQDWLRQVLVLQWKHUDQJH9ROWVZKLFKPD\H[FHHGWKHVWUHQJWKRIWKHLQVXODWLRQ (DFKPDJQHWUHTXLUHVRYHUODPLQDWLRQV'LIILFXOWLHVDUHH[SHFWHGLQSUHSDULQJDQG VWDFNLQJWKHVHWKLQODPLQDWLRQV 7DSHZRXQGFRUHV7KHIDFWWKDWWKHPDJQHWLFILHOGOLQHVPXVWWZLVWRQHQWHULQJWKHFRUHV IURPSHUSHQGLFXODUWRSDUDOOHOWRWKHGLUHFWLRQRIWKHWDSHVFDXVHVH[FHVVLYHORVVHVLQWKH PDJQHW 3RZGHUFRUHV7KHUHDUHWKUHHFDQGLGDWHSRZGHUFRUHPDWHULDOV7KHVHDUH033 0R 1L)H +LJKIOX[ 1L)H DQG6HQGXVW )H6L$O $OOWKUHHDUH FRPPHUFLDOO\DYDLODEOHLQFRUHVRIWKHGHVLUHGVL]HDQGDWORZFRVW7KH\KDYHUHODWLYHO\ORZ ORVVHVDQGKDYHDGHTXDWHLQRUJDQLFLQVXODWLRQ$PDJQHWDVVHPEOHGZLWKSRZGHUFRUHVKDV WKHDGYDQWDJHVRIHDVHRIFRQVWUXFWLRQDQGWKHUHODWLYHO\KLJKWKHUPDOFRQGXFWLYLW\DQG &XULHWHPSHUDWXUHRIWKLVPDWHULDO7KHIDLUO\VPDOOWKHUPDOVWUHVVHVDUHFRQWDLQHGE\SUHVV ILWWLQJWKHFRUHVLQDQLFNHOKRXVLQJ7KHFRUHPDWHULDOFKRVHQLV— 033EHFDXVHWKLV PDWHULDOKDVWKHORZHVWORVVHV(GG\FXUUHQWORVVHVLQWKH033PDWHULDOLQFUHDVHVOLJKWO\ XQGHULQWHQVHQHXWURQERPEDUGPHQW>@7KLVLVQRWOLNHO\WREHDPDMRUFRQFHUQKRZHYHU VLQFHWKHFRUHLVQRWWKHGRPLQDQWORVVPHFKDQLVPLQWKHULQJLQJFLUFXLW (VWLPDWHGEHDPWKHUPDOSRZHULV:DWWVSHUFRUHDW[ SURWRQVSHUSXOVHDQGD VHFRQGUHSHWLWLRQUDWHRUDWRWDOSRZHURI:DWWVIRUFRUHV7KLVDPRXQWRIKHDWFDQ EHUHPRYHGLQDZDWHUFRROLQJFLUFXLW7KHH[SHFWHGWHPSHUDWXUHGURSIURPFRUH,'WR2' LVDERXWGHJUHHV&HQWLJUDGH 

$ORQJLWXGLQDOYLHZRIWKHPDJQHWLVVKRZQLQ)LJXUH,WFDQEHVHHQIURP)LJXUHWKDW WKHFXUUHQWOHDGVDUHORFDWHGLQWKHPLGSODQHRIWKHPDJQHW7KHFRQGXFWRUVDUHJURXQGHGDW WKHHQGULQJE\WKHHQGIODQJHRQERWKVLGHVRIWKHPDJQHW)RXUFHUDPLFEXVKLQJVDUHXVHG WRVXSSRUWWKHFXUUHQWOHDGVDQGLQVXODWHWKHPIURPWKHPDJQHWERG\6SLUDOILQJHUVWRFNLV DWWDFKHGWRFRSSHUVSDFHUVORFDWHGEHWZHHQHDFKWZRSDLUVRIFRUHV,WVHUYHVDVDVOLGHJXLGH DQGVWUHVVUHOLHIIRUWKHLQVXODWLQJFHUDPLF



)LJXUH/RQJLWXGLQDOFURVVVHFWLRQRIURWDWLQJILHOGPDJQHWKRXVLQJSLSH WZLVWHGFRQGXFWRUVFHUDPLFSLSH033FRUHVSDFHUHQGIODQJHFXUUHQWOHDG WXEHDQGSURYLGHVDWKHUPDOFRQGXFWLYHSDWKIRUUHPRYDORIEHDPLQGXFHGKHDWLQJIURPWKH FHUDPLFWXEHDQGWKHFXUUHQWFRQGXFWRUV

Figure 13. Line-integrated magnetic field distribution in the aperture of the rotating field magnet. 0 in horizontal scale corresponds to the vertical magnet axis. Horizontal scale is mm. Curve 1 is the field distribution in median plane. Curve 2 is measured at +7 mm vertically above median plane and curve 3 is measured -7 mm (below). Field measurements are normalized to field on axis.



 Figure 14. Local magnetic field distribution in the aperture of the rotating field magnet. 0 - corresponds to the magnet vertical axis. Curve 1 represents the field distribution when the measuring coil is 2 cm inside the magnet end ring. Curve 2 is measured at 20 cm from the end ring. Magnetic measurements of the sweep magnet were performed with stretched wires. Ribbon cable was used to pick up the dB/dt signal along the whole magnet length and then was integrated to obtain a signal proportional to magnetic flux through the measurement loop. The signal amplitude was as expected. The line-integrated field distribution for three vertical planes is shown in Figure 13. The local field distributions in the median plane measured with a small pickup coil in two longitudinal positions is shown in Figure 14. POWER SUPPLY

7KHVZHHSPDJQHWPXVWEHSURYLGHGZLWKDQRVFLOODWLQJFXUUHQWZLWKDPSOLWXGHXSWRN$ DWN+]IURPDSRZHUVXSSO\ORFDWHGRQWKHIORRURIWKH$3VHUYLFHEXLOGLQJ7KH HQHUJ\ZLOOEHVXSSOLHGWKURXJKFDEOHVRYHUDGLVWDQFHRIDSSUR[LPDWHO\PLQWRWKHWDUJHW YDXOWDQGE\PRIVWULSOLQHWKURXJKVWHHOVKLHOGPRGXOHVWRWKHPDJQHWVDWWKHERWWRP RIWKHWDUJHWYDXOW$VLPSOLILHGSRZHUVXSSO\FLUFXLWGLDJUDPLVGHSLFWHGLQ)LJXUH7KH VROLGVWDWHSRZHUVXSSO\LVEDVHGRQDWZRVWDJHFRPSUHVVLRQFLUFXLWZLWKVDWXUDWLQJUHDFWRUV 3XOVHFRPSUHVVLRQIDFLOLWDWHVWUDQVIHURIWKHFXUUHQWSXOVHWRWKHULQJLQJFLUFXLWDQGSURYLGHV WKHFDSDELOLW\WRXWLOL]HD6&5VZLWFKIRUUHVRQDQWFKDUJLQJRIWKHILUVWVWDJHFDSDFLWRU& XVLQJDVWHSXSWUDQVIRUPHU



Figure 15. Simplified schematic diagram of power supply. (QHUJ\VWRUDJHFDSDFLWRU&LVLQLWLDOO\FKDUJHGXSWRN9E\WKH'&KLJKYROWDJHVXSSO\ 7KHHQHUJ\LVWUDQVIHUUHGWRWKHILUVWFRPSUHVVLRQVWDJHFDSDFLWRU&YLDWKHVWHSXS WUDQVIRUPHUE\FORVLQJWKHWK\ULVWRUVZLWFK6&57KH6&5 :HVWFRGH LVUDWHGDWN9 7KHWLPHSHULRGIRUWKHFKDUJHWUDQVIHULVFKRVHQWREHDERXW—VEHFDXVHRIWKHG,GW OLPLWDWLRQRIWKH6&5 $—V 7KHGHOD\EHWZHHQLQLWLDOVZLWFKWULJJHUDQGWKHPDJQHW FXUUHQWSXOVHDOVRDOORZVWLPHWRGLVDEOHWKH0DLQ,QMHFWRUSURWRQH[WUDFWLRQNLFNHULQFDVHRI IDLOXUHRIWKHSRZHUVXSSO\7KHVPDOOVDWXUDWLQJFKRNH/VFKSURWHFWVWKH6&5E\OLPLWLQJ WKHLQLWLDOG,GWRIWKHWK\ULVWRUVZLWFKWR$—VIRUWKHILUVWPLFURVHFRQGDIWHUWXUQRQ 7ROLPLWWKHUHYHUVHFXUUHQWRIWKHWK\ULVWRUZKLFKKDVDUHODWLYHO\ORQJUHFRYHU\WLPHD VWDFNRIIDVWUHFRYHU\GLRGHVLVFRQQHFWHGLQVHULHV:KHQWKHILUVWVDWXUDWLQJUHDFWRU/ EHFRPHVFRQGXFWLYHWKHHQHUJ\IURP&WUDQVIHUVWRWKHVHFRQGVWDJHFDSDFLWRU&7KH VHFRQGVWDJHLVORFDWHGDERXWPDZD\DQGFRQQHFWHGWRWKHILUVWVWDJHE\DSDLURIFRD[LDO FDEOHV 5*8 6DWXUDWLRQRI/LQLWLDWHVWKHGLVFKDUJHRI&LQWRWKHULQJLQJFLUFXLW/ &&DSDFLWRU&LVFRQQHFWHGWRWKHVZHHSPDJQHW LQGXFWDQFH/ YLDWKHVWULSOLQH $IWHUWKHPDJQHWLVHQHUJL]HGDOOWKHYROWDJHVULQJDWKDOIWKHYROWDJHDFURVVWKHVZHHS PDJQHWEHFDXVHWKHVHFRQGDU\FLUFXLWJURXQGLVDWWKHFHQWHUWDSRIWKHVZHHSPDJQHW 9ROWDJHVFDOFXODWHGIRUWKHFLUFXLWZLWKDQLQLWLDOFKDUJHRQWKHHQHUJ\VWRUDJHFDSDFLWRURI N9DUHSORWWHGLQ)LJXUH 7KHILUVWVWDJHVZLWFKLQJUHDFWRU/LVEDVHGRQIRXUP9VHFWXUQ0DJQHWLF0HWDOV 6TXDUH µP QLFNHOLURQWDSHFRUHV7KHZLQGLQJLVVSOLWLQWRWZRHTXDOKDOYHV(DFK KDOIKDVWXUQV7KHFLUFXLWEHWZHHQWKHVWHSXSWUDQVIRUPHUDQGWKHUHDFWRULVEDODQFHG ZLWKSHDNYROWDJHVRI±N9:KHQWKHUHDFWRUVDWXUDWHVWKHYROWDJHVRQWKHWZR FDSDFLWRUWHUPLQDOVDSSURDFKN9DQGWKHYROWDJHRQRQHRIWKHWZRRXWSXWWHUPLQDOV DSSURDFKHVN97KHRWKHUWHUPLQDOUHPDLQVDWJURXQGSRWHQWLDOXQWLOWKHVHFRQGUHDFWRU VDWXUDWHV$'&ELDVFXUUHQWRIXSWR$LVSURYLGHGIRUERWKUHDFWRUV/DQG/ 7KHVHFRQGVWDJHUHDFWRULVEDVHGRQWKUHHP9VHFWXUQ$OOLHG6LJQDO6&0HWJODV FRUHVDQQHDOHGDQGFRZRXQGZLWK—PP\ODULQVXODWLRQ7KHUHDFWRU/KDVWXUQV:LWK WKHVHZLQGLQJVWKHYROWVHFRQGVFDSDELOLW\RIWKHFRUHVLVP9VHFIRUWKHILUVWVWDJHDQG P9VHFIRUWKHVHFRQGVWDJH7KHPLQLPDOVL]HDQGYROWVHFRQGVUHTXLUHPHQWVRQWKH FRUHVLVGHWHUPLQHGE\WKHIDFWWKDWLIDWDQ\WLPHERWKFRUHVDUHVLPXOWDQHRXVO\FRQGXFWLQJ WKHILQDOVWDWHRIWKHFRUHUHVHWSRLQWLVXQGHWHUPLQHGOHDGLQJWRXQDFFHSWDEOHMLWWHULQWKH 

VXEVHTXHQWSXOVHWLPLQJ,QGXFWLYHYROWDJHSHUODPLQDWLRQLQWKHILUVWVWDJHLVDERXW9 DQGLQWKHVHFRQGVWDJHDERXW91LFNHOLURQWDSHFRUHVZHUHFKRVHQIRUWKHILUVWVWDJH EHFDXVHRIWKHLUYHU\VTXDUH%+ORRSUHODWLYHO\ODUJHSDFNLQJIDFWRUDFFHSWDEOHORVVHVDQG DGHTXDWHLQVXODWLRQ0HWJODVFRUHVZHUHFKRVHQIRUWKHVHFRQGVWDJHEHFDXVHRIWKHLUVPDOO ORVVHVDQGJRRGLQVXODWLRQSURSHUWLHVRIWKHP\ODUILOP 7KHEDVLFEXLOGLQJEORFNRIWKHSXOVHFRPSUHVVLRQFLUFXLWLVWKHVLQJOHORRSHQHUJ\WUDQVIHU FLUFXLWZLWKWZRFDSDFLWRUVDQGDQLQGXFWRU7KHLQGXFWRUUHSUHVHQWVWKHVDWXUDWHG LQGXFWDQFHRIWKHVZLWFKLQJUHDFWRU7KHHQHUJ\WUDQVIHUHIILFLHQF\RIWKHVLPSOHFLUFXLWLV D D ZKHUHDLVWKHUDWLRRIWKHYDOXHRIWKHWZRFDSDFLWDQFHVRUD &&IRUHQHUJ\ WUDQVIHUIURPWKHILUVWVWDJHWRWKHVHFRQGVWDJH,IWKHFDSDFLWRUYDOXHVDUHHTXDOWKHORRS WUDQVIHUHIILFLHQF\LVLQWKHDEVHQFHRIORVVHV 0HDVXUHPHQWVRIWKHORVVHVLQHQHUJ\WUDQVIHUZHUHPDGHDWN97KHLQLWLDOHQHUJ\VWRUHG RQFDSDFLWRU&ZDV-(QHUJ\GHOLYHUHGWRFDSDFLWRU&ZDV-2IWKH-ORVVLQWKLV HQHUJ\WUDQVIHUWKHORVVHVZHUHGLVWULEXWHG-WRWKH6&5VZLWFKDQG-WRWKHEDODQFHRIWKH FLUFXLW(QHUJ\WUDQVIHUUHGIURP&WR&ZDV-7KHORVVHVZHUHGRPLQDWHGE\ UHVLVWLYHORVVHVLQWKHZLQGLQJV6ZLWFKLQJORVVHVLQWKHFRUHVGHWHUPLQHGIURPWKH%+ ORRSVDUHVPDOO-LQWKHILUVWVWDJHDQG-LQWKHVHFRQGVWDJH)LQDOO\HQHUJ\ WUDQVIHUUHGWRWKHULQJLQJFLUFXLWZDV- 7KHOHDVWHIILFLHQWSDUWRIWKHFLUFXLWLVWKHILQDOWUDQVIHUIURPFDSDFLWRU&WRWKHULQJLQJ FLUFXLW/&:KHQWKHUHDFWRU/VDWXUDWHVDVLQJOHFXUUHQWSXOVHSDVVHVWRWKHULQJLQJ FLUFXLW,QDGGLWLRQWRWKHQRUPDOUHVLVWLYHORVVHVLWLVUHODWLYHO\LQHIILFLHQWIRUWZRUHDVRQV )LUVWLWLVQHFHVVDU\WRSUHYHQWVDWXUDWLQJWKHUHDFWRUDVHFRQGWLPHDQGSDVVLQJDVHFRQG FXUUHQWSXOVHWKDWHIIHFWLYHO\H[WUDFWVHQHUJ\IURPWKHPDJQHWFLUFXLWGXHWRWKHULQJLQJ QDWXUHRIWKHORDG7KHYROWDJHRQFDSDFLWRU&PXVWEHUHYHUVHELDVHGE\DWOHDVWRILWV PD[LPXPYROWDJHLPPHGLDWHO\DIWHUWKHILUVWFXUUHQWSXOVH7KLVLVQDWXUDOO\DFFRPSOLVKHGLQ WKHFLUFXLWLIWKHUDWLRRIFDSDFLWRU&WRFDSDFLWRU&LVDWOHDVW)RUWKHHQHUJ\WUDQVIHU ORRSWKHUDWLRRIWKHPLQLPXPYROWDJHRQWKHILUVWFDSDFLWRUDIWHUGLVFKDUJHWRWKHLQLWLDO FKDUJHYROWDJHLV D  D ZKHUHDLVWKHUDWLRRIWKHYDOXHRIWKHWZRFDSDFLWDQFHVLQWKLV FDVHD &&7KHHQHUJ\WUDQVIHUHIILFLHQF\RIWKHFLUFXLWD D LVDERXWIRUD FDSDFLWDQFHUDWLRRI7KLVUHIOHFWHGYROWDJHDOVRSURYLGHVDUHVHWSXOVHWRWKHUHDFWRUV HQVXULQJKLJKO\VWDEOHRSHUDWLRQHYHQZLWKQRUHYHUVHELDVFXUUHQW 6HFRQGZLWKWKHDGGLWLRQRIWKHLQGXFWDQFHRIWKHVZHHSPDJQHW/WKHILQDOHQHUJ\ WUDQVIHUFLUFXLWEHFRPHVDGRXEOHORRSHQHUJ\WUDQVIHUFLUFXLW7KHHIILFLHQF\IDOOVIXUWKHUIRU SUDFWLFDOVDWXUDWHGLQGXFWDQFH/EHFDXVHFXUUHQWLVDOVRIORZLQJLQWKHPDJQHWFLUFXLW LQGXFWDQFH/(QHUJ\WUDQVIHUHIILFLHQF\DIWHUWKHVLQJOHIRUZDUGFXUUHQWSXOVHZDV FDOFXODWHGXVLQJWKHOLQHDUFRXSOHGPHVKHTXDWLRQVIRUWKHFLUFXLWWKDWLQFOXGHV&&/ DQG/7KHYROWDJHv2RQFDSDFLWRU&LVJLYHQE\ v 2 = a1 cos(ω1t ) + a 2 cos(ω 2 t )



ZKHUH



ω12,2 =

1 2 L3 L4 C3 C4

  L3 C3 + L4 C4 + L4 C3 ±

(L C 3

3

2  + L4 C4 + L4 C3 ) − 4 L3 L4 C3 C4  

DQG a1,2 = ±

1 − L3 C3ω 22,1

L3 C3 (ω12 − ω 22 )



7KHWUDQVIHUHIILFLHQF\LVGHWHUPLQHGE\VROYLQJ(TIRUWKHYROWDJHUHPDLQLQJRQFDSDFLWRU &DIWHUWKHLQLWLDOSRVLWLYHFXUUHQWSXOVH,WLVSORWWHGLQ)LJXUHDVDIXQFWLRQRI LQGXFWDQFH/IRU& —)& —)DQG/ —+ /KHUHLQFOXGHVWKH LQGXFWDQFHVRIWKHVZHHSPDJQHWDQGWKHVWULSOLQH )RUW\SLFDOVDWXUDWHGLQGXFWDQFHRIWKH RXWSXWVZLWFKDERXW—+WKLVHIILFLHQF\LVDERXW 7KHSRZHUVXSSO\ZDVEXLOWDQGWHVWHGIRUPLOOLRQSXOVHVDWN9 IXOOFKDUJH $WN9 FKDUJHWKHRXWSXWFXUUHQWDPSOLWXGHLVN$2VFLOORVFRSHSLFWXUHVRIYROWDJHVDQG FXUUHQWVDUHVKRZQLQ)LJXUHVDQG CONCLUSIONS

7KHVZHHSLQJV\VWHPPDJQHWDQGSRZHUVXSSO\KDYHEHHQEXLOWDQGVXFFHVVIXOO\WHVWHG $VZHHSUDGLXVRIXSWRPPFRUUHVSRQGLQJWRDSHDNVZHHSPDJQHWFXUUHQW DPSOLWXGHRIRYHUN$LVHDVLO\DFKLHYDEOHZLWKWKHH[LVWLQJFLUFXLW6LPSOH PRGLILFDWLRQVWRWKHFLUFXLWPD\DOORZIRUDGGLWLRQDOIXWXUHLQFUHDVHLQWKHSHDNFXUUHQW  7KHPDJQHWLFILHOGGLVWULEXWLRQLQWKHVZHHSPDJQHWLVVDWLVIDFWRU\DQGFRQILUPVWKH GHVLJQSUHGLFWLRQV  7KHSRZHUVXSSO\ZRUNVDVSUHGLFWHGDQGLVUHOLDEOH,QYHVWLJDWLRQLQWRFRUHPDWHULDOV KDVOHGWRDFKRLFHRIUHOLDEOHFRUHPDWHULDOVIRUWKHSRZHUVXSSO\7KHSRZHUVXSSO\ MLWWHUGRHVQRWH[FHHG±QVZKLOHVORZGULIWLVDERXWQV7KHWRWDOQXPEHURIWHVW SXOVHVWRGDWHDWIXOOYROWDJHLVRYHUPLOOLRQ



)LJXUH63,&(PRGHOYROWDJHZDYHIRUPV)LUVWVWDJHFDSDFLWRU&YROWDJHSRVLWLYH VLGHFDSDFLWRU&YROWDJHQHJDWLYHVLGHVHFRQGVWDJHFDSDFLWRU&YROWDJHULQJLQJ FLUFXLWFDSDFLWRU&YROWDJH

1

efficiency

0.9

0.8

0.7

0.6

0.5 0

0.2

0.4

0.6

0.8

1

inductance [µH]

 Figure 17. Theoretical efficiency of energy transfer from capacitor C2 to the ringing sweep magnet circuit through the saturated inductance of the output switch L3. 

20

15

10

5

0

-5

-10

Fig. 18. Scope picture of voltages in compression stages. Initial voltage = 1.8 kV. 1 first charging capacitor x 10. 2 - first compression stage capacitor. 3 - second compression stage capacitor. 4 - ringing circuit (magnet) voltage.

Fig. 19. Scope picture of currents in compression stages of power supply. Peak magnet current is 7 kA, corresponding to 2.2 kV. Vertical scale = 1 kA/div. Horizontal scale = 2 µs/div. 1 - SCR current. 2 - first compression stage. 3 - second compression stage. 4 ringing circuit (magnet) current. 

 *Present address: Lawrence Berkeley National Laboratory, Berkeley, CA 94720 †Present address: Dept. of Mechanical Engineering, Stanford University, Stanford, CA 94305 >@)0%LHQLRVHN$EHDPVZHHSLQJV\VWHPIRUWKH)HUPLODEDQWLSURWRQSURGXFWLRQ WDUJHW)HUPLODE70 $XJXVW  >2@P.P. Bagley, et. al.6XPPDU\RIWKH7H9:RUNLQJ*URXS ,in 6QRZPDVV&RQI >@&0%KDW190RNKRY&DOFXODWLRQRI%HDP6ZHHSLQJ(IIHFWIRUWKH)HUPLODE $QWLSURWRQ6RXUFH)HUPLODE70   >@S. C. O’Day and F. M. Bieniosek, *H9SEDU\LHOGPHDVXUHPHQWVDWWKH)HUPLODE DQWLSURWRQVRXUFH, Nuclear Instrum. and Methods A343, p. 343-350 (1994). >@&+RMYDWDQG$9DQ*LQQHNHQ&DOFXODWLRQRIDQWLSURWRQ\LHOGVIRUWKH)HUPLODE DQWLSURWRQVRXUFH1XFOHDU,QVWUDQG0HWKRGVS   >@)0%LHQLRVHN6XPPDU\RIUHVXOWVIURPWKHEHDPVZHHSWHVWPRGXOH)HUPLODE ,QWHUQDO3EDU1RWH-XQ >@)0%LHQLRVHN%HDP6ZHHS0DJQHWZLWK5RWDWLQJ'LSROH)LHOG)HUPLODE,QWHUQDO3EDU 1RWH   >8@C. W. Chen, 0DJQHWLVPDQG0HWDOOXUJ\RI6RIW0DJQHWLF0DWHULDOV 'RYHU1977), p. 474.