Forecasting Daily Urban Water Demand Using Artificial Neural

0 downloads 0 Views 657KB Size Report
In this paper, neural networks are used to predict Tehran daily water demand. At first, weather data from three Tehran weather stations are weighted via.
Missing: معماری ‎| ‎Must include: ‎معماری
1\!+Q 1 Q\

2 o ( F. & G5 G : 8

G $8 , (% ! "# 4

5

(FF/Z/J[ H I9

] V5 1+ U X

S * 'B/

FG/c/JZ A

)

5 L

2 . &

D

SI

?
T 2 - ! N ^… &0 P - .$ R & H $ " 3 / / (C q t; # !1 #) ) I . 8/ / = 8 3 G3H & Y &+ &> >I 2 U/ Y $ ? 0 Q. Z 2+ ƒ & 8/ 2 - .$ Y ) U 2 U/ =3 2 + 2 &N 8q &.qN 2 E./ : &< ." 6 . $ 2 2 ? U= &=3 r2 > . .& 5! c ! & 3 & 1 5 8 ; ?, 9H . 0 = -# $ ? ?+, ( 45 M 1> F# 9 H 8 " A 1 5 %5, 5 9 H $ ? ?+, x " .& 1 5 $ I. #0 V 5 0 8 8 4 j .: ; ?, 8Y 5 , &*D •*d 5M .[|Z_] & 1 5 # 8 8 # @ EM 8 . 8 4 8 1 E! Ž . 1 I. 9J * % • H =5*D k*.J Ž & 9 H = -# 8 4 5! v .# & 1 " Ž mE" –5•! 1 E! 8 . 1 I. .[`Z€] & 1 Ž A $ 1 ,5d 8 ; ?, 9 H 8 •D5 • •E•D O •E• D mE" m L . .& . 0 2 %5, 5 ! D5 - C Ž Ž ; ?, # • 9 H Ž •D5 • Q $ a, d # :# # . # d 1 I. # d 8 , EA " • " 5 Ž . H $ a, •@ , Ž ; ?, •E• D mE" T m ( % .[e] " • # Ž . Ž5FA 5 0 Ž 4 1 % P C 5 D •D5 • ™ $ 1 ,5d Ž ; ?, • 9 H Ž •# Ž U r *B Ž B! N 5. d :# v .# . # d 5ˆ# d & c {/€_ •E•D mE" 4 ( . & , Ž 1 Ž •# Ž 5 0 Ž 4 ? 4 ( X •D5 • •E•D mE" m 5 A .[pZf] # Ž . m* D [ d ( V " •F# ! Ž ; ?, • 9 H Ž

Ar

ch

ive

of

? ( d : # & , P 5 Ž 1 v .# . # „/p .: •F. E i ; 4 •, E + ? •@2 \ Y V •E• D mE " 4 m 5 .[_„] 5% ] j ( V >F# " Ž ; ?, • 9 H Ž " & @ % &@ c Ž 0 d &E # # • 5.d &+ c & 2 1 : # v .# d # d Ž •.2 Ol ^ 5 t 05 .[__]& 1 5 4 ( 5! •D5 • •E• D mE " •# Ž Ž 5 0 Ž 4 OO Ž , " Ž ; ?, ‰ 3 $ 1 ,5d • 9 H Ž # • " 5 Ž a. r ?+, ( . # d #d Ž ; ?, ‰ 3 # •0 # # $ 3 % ‰ 3 v .# " 1 : 1 I. 4 &! Ž )E2 Ž 1 •# Ž 5 0 4 ? •E•D mE" Ž 4 OQ Ž mE " 4 m n # V .[_|Z_{] & 1 5 . d m Ž " Ž ; ?, Ž5FA • 9 H Ž •E•D " g# $ I. Ž m r ?+, ( # . # Ž 4 m " d " " ) " @ 5, > .[_€] # & # Ž ; ?, Ž5FA # d OU Y V .ˆ H •D5 • •E• D Ž mE" OT m OX $ • 9 HŽ •D @ " H •E• D Ž mE" . # 5 # 1 I. • 5 % Ž ? Ž " Ž ; ?, $ 1 ,5d , •D @" H , Ž 4 d :# 4 ? .ˆ H 4 . v .# & 2 1 " F 5% O[ •D5 • •E• D mE" m n# .[_q] & Y V Ž " Ž ; ?, $ 1 ,5d • 9 H Ž m O\) > 5A &2 d : # 4 v .# . # d 1 I. @ Ž • R .[_`] & c pq/fp 3 • 9 H Ž •m •D5 • •E• D mE " 4 C m 1 & v .# # @ 5, Ž " Ž ; ?, • 9 H # •F.I # $ 5c $ D6M d •@2 mE" C . # 1 I. 4 r • , Ž • 2 .! •.D c pp ŽY & 2 Ž # • F.I # Ž 4 .[_e] # 5 c pe ŽY & 2 Ž •.D Ž 4 7 Yu et al. 8 Hangzo 9 Bougadis 10 Adamowski 11 Ottawa 12 Change et al. 13 Msiza et al. 14 Multi Layer Perceptron (MLP) 15 Radical Basis Function (RBF) 16 Zhang et al. 17

Louisville

1 2 3 4 5 6

Stark et al. Alberta Jain et al. Kanpur Liu et al. Vinan

85

www.SID.ir

V .ˆ H •E• D mE " 4 O m k 5 •D .% Ž 5.d j •D @ " H , •E•D mE" Ž " Ž ; ?, # • 9 H Ž • 5 Ž •.2 .[_f] . 0 d • • 9 HŽ 1 " = -# Ž d 5 $ 1 ,5d 9 H8 8 . dŽ " "5 8 1 8 . d ,8 " • 8 _|ef , _|eq 8 A ‚5 4 # • m 9 , .[_p] •5 4 9 &! 8 E• D 8 mE " # 8 8 k*.J r ?+, # . # d , 8 " 8 ; ?, $ 1 ,5d 9 H ( # • 8 1 "5 8 1 @, # 1 I. 8 4 8 _|ef 8 , _|eq E• D E " 4 x5 # K r ?+, 5 + 1 8 #4 9 , .[{„ |] & ( 8 I@; # 1 I. ,8 " • 9 H8 8 A 4 _{ $ , • "5 8 1 .[{_] & 1 " 1 I. _|f{ , _|e„ B! R @ , 1 ’ H 81 H 8 ; ?, > F 3 # 8 3 # ) 5D ( & 8 @. ) 5D @ % ) 45 5 ,)A ( . a, M r 2 5 %5 N .& 1 :# S 8 ; ?, > 8 > 8 • .2 • +A b6‰ c! E% . # 5 %5 ) 5D 2 5 8 ; ?, > .: 5%5 N ( ’ .[{| {{] 5" g# c N " r B d E + H ; ?, #1 "1 E A 5: 8 • .2 Z D .% 8 ?B 5 E A d 1 I. 8 . # # r B, 8 "N " $ #Y5 M i $ D6M 1 ,Y 8 " $6 : ! • +A .& # Y &2 ( V , D6M 8 K # , 1 8 % k@ ; 8 . H & #j . 1 * 1 F H . . # M ) 2 1 " 8 01 # 8 " 8 " # 8 ; ?, 9 H m 5% mE " ( & 5E / = 0 , 5’ 0 > 5 d , 1 & + 5 E & *D A 5" 5 + ) 5D %5, .& . F# $ 5c ( E = 2 & # 9 H8 8 > d :# 1 " h

SI

D

Y

of

" ." 5%5 ‡2 # # 8 &" 8 0 # 5, 1 &2 = D " #8 5# ) ? # 5. 1 6D 8 >0 m E•D 8 mE" N " ( . # & ? 8 0 & * 2 5 "5 ) A " i 3 + 8 1 ># # • 1 ’ H 85FA . 5*B 5% # 5, 4 V 8 mE" .E 8 4 ) # .H A? ( .5 , " # 8 ; ?, 9 H 8 D5 • E•D &E # RBF MLP E• D 8 E" 1 I. A? ( . "= 2 , " # 8 ; ?, 9 H 8 4 E• D E " 4 x5 # ( k *.J 8 .! A5, . & ; ?, 9 H 4 8 .! ( . & # $ I. D5 • E• D 8 E " .! x5# 1 I. 1 4 1 8 0 ( ’ F # v .# ? ,j . $ D6M ‰ 3 • "5 . 3 r ?+, ( $52 ‚ ?# & 1 5 8 4 8 4 1 & v .# E•D 8 4 v .# ( ’ x5 # ( *D ? # 8 8 " 8 # . " > #8 4

1/ U&2 *

ch

•™ ) 5D 8 ) *+, 8 = Y $ D6M " 5 8 1 ) " 8 ; ?, 9 H 4 , 5: d "5 " 5 8 1 .& • , _pp_ 4 # "5 8 . H) " d 0 , , " 5 1 F. 8 8 6 {„„{ ; ?, ‚5 8 1 . 5 ˆ, " , 4 " ( R) , , 6; &d " (1 " I•, ) A5, A5, • > , # 09" rM #Y • ) " d " 8 1 . 5 _|f{ . , , _|e„ 4 # d& 1 ‰d 3 , 8 ; ?, 8 1 " 8 % . 5 5%5 @A B 8 ) " , " 5 8 F. ‚5 8 1 # N 5. 8 : 8 8 , 8 C:! 5 & 5M &D . $D @, # P 8 1 " 5 8 1 # "5ˆ . " E" B?# _|f_ ! , _|e„ 8 A 4 _{ 1 • 1 F. 8 1 di , @ . # " r EB ( , 8 @* ; V P 1 I. d "5

Ar

8 ; ?,

ive

, * b \ „,C

1

Yurdusev et al.

86

www.SID.ir

&3 j F. " 5 8 . H ‚5 &3 . " E + . H # ( F# # 9"5H &+, 4 " " 5 8 F. 9"5H &+, 8 " ?B c _p/q ||/f €`/e i , , ˆ, " , .& ) *+, , " 8 ; ?, •™ ) 5D "8 %5, tˆ & 0 = -# 5%5 8 1 8 F. E F. E ? ( .: 8 d * 5D F. E i ; ? v .# . # 0 J.# 8 4 8 #5 • k *.J 8 . H 8 F. E ? ) *+, )c 3 .& 1 " 1 _ 4 % 8 4 8 8 . H 1 & v .# %5, : 0 J.# F. E i ; (." ) A # N 5. 8 Z_ "5 N 5, 9 H m • ¦1 V 8 Y &2 ¦Y b .E # I F. E 5% ) A 5 E # & 5M Z{ 5 % ) A ) E2 .I K • , ) E2 • Z| ¦ • F.I $ a, • d Y b .E # F. E Y b .E # F. E 5% ) A )E2 4 K • Z€ . • #Y $ a, •

Y .ˆ H 4 8 IJ Y K A ? ( 5, . " 1 I. Y V .ˆ H 4 8 IJ Y E• D E " IJ 8 Y 1 ) :, 8 #&A @ $ D6M 8 P H) D . B! R B! x5# 8 E " B! R & A @ 5, A @ . = -# 8 & $ 5c .ˆ H E•D ex e x ex + e+ x

(_)

8 8 ; ?, 9 H i * & •i 1 1 "1 2 B! R P H 5 " 1 IJ Y ( 8 # % # ( # " 8 @ IJ Y 8 E•D E" A 4 . " , & 1 "1 :# Y

4

H8 x5 - K $ 5c IJ Y 8 # ! * tˆ .& 0 # % ! " % ! Y , V Y .ˆ H

yˆ = w 2 . tanh( W1.X + B1 ) + B2 yˆ = tanh( W3 . tanh( W2 . tanh( w 1.X + B1 ) + B2 ) + B3 )

A 1

1

,

ive

#

8 ; ?, )E2 8

, *b )E2 1 > • )E2 .I • )E2 1 ># H • )E2 1 ># " • )E2 1 I • )E2 1 • )E2 1 5# • )E2 & • )E2 .I • )E2 & )E2 & )E2 4 K •

Ar

\^ C ) * G ƒ „/fp_ „/p„„ „/ff` „/fe| „/fe„ „/f`f „/f`_ „/f`€ „/fe„ „/fq` „/f€€ „/ffp

F# :# i , , N ( ! Y ({ B ) B! B ) B! R % ! Y t , W1 B! % ! )•. j B1 IJ Y IJ Y )•.

ch

% ! Y .ˆ H 4 V (| B ) B! R % Y 4 8 .& (€ Y 8 Y )• . t , W2 IJ Y 8 # )•. i B2 % !

({) (|) (€)

of

yˆ = tanh( W2 . tanh( W1.X + B1 ) + B2 )

D

4

SI

y = f ( x ) = tanh( x ) =

\^ C ) * G ƒ „/pqq „/p|f „/p|q „/p|„ „/p{_ „/p{` „/p|_ „/p_` „/p„| „/p„_ „/fpe „/fp_



1 -)* š- j $ $ RBF

E• D E " MLP E• D E " x5 # A? ( . " 1 I. # 8 ; ?, 9 H 8 4 &! 8 YK 8 Y K ) " Y V .ˆ H E" . IJ Y V K # 5, & % ! "5 8 .

, *b )E2 K )E2 )E2 )E2 V )E2 v H )E2 9" )E2 .I K )E2 &: )E2 # )E2 1 )E2 1 )E2 1

H x 5# ( • • • • • • • • • • • •

F. E i ; '

\^ C ) * G ƒ _/„„„ „/`€` „/`{f „/`€„ „/`|f „/`€{ „/__f „/q„p Z„/€€q „/€`q Z„/_€` Z„/|_`

F

, *b # • C:! 8 ,8 8 : 8 ( F# $ 3 % N 5. &D E" B?# 8 E # & 5M . $D # 0 # 5 :

87

www.SID.ir

yˆ =

m i =0

8



%i =

#t , " RBF E" # ( i IJ Y . H E " % ! . " = # t , 8 B2 5 D 5" E +

w i exp(

?

1 2 ui ) 2

(e)

H . 8 RBF E" K - .# . H . wi % ! Y 8 Z_ ‡J: H 5, x I, i > R8 . H . Ci > Z{ ‡J: H 5, 1 5 IJ > H & ij 8 @ +# Z| . :# "5! . 5FA 1 I. . RBF E" P 5 1 I. tˆ E + IJ Y 8 . H K-means E + " B! % ! Y8 $@ ( . .[{q] 0 d " . 0 g# I*.J 8 •! " 4 8 : 5" .! H = d w ;5, 5" k @, $ 5c d B! ( F# : TMSE & .

Ar

ch

ive

8 . B! 8 . Y8 # B! . 50 H 5,

n

MSE =

i =1

(yi

yˆ i ) 2

(f) d ?

Y8 # @, 0 .& % ! Y 8 # K % ! Y8 # m IJ Y 8 #n > # k.m n.m i , , W2 W1 8 t , @ 1 F# " @ k.1 m.1 i , , B2 B1 i 8 @ . 5 5! n.1 ( E" 8 8 a. )X .ˆ H E• D E " 8 1 " k @, .! %5, E" % ! 5" 3 8 #50 57 8 . H ˆ " K ># y ( &2 ( .: y @ •5 E•D A? ( . 5" g# 5 > , F $ ED Q $ 5 Z• E#5 A (,5 # Oi " ( , , # 0 8 " Y8 Y 8 > # RBF 4 .[{€] & 1 " 1 I. S _) " * .! " % ! Y IJ .& 1 " & ) " 50 B! R 4 @ ,4 ( 5" k @, B $ 5c g(u ) = exp(





@2 8 1

?

yi

> B $ 5c

Mean Square Error

(q)

Xj = [x1 x2 ... xp] %i =

"

#t ,

8

ui

*c

Ci= [ci1 ci2 … cip ]

5" k @, %i

=

p

( j =1

xj

cij

& ij

)2

x p cip 2 x c = ( 1 i1 ) 2 + ... + ( ) &i1 & ip 1

3

1 2 ui ) 2

:

u i = X j Ci

n

9 H8 1

' 4&

SI

[&i1&i2 .....&ip ] &

.!

of

5 D . • $ 5c

E•D E" *

D

RBF

2

(`)

Steepest Descent (SD) Levenberge-Marquart

88

www.SID.ir

*

0 W J.

( @, . " = -#

E•D E"

(3LPL) 1RY 1F Y - / B ,Ä/ b ' # % ! Y .ˆ H 4 .! H8 " 5 8 0 1 x "1 .! K . B! v .# tˆ . . 9 > IJ Y 8 #K K&• ( F# @ j & , "5 8 1 8 4 j ? A? ( .& 0 2 ? 5 B! • E#5 A (,5 # i " ( , , # 0 "5 8 " 8 1 8 v .# | { 8 * " .& 0 $ 5c $ 5 .& 1 " 1 5 P5 Newton

Levenberg Marquart

0.1*Steepest Descent

16

10 8 6 4

#

3

@, 9 >

Levenberg Marquart

12 10 8 6 4 2 1

#

Ar

S C

14

3

9

(p) d

( ? m & *D .& @2 8 1 t# var(y) ‡! " r ?+, ( & # . 1 @, ‡! " @, 8 ( . " 1 I. 4 8 5> ‡! " ? V . d 5, k*.J 8 1 .& . 4 " ,C ># Ic d .A 3 8 .& F. E i ; Ri ;:R F b6 d 1 " 9 H 8 1 @2 8 1 ? A ># 8 5@ c # . i ; ? " ." • EB# 8 1 ( 2 EB# u d , 5c . 5 5! Z_ _ 1 5! Ic R i ; ? " ." # 5% 9 H @2 .5 @2 8 1 ); I, $ 5c r*B 8 B! :r*B 8 B! . 5 " k @, @2 8 1 ?, 9H8 1 Q r *B ( F# 8 B! c r *B 8 B! ( F# $ 5c & r*B 8 B! , 8 0( F# 5" k @,

3

@, 9 >

5 B C

1 n

n i =1



yi yi

(_„)

7

6Y / # 8

9

& , 8 1 8 B! $ a, # 4& IJ Y

• E#5 A # 0P H8 E" .! .! H8 5 # € ) " . " 1 I.

MAPE =

0.1*Steepest Descent

ch

16

(*10 ) ( RY Q

7

P 5 8 1 8 B! $ a, $ 4& IJ Y

Newton

$ 5 .ˆ

5 B C

ive

1

8

MSE var( y)

SI

12

2

8

NMSE =

.& 1 @, n ; ?, 1 " 1 " 4 # 8 B! ( F# : NMSE

of

3

(*10 ) ( RY Q

S C

14

O

D

( i 3 $E +

•5 8 5 # j ( @, 8 v .# ( . 8 . " F P i # P ( 8 @8 4

8 1

Y 8 4 .! ( @, &! 8 8 1 c `„ ) " 4 & 2 ¦ " ?, & 2 U r •,8 1 c _q ) " = & 2 TP 5 8 .5 X 5 8 1 c {q ) " =5 & 2 0 1 I. Matlab7 5# # N + 4 8 E" Matlab ) ( V . E•D 8 4 K 8 @, g# i .! . ) ( . " , ) K #i @, ( @, tH " ( @, # @, ( @, tH . 0 - P 5 i @, ( @, 8 E"8 . H F ) K # P5 i 1

Normalized Mean Square Error Mean Absolute Percentage Error (MAPE) 3 Training 4 Validation 5 Testing 2

89

www.SID.ir

6K M RY

w- ƒ M RY

0.25 S C

0.20 0.15 0.10 0.05 0.00 1

9>

5

7 9 B C

11

13

15

SI

Y8 # @, &E # B! ( F# $ a, .& 1 " 1 :# B! % ! Y 4 8 @, r • , P 5 8 1 8 B! $ a, %5, 5 # # & 5 D ( .: . 8 #i 8 B! " 5 8 1 8 B! 5*B 9 d 1 6D & 8 B! 5 # 8 # 5" > # r •, 8 1 ‚ "( IJ Y 8 #f4 ( " r •, " 5 = 0 @, #i @, ( @, tH . # 8 B! $ a, 5 # 1 9 > , {„ )c 5 8 B! & 5 # # " 5 = 0 @, . " $ a, q ) " . 9> x " r •, 8 1 " 5 8 0 @, IJ Y # f 5 7 4 8 B! _€„& A 3 ( . ) " ( j .& 1 " 1 :# k*.J . " " 5 =0

0.015

1

3

5

7

9 11 B C

13

15

17

of

0.005

19

ive

r •, & , P 5 8 1 8 B! $ a, t 4& IJ Y 8 # # @,

Ar

ch

(4LPNL) 1RY Œ 1F Y - * ‚ B ,Ä/ b # # R % ! Y V .ˆ H 4 .! ( @, 8 1 Y E" 8 .! ( @, # B! E " ( 4 IJ Y 8 # @, . . 0 1 I. " B! R Y E" 8 # @, Y V IJ Y 8 # @, i 3 B! 5 # " . 0 g# . & Y( 8 #i @, = @, 9 > Y V 4 8 B! $ a, f e 8 * " 1 "1 : # " 5 8 0 @, = IJ Y 8 # Y V .ˆ H 4 .! ( . i , , ( .& = IJ Y # € 4 IJ Y # e $ 5c . 5 _{„ " 5 8 0 @,

2) ^ M RY

6K M RY

w- ƒ M RY

0.024

0.020

X ( RY Q X S C

( RY Q S C

3

r •, & , P 5 8 1 8 B! $ a, 0 4& IJ Y 8 # @,

IJ

0.020

0.010

9>

w- ƒ M RY

0.30

0.030 0.025

6K M RY

D

2) ^ M RY

2) ^ M RY

( RY Q

(3LPNL) 1RY Œ 1F Y - / B ,Ä/ b $ # R % ! Y .ˆ H 4 .! H8 *E2 4 : 1 x "1 .! K . B! ( F# $ a, j . " = -# K K )3 @, 9 > 5 r • , P 5 8 1 8 B! 4 i .! " 5 8 0 @, IJ Y 8 # Y # e ) " .! ( . 4 ( . & 1 8 B! $ a, ` ) " . 5 " 5 = 0 _€„ IJ & 1 "1 : # IJ Y 8 # @, 9 > # e @, r • , P 5 8 B! $ a, 15+# j . 5 .! ( . IJ Y

0.016

0.012

0.008

RBF 1.ƒ

8 i

B!

@ @,

%.&

0 #

.! ( @, 8 5 # RBF E " i " r •, 5 P 5 8 1 .

20

70

120

170

(! "

r •, & , P 5 8 1 8 B! $ a, 3 4& P 5 8 0 @, 9 >

90

www.SID.ir

1 Em 1 I. E• D 4 ( )A ( ’ B! ( J, $ @ ( . "5! 8 P 1 . # 5 I u " 5 8 0 @, F 5" 1 I.

08 8

E•D 4 v .#

? $

R

MAPE

NMSE

MSE

„/pe__ „/p`||

„/„{`p „/„{ep

„/„q`p „/„e_p

„/„„`„ „/„„`q

F L

] C

0.025 0.020 0.015 0.010 0.005

1

9>

7

9

11

13

15

17

19

r •, & , P 5 8 1 8 B! $ a, l 4& IJ Y 8 # @, 2) ^ M RY

0.030 0.025

6K M RY

w- ƒ M RY

0.020

0.015 0.010 0.005

B

9>

ive

20

60

100

140

180

220

260

300

(! "

r •, & , P 5 8 1 8 B! $ a, • 4& P 5 8 = 0 @, 2) ^ M RY

6K M RY

w- ƒ M RY

0.06

S C

0.05

( RY Q

ch

5

A

% ! Y .ˆ H 4 8 { 4 % v .# A 1 0 8 1 v .# : # (3MPNL) B! R 8 x5 ;5 ( .& . •! " , B 1 0 &E # .& 1 " 1 : # _„ ) " k *.J 8 # @, 1 I. 5 A1 0$ 5c 8 8 1 8 @8 4 g# ) A B 1 0 8 1 d 5 # %5, .EA .& 0 2 "# • 9 > # # 5, )E2 4 • (. 0 " # 8 B! ? *d 5M . F &@ %9 > 5 + 8 8 B! A & .: A 1 0 dB1 0 . 5" # B! % ! Y .ˆ H 4 v .# | 4 % & ,8 1 1 ) 8 (3MPNL) B! R (3MPL) 8 4 4 % v .# %5, .& 1 0 ? &E # 8 . v .# • ! " * 8 B! R % ! V 8 4 &! ( . # & B! 8 4 . " 1 I. B! R 8 8 ># Y ) 8 1 & 8 4 * v .# € 4 % ( %5, . # 1 " ? F 5 8 1 1 E" 5" 1 : 5 8 1 v .# 4 %

Ar

3

B C

of

B A1

0.030

D

.! ( . H Y 1 " w :, 8 4 &! @ = Y. 0 ? &A 3 4 v .# # 8 d " .! 8 @. 8 4 B ( d & dh 8 N? (3MPNL) B! R .ˆ H 4 v .# { 4 % :& 1 0 ? B1 0 A1 08 8 &A 3 # ( F# > # )E2 .I K , K • 8 1 (A . •™ 8 8 . H 5 D E # & 5M > # ) E2 4 K .I K K • 8 1 (B 8 8 . H 5 D E # & 5M # ( F# . •™

w- ƒ M RY

SI

u- ,C 0

6K M RY

0.035

( RY Q S C

(

2) ^ M RY 0.040

( RY Q S C

)

0.04 0.03 0.02 0.01 0

2

4

6

8

10

12

14

16

18

20

B C

r •, & , P 5 8 1 8 B! $ a, r 4& RBF E" IJ Y 8 # @, 9 >

> 8 " . 0 g# 8 @, # 5 #( p) " . 5 1 " i . 5M B! #i @, & 1 " 15 +# %5, RBF E " . 0 J.# {„ # @, &E # B! $ a,

91

www.SID.ir

A (2) ^ M ( L ) RY Q S C

0.013 0.012 0.011 0.010 0.009 0.008

1

1 ) 8

B! R

S C

0.012

(6K M ( L ) RY Q

0.011

1

6

7

8

9

10

9

10

B

2

3

4

5 B C

6

7

8

@, 9 >

& , P 5 8 1 8 B! $ a, 's 4& IJ Y 8 # A 1 0 8 1 &A 3

B

8

* D ( . : 8 4 &E # Y , 8 v .# 4 3 (A& .ˆ H 4 v .# __ ) " .&

4 Y

B! Y

.ˆ H 4 v .# #

MAPE

NMSE

MSE

„/„`__ „/„qf„ „/„`|€ „/„q`p

„/„„`q „/„„`{ „/„„`e „/„„`„

Ar

5

0.009

„/„{f„ „/„{e{ „/„{fq „/„{`p

1 ) 8

4

SI

0.010

R

8 1

3

A

„/p`fp „/pe„` „/p`ef „/pe__

5

2

B C

of

ive

ch

& ,8 1

B

0.014

D

_|f_ _|f„ 8 A 8 (3MPNL) B! R 1 "1 : # 1 8 B! $ # 5# ( ’ @2 9 H 8 E " 4 8Y &2 1 :# 5" - .# )m" ( . " ,8 " # B! ? 4 ( 45 M @ V8 d) d B! ? ? & c _„ . " ( c 8 4 1 " .! E• D 8 4 v .# ? 8 8 1 8 8 # 8 4 v .# # 8 8 8 # [|] # 8 8 4 v .# [{` {_] B A 1 0 & I 8 A 1 08 # 4 .& 1 " 1 q 4 % v .# . 5 ) E2 .I K , )E2 K • ) " 8 A 1 0 8 1 8 4 v .# :# > # 8 #8 4 ? . 5 B 1 0 v .# . 8 •! " ,8 8 #8 4 &E # E•D 8 E" :# v .# x5 # x5 V # 1 d A5, 8 . v .# 9 H8 Y &* 2 8 # E•D E" 8 4 8 4 " 1 : ( ’ . # 5! 8 " • 5% 1 5 . # 8 8 . MLP E•D E" . 5 K ># . : H # 8 8 v .# . ) *+, # 8 8 P & h =Y F m # 8 C k*.J 8 IA™ d & ( ~ 5 ’ k*.J 8 " 1 I. 7A # C mI, ) 2 )?. . d ( @, k*.J 8 IA™ o +. ( F# 5 0 $ a, IA™ # IA™ @ # 8 k* .J 8 IA™ ? & • N? d 8Y q .

L

] C ) 1 8 1 & ,

MAPE

NMSE

MSE

pe„`/„ pe_{/„ p`€{/„ pe__/„ pe„{/„ p`qq/„

„{e{/„ „{e_/„ „{pf/„ „{`p/„ „{e€/„ „{p€/„

„qf„/„ „q`f/„ „e„|/„ „q`p/„ „qfe/„ „`ef/„

„„`{/„ „„`„/„ „„e€/„ „„`„/„ „„`{/„ „„e{/„

5!

F 3MPL 3MPNL 3MPL 3MPNL

E•D mE" 8 4 x 5# v .# 0

R

.ˆ H 9H

F

L

] C ) 1

8 1 & ,

3MPNL 4MPNL RBF 3MPNL 4MPNL RBF

92

www.SID.ir

) \^ G ƒ (E 4 , B RY

SI

D

( 7* ) w R

( ) *) B )

. H 4 v .#

[ |] # 8

[{` {_] 8

MAPE

NMSE

„/p`e „/p`|

„/„{f` „/„{f{

„/„`€ „/„e{

Z Z

„/„||| „/„{{f

Z Z

)E2 .I K , )E2 K . B 1 0 ? (A) E # . " 1 I. . H . Y .ˆ H E•D E" 4 ) " 1 " .! 8 4 % ! Y .ˆ H 4 (3MPL) B! % ! % ! Y V .ˆ H 4 (3MPNL) B! R g# ( 8 4 ( . RBF 4 (3MPNL) B! R ? @. 8 4 &! 5# # 1 5 8 .! # 08 " ? * 5M . # & F # • E#5 A P :# .ˆ H E•D 8 4 P 5 A? ( 8 . v .# F 8 " &E # $ 5 . " 1 I. 4 8 P5 8 P ( :# F E• D 8 4 v .# ? . 8 , 5*B v .# RBF 4 &E # .ˆ H 8 4

Ar

ch

( F# 5

ive

R

& 5M # 8 ( 8 4

1 )d 8 B! $ a, '' 4&

of

B! R Y

# 4 v .# 3

MSE

L

„/„„e „/„„e

A

Z Z

B

F

] C 8

#

( . ) *+,) # 8 ( . : H ) *+,) # 8

# 0 %$ 5 c C •, IA™ 8 1 IA™ *• ( 8 D5 - $ 5 c 4 & # 0 ( @, > # . : H # 8 8 8 4 . 5" ‡J: IA™ (MA) o +. ( F# (AR) . E 5! 8 4 ) " ( F# . E 5! (ARMA) o +. ( F# . E 5! & ( ~ # d " (ARIMA) *; I, o +. . 4 6! 7 A # F. E F m IA™ d ‡J: F m ‚ E, -m $ 5 c IA™ , . #5"

" € ,C 3 8 ( F# ) " 1 " k @, •™ 8 . H @, %5, C • , )E2 C • E # & 5M c # • 8 1 8 4 v .# 4 C • )E2 .I

93

www.SID.ir

1C * @ t

SI

& & " 8 d 8 : ŠH &# @ * ( , ? ?+, 1} H ( 5 ! A # E .:H d # $ . 5" # 2 m:, # 5 # & 3

B! R % ! 8 4 > # .ˆ H E•D 8 4 ( ( ’ . " ,i B! % ! 8 4 &E # # v .# 5 E # V •< , E" .! ,• > 4 ? Y V .ˆ H 4 v .# 8 5M v .# 5 K ># 5% B! R % ! Y .ˆ H 4 1 I. 5 8 1 %5, x5 - . : # . v .# ( . (3MPNL) B! R % ! Y .ˆ H . d ,8 " # • 9 H8 8 # : 8 4 E•D E" 8 4 v .# ? v .# 4 x5 # V :# > # # 8 8 D5 • E•D E" 8 4 ( A # ># b E ?, 8 .: ># 8 #8 4 &E # 8 . v .# Y . # . :H # 8 8 d1 " > # E•D E" P 8 . + B

D

8 0 P 5 r M d( %5, 1 E! 8 " d * D8 d # 1 I. 8 # 0 )m" *E2 8 1 % $ a, , & ( d ) - P5 # b E, ( d 0 $ 5 c Y &2 9 Hb - # F ( ( ’ . " " ( 8 . + x5;5 . 8 .: 8 B! 8 1 I. $ 5c " 8 1 1 + W !81 + 1 m ) A = F $ ;> # ( . 0 2 . P5 . V 4 1

QF

l

1- Zhou, S.L., Mcmohon, T.A., Walton, A., and Lewis, J. (2000). “Forecasting daily urban water demand: A case study

supply zone.” J. Hydrology, 259, 189-202. $4

$\*

BN 7 I'( $K!E @ V( " 7 ” .(Z]^ ) .

$ / BK

ive

. “. +$(

of

of Melborne.” J. Hydrology, 236, 153-164. 2- Zhou, S.L., Mcmohon, T.A., Walton, A., and Lewis, J. (2001). “Forecasting operation demand for an urban water % 4

.d w S k!S . .9; ; (G)

6% . L $K

7 Š $6( I$- -JK

4- Bowden, G.J., Maier, H.R., and Dandy, G.C. (2002). “Optimal division of data for neural network models in water resources applications.” Water Resources Research, 38(2), 1-11.

ch

5- Milot, J., Rodriguez, M.J., and Sérodes, J.B. (2002). “Contribution of neural networks for modeling trihalomethanes occurrence in drinking water.” J. of Water Resources Planning and Management, 128(5), 370-376, 6- Michaelides, S.C., Pattichis, C.S., and Kleovoulou, G. (2001). “Classification of rainfall variability by using artificial

Ar

neural networks.” International J. of Climatology, 21, 1401-1414. 7- Stark, H.L., Stanley, S.J. and Buchanan, I.D. (2000). “The application of artificial neural networks to water demand modeling.” Annual Conference Abstracts of Canadian Society for Civil Engineering, 139 8-Jain, A., Joshi, U.C., and Varshney, A.K. (2000). “Short-term water demand forecasting using artificial neural networks: IIT Kanpur experience.” In Proceedings of International Conference on Pattern Recognition, 15(2), 459-462. 9- Jain, A., Varshney, A.K., and Joshi, U.C. (2001). “Short-term water demand forecast modeling at IIT Kanpur using artificial neural networks.” Water Resources Management, 15(5), 299-321. 10- Liu, J., Savenije, H.G., and Xu, J. (2003). “Forecast of water demand in Weinan City in China using WDF-ANN model.” Physics and Chemistry of the Earth, 28(4-5), 219-224 11- Yu, T-C, Zhang, T. Q., Mao, G. H., and Wu, X, G. (2004). “Study of artificial neural network model for forecasting urban water demand.” J. of Zhejiang University (Engineering Science), 38(9), 1156-1161.

94

www.SID.ir

12- Bougadis, J., Adamowski, K.B., and Diduch, R. (2005). “Short-term municipal water demand forecasting.” Hydrological Processes, 19(1), 137-148. 13- Adamowski, J.F. (2008). “Peak daily water demand forecast modeling using artificial neural networks.” J. of Water Resources Planning and Management, 134(2), 119-128. 14- Chang, N.B., and Makkeasorn, A. (2007). “Water demand analysis in urban region by neural network models.” In Proceedings of the 8th Annual Water Distribution Systems Analysis Symposium, 48. 15- Msiza, I.S., Nelwamondo, F.V., and Marwala, T. (2007). “Water demand forecasting using multi-layer perceptron and radial basis functions.” In Proceedings of the IEEE International Conference on Neural Networks, Article, 13-18. 16- Zhang, J., Song, R., Bhaskar, N. R., and French, M.N. (2007). “Short-term water demand forecasting: A case study.” In Proceedings of the 8th Annual Water Distribution Systems Analysis Symposium , 49. 17- Ghiassi, G. A, Zimbra, D. K. B., and Saidane, H.C. (2008). “Urban water demand forecasting with a dynamic

D

artificial neural network model.” J. of Water Resources Planning and Management, 134(2), 138-146. 18-Yurdusev, M.A., Firat, M., Mermer, M., and Turan, M.E. (2009). “Water use prediction by radial and feed-forward neural nets.” In Proceedings of the Institution of Civil Engineers: Water Management, 162(3), 179-188. '6B(

2 'N"

$6N"$E ,($+ /$%$M “./ BK 7 @ V( I'( $K!E 6 L M "

"$E ” .(

$ wX6(

SI

/

./ BK ?"'( A

BN 7 I'( $K!E $#$-K

K"

!6V( zV

$4,`zN

"$E ” .(

of

,% T+ “.

9 ) . d.

$6…+ 0% .G:

K $5T+

€) .

% E

H

A % r J(

.? ,N!2 . L $K G€ ( ):

6 '`T+

21- Tabesh, M., and Dini, M. (2008). “Fuzzy and neuro- fuzzy models for short-term water demand forecasting in tehran.” Iranian J. of Science and Technology, Transaction B, 33 (1), 61-77. 22- Buchberger, G., and Wu, L. (1995). “Model for instantaneous residential water demand.” J. of Hydraulic

ive

Engineering, 121(3), 232-246. 23- Buchberger, G., and Wells, G.J. (1996). “Intensity, duration and frequency of residential water demands.” J. of Water Resources Planning and Management, 122(11), 11-18. 24- Haykin, S. (1999). Neural networks: a comprehensive foundation, Prentice Hall, New Jersey, USA. > x %$B+ k" 02

zl K

ch

25- Nelles, O. (2001). Nonlinear system identification, Springer Verlag, Berlin.

$

$4f*

+ I"

$4,szN / %

$\*

$

BN 7 I'( $K!E $#$-K

7 Š $6( A% %'( Al N I "$T*+ / BK $5T+

K .(

; ) . L $K G9

7,

‹(

T4 tM

Ar

./ BK

zV

95

www.SID.ir

Suggest Documents