Functions Theory in Higher dimensions Sirkka-Liisa Eriksson Tampere University of Technology Department of Mathematics P.O.Box 553 FI-33101 Tampere, Finland sirkka-liisa.eriksson@tut.… TUT
S.-L. Eriksson (TUT)
Hyperbolic
1 / 63
Collaborator
Heinz Leutwiler University of Erlangen-Nürnberg Bismarckstrasse 1 12 D-91054 Erlangen, Germany E-mail:
[email protected]
S.-L. Eriksson (TUT)
Hyperbolic
2 / 63
Outline
1
Complex Plane
S.-L. Eriksson (TUT)
Hyperbolic
3 / 63
Outline
1 2
Complex Plane Key Ideas in Higher Dimensions
S.-L. Eriksson (TUT)
Hyperbolic
3 / 63
Outline
1 2 3
Complex Plane Key Ideas in Higher Dimensions Quaternions
S.-L. Eriksson (TUT)
Hyperbolic
3 / 63
Outline
1 2 3 4
Complex Plane Key Ideas in Higher Dimensions Quaternions Cli¤ord algebra
S.-L. Eriksson (TUT)
Hyperbolic
3 / 63
Outline
1 2 3 4 5
Complex Plane Key Ideas in Higher Dimensions Quaternions Cli¤ord algebra Hypermonogenic functions
S.-L. Eriksson (TUT)
Hyperbolic
3 / 63
Outline
1 2 3 4 5 6
Complex Plane Key Ideas in Higher Dimensions Quaternions Cli¤ord algebra Hypermonogenic functions Integral formulas
S.-L. Eriksson (TUT)
Hyperbolic
3 / 63
Outline
1 2 3 4 5 6 7
Complex Plane Key Ideas in Higher Dimensions Quaternions Cli¤ord algebra Hypermonogenic functions Integral formulas Riemannian manifolds
S.-L. Eriksson (TUT)
Hyperbolic
3 / 63
Hyperbolic metric The hyperbolic surface measure and the volume measure are dσh =
dx dσ , dxh = n +1 . n xn xn
and the hyperbolic normal derivative is ∂ ∂ = xn . ∂nh ∂n
S.-L. Eriksson (TUT)
Hyperbolic
23 / 63
Hyperbolic metric The hyperbolic surface measure and the volume measure are dσh =
dx dσ , dxh = n +1 . n xn xn
and the hyperbolic normal derivative is ∂ ∂ = xn . ∂nh ∂n geodesics are circular arcs perpendicular to the hyperplane xn = 0 (half-circles whose origin is on xn = 0 and straight vertical lines ending on the hyperplane xn = 0.
S.-L. Eriksson (TUT)
Hyperbolic
23 / 63
The hyperbolic ball Bh (a, Rh ) with the hyperbolic center a and the radius Rh is an euclidean ball with the euclidean center ae = a0 + a1 e1 + ... + an
1 en 1
+ en an cosh Rh
and the euclidean radius Re = an sinh Rh .
S.-L. Eriksson (TUT)
Hyperbolic
24 / 63
The hyperbolic ball Bh (a, Rh ) with the hyperbolic center a and the radius Rh is an euclidean ball with the euclidean center ae = a0 + a1 e1 + ... + an
1 en 1
+ en an cosh Rh
and the euclidean radius Re = an sinh Rh . the hyperbolic distance dh (x, a) between the points x = x0 + e1 x2 + ... + xn en and a = a0 + e1 a1 + ... + an en is Rh = dh (x, a) = arcosh δ(x, a), δ(x, a) =
S.-L. Eriksson (TUT)
jx
aj2 + 2an xn . 2xn an
Hyperbolic
24 / 63
We map x and y to the points en and λen . Then dh (x, y ) = dh (en , λen ) =
Z λ dt 1
t
= ln λ,
1 1 δ(x, y ) = δ (en , λen ) = (λ + ) 2 λ 1 ln λ cosh dh (x, y ) = cosh ln λ = (e + e ln λ ) = δ(x, y ). 2
S.-L. Eriksson (TUT)
Hyperbolic
25 / 63
We map the upperhalf space to the unit ball by T
S.-L. Eriksson (TUT)
1
(z ) = (z
en )( en z + 1)
Hyperbolic
1
26 / 63
We map the upperhalf space to the unit ball by T
1
(z ) = (z
en )( en z + 1)
1
The unit ball to the upper half space by T (z ) = (z + en )(en z + 1)
S.-L. Eriksson (TUT)
Hyperbolic
1
26 / 63
We map the upperhalf space to the unit ball by T
1
(z ) = (z
en )( en z + 1)
1
The unit ball to the upper half space by T (z ) = (z + en )(en z + 1)
1
The Möbius transformation ϕ mapping x to en ! n ∑in=01 (zi xi ) ei + zn en . ϕ ∑ zi ei = xn i =0
S.-L. Eriksson (TUT)
Hyperbolic
26 / 63
e = T 1 ( ϕ (y )) 2 B. Since Q e 2 B there is a rotation R Set Q e ) = µen for some µ 2 [0, 1]. such that R (Q Put ψ = T R T 1 ϕ. Then ψ is a Möbius transformation (as product of Möbius transformations) with ψ (x ) = T ψ (y ) = T
R R
T T |
1 ( ϕ (x ))
= en
1 ( ϕ (y ))
{z e Q
}
e ) ) = λen . = T (R ( Q |{z} µen
S.-L. Eriksson (TUT)
Hyperbolic
27 / 63
e = T 1 ( ϕ (y )) 2 B. Since Q e 2 B there is a rotation R Set Q e ) = µen for some µ 2 [0, 1]. such that R (Q Put ψ = T R T 1 ϕ. Then ψ is a Möbius transformation (as product of Möbius transformations) with ψ (x ) = T ψ (y ) = T
R R
T T |
1 ( ϕ (x ))
= en
1 ( ϕ (y ))
{z e Q
}
e ) ) = λen . = T (R ( Q |{z} µen
ky x k2 = ky xˆ k2 1 1 2 (λ + λ )
T
1
(λen ) =
( λ 1 )2 ( λ +1 )2
=)
jy x j2 +2yn xn 2xn yn
=
= cosh dh (x, y )
S.-L. Eriksson (TUT)
Hyperbolic
27 / 63
Hyperbolic function theory was initiated by Heinz Leutwiler around 1990.
S.-L. Eriksson (TUT)
Hyperbolic
28 / 63
Hyperbolic function theory was initiated by Heinz Leutwiler around 1990. For any m 2 N, the power function f (x ) = x m is paravector-valued for any paravector x = x0 + x1 e1 + ... + xn en .
S.-L. Eriksson (TUT)
Hyperbolic
28 / 63
In Higher Dimensions For any m 2 N, the power function x m satis…es the property xm = where h (x ) =
S.-L. Eriksson (TUT)
∂h ∂x0
n
∂h
∑ ei ∂xi
(1)
i =1
1 Re x m +1 . m+1
Hyperbolic
29 / 63
In Higher Dimensions For any m 2 N, the power function x m satis…es the property xm =
∂h ∂x0
n
∂h
∑ ei ∂xi
(1)
i =1
where
1 Re x m +1 . m+1 h satis…es the preceding hyperbolic equation h (x ) =
xn 4 f
S.-L. Eriksson (TUT)
(n
Hyperbolic
1)
∂f = 0. ∂xn
29 / 63
H-solutions
Heinz Leutwiler initiated in 1992 the research of the functions f , called H-solutions, admitting locally the preceding property for some function h satisfying the equality
S.-L. Eriksson (TUT)
Hyperbolic
30 / 63
Another characterization of H-solutions is that they are paravector-valued solutions f = u0 + u1 e1 + ... + un en of the following generalized Cauchy-Riemann equation ∂u ∂u0 ∑ni=1 ∂xii + (n 1) un ∂x0 ∂uk ∂ui i, k = 1, ..., n, ∂xk = ∂xi , ∂uk ∂u0 k = 1, ..., n. ∂xk = ∂x0 ,
xn
S.-L. Eriksson (TUT)
Hyperbolic
= 0, (H)
31 / 63
General assumptions
Let Ω be an open subset of Rn +1 .
S.-L. Eriksson (TUT)
Hyperbolic
32 / 63
General assumptions
Let Ω be an open subset of Rn +1 . We consider function mapping f : Ω ! C `0,n , whose components are continuously di¤erentiable.
S.-L. Eriksson (TUT)
Hyperbolic
32 / 63
Dirac operators
The left Dirac operators in C `0,n is de…ned by n
∂f Dl f = ∑ ei , ∂xi i =0
S.-L. Eriksson (TUT)
Hyperbolic
n
Dl f =
∂f
∑ ei ∂xi ,
i =0
33 / 63
Dirac operators
The left Dirac operators in C `0,n is de…ned by n
∂f Dl f = ∑ ei , ∂xi i =0
n
Dl f =
∂f
∑ ei ∂xi ,
i =0
The right Dirac operators by n
∂f Dr f = ∑ ei , ∂xi i =0
S.-L. Eriksson (TUT)
Hyperbolic
n
Dr f =
∂f
∑ ∂xi ei .
i =0
33 / 63
Theorem (Cauchy formula) Let Ω 2 Rn +1 be an open, K Ω a compact set with smooth boundary δK and ν its outer unit normal …eld. Then for any monogenic function f : Ω ! Cl0,n , that is Dl f = 0, we have f (q ) =
1 ω n +1
Z
δK
(p jp
q)
1
q jn
1
ν (p ) f (p ) dS,
for all q 2 K, where ω n +1 is the surface measure of the unit ball in Rn + 1 .
S.-L. Eriksson (TUT)
Hyperbolic
34 / 63
Modi…ed Dirac Operators
Let Ω be an open subset of Rn +1 nfxn = 0g.
S.-L. Eriksson (TUT)
Hyperbolic
35 / 63
Modi…ed Dirac Operators
Let Ω be an open subset of Rn +1 nfxn = 0g. l
r
The modi…ed Dirac operators Mkl , Mkr , M k and M k are introduced by 0
Mkl f (x ) = Dl f (x ) + k Qxnf , l
M k f (x ) = D l f (x )
0
Mkr f (x ) = Dr f (x ) + k Qf xn r
k Qxnf , Mk f (x ) = D r f (x )
k Qf xn .
where f 2 C 1 (Ω, C `0,n ) .
S.-L. Eriksson (TUT)
Hyperbolic
35 / 63
Hypermonogenic functions De…nition Let Ω Rn +1 be open. A function f : Ω ! C `0,n is left hypermonogenic function, if f 2 C 1 (Ω) and Mkl f (x ) = 0 for any x 2 Ωn fxn = 0g . The right k-hypermonogenic functions are de…ned similarly. If k = n 1 left hypermonogenic functions are called hypermonogenic functions. Hypermonogenic functions were introduced by H. Leutwiler and S.-L. E in 2000.
S.-L. Eriksson (TUT)
Hyperbolic
36 / 63
Basic properties
Hypermonogenic functions have values in the total Cli¤ord algebra C `0,n .
S.-L. Eriksson (TUT)
Hyperbolic
37 / 63
Basic properties
Hypermonogenic functions have values in the total Cli¤ord algebra C `0,n . Paravector-valued hypermonogenic functions are H-solutions
S.-L. Eriksson (TUT)
Hyperbolic
37 / 63
Basic properties
Hypermonogenic functions have values in the total Cli¤ord algebra C `0,n . Paravector-valued hypermonogenic functions are H-solutions A function f : Ω ! C `0,n is left k hypermonogenic function if and only if f is right hypermonogenic
S.-L. Eriksson (TUT)
Hyperbolic
37 / 63
Basic properties
Hypermonogenic functions have values in the total Cli¤ord algebra C `0,n . Paravector-valued hypermonogenic functions are H-solutions A function f : Ω ! C `0,n is left k hypermonogenic function if and only if f is right hypermonogenic If f : Ω ! C `0,n is k hypermonogenic, then b f (b x ) is n + 1 b k-hypermonogenic in Ω = x 2 R jb x2Ω .
S.-L. Eriksson (TUT)
Hyperbolic
37 / 63
Notably studied by
The theory is notably studied by H. Leutwiler J. Cnops P. Cerejeiras Th. Hemp‡ing P. Zeilinger Pernas, L. Junxia Li
S.-L. Eriksson (TUT)
S.-L. Eriksson Kettunen, J. Hirvonen, J. H. Orelma Ryan, J. Qiao, Yuying
S. Krausshar E. Lehman I. Ramadano¤ Bernstein, Sw. Laville, G. Xiaoli Bian
Hyperbolic
38 / 63
Generalized Cauchy-Riemann equations
Theorem Let Ω be an open subset of Rn +1 and f : Ω ! C `0,n be a mapping 0 with continuous partial derivatives. The equation Df + k Qxnf = 0 is equivalent with the following system of equations ∂ (Q 0 f ) ∂xn ∂P 0 (f ) Dn 1 (Qf ) + ∂xn
Dn
S.-L. Eriksson (TUT)
1
(Pf )
Hyperbolic
0
+ k Qxnf = 0, = 0.
39 / 63
Hyperbolic harmonic functions Theorem Let f : Ω ! C `0,n be twice continuously di¤erentiable. Then P Mk M k f = 4Pf Q Mk M k f = 4Qf
k ∂Pf xn ∂xn k ∂Qf Qf +k 2 xn ∂xn xn
If f is k-hypermonogenic, then k ∂Pf xn ∂xn k ∂Qf Qf +k 2 xn ∂xn xn
4Pf 4Qf S.-L. Eriksson (TUT)
Hyperbolic
= 0 = 0. 40 / 63
Laplace Beltrami equations
These are Laplace-Beltrami equations with respect to the Riemannian metric ∑n dx 2 ds 2 = i =02k i . xnn 1
S.-L. Eriksson (TUT)
Hyperbolic
41 / 63
k-hyperbolic harmonic functions Mn
1
(fx ) = (Mn
S.-L. Eriksson (TUT)
1f ) x
for any paravector valued function f .
Hyperbolic
42 / 63
k-hyperbolic harmonic functions Mn 1 (fx ) = (Mn 1 f ) x for any paravector valued function f . A twice continuously di¤erentiable function f : Ω ! Cl0,n is called k-hyperbolic harmonic if Mk M k f = 0.
S.-L. Eriksson (TUT)
Hyperbolic
42 / 63
k-hyperbolic harmonic functions Mn 1 (fx ) = (Mn 1 f ) x for any paravector valued function f . A twice continuously di¤erentiable function f : Ω ! Cl0,n is called k-hyperbolic harmonic if Mk M k f = 0. Let f : Ω ! Cl0,n be twice continuously di¤erentiable. Then f is k-hypermonogenic if and only if f and xf are k-hyperbolic harmonic functions.
S.-L. Eriksson (TUT)
Hyperbolic
42 / 63
k-hyperbolic harmonic functions Mn 1 (fx ) = (Mn 1 f ) x for any paravector valued function f . A twice continuously di¤erentiable function f : Ω ! Cl0,n is called k-hyperbolic harmonic if Mk M k f = 0. Let f : Ω ! Cl0,n be twice continuously di¤erentiable. Then f is k-hypermonogenic if and only if f and xf are k-hyperbolic harmonic functions. Let Ω be an open subset of Rn +1 and f : Ω ! C `0,n be twice continuously di¤erentiable. Then f is k-hypermonogenic if and only if there exists locally a k-hyperbolic harmonic mapping H with values in C `0,n 1 satisfying DH = f .
S.-L. Eriksson (TUT)
Hyperbolic
42 / 63
Theorem Let U 1
Rn++1 be open. The following properties are equivalent:
h is hyperbolic harmonic on U.
S.-L. Eriksson (TUT)
Hyperbolic
43 / 63
Theorem Let U 1 2
Rn++1 be open. The following properties are equivalent:
h is hyperbolic harmonic on U. h 2 C 2 (U ) and 1 h (a ) = σn sinhn Rh .
Z
∂Bh (a,Rh )
for all hyperbolic balls satisfying Bh (a, Rh )
S.-L. Eriksson (TUT)
Hyperbolic
hdσh U.
43 / 63
Theorem Let U 1 2
Rn++1 be open. The following properties are equivalent:
h is hyperbolic harmonic on U. h 2 C 2 (U ) and 1 h (a ) = σn sinhn Rh .
3
Z
∂Bh (a,Rh )
hdσh
for all hyperbolic balls satisfying Bh (a, Rh ) h 2 C 2 (U ) and 1 h (a ) = Vh (Bh (a, Rh ))
Z
Bh (a,Rh )
for all hyperbolic balls satisfying Bh (a, Rh ) RR Vh (Bh (a, Rh )) = σ 0 h sinhn tdt.
S.-L. Eriksson (TUT)
Hyperbolic
U.
fdxh , U, where
43 / 63
Examples
x m , m 2 Z, is hypermonogenic
S.-L. Eriksson (TUT)
Hyperbolic
44 / 63
Examples
x m , m 2 Z, is hypermonogenic e x = ∑ k1! x k ,
S.-L. Eriksson (TUT)
Hyperbolic
44 / 63
Examples
x m , m 2 Z, is hypermonogenic e x = ∑ k1! x k , 1 sin x = ∑ (2k + ( 1)k x 2k +1 , 1)!
S.-L. Eriksson (TUT)
Hyperbolic
44 / 63
Examples
x m , m 2 Z, is hypermonogenic e x = ∑ k1! x k , 1 sin x = ∑ (2k + ( 1)k x 2k +1 , 1)!
cos x = ∑ (2k1 )! ( 1)k x 2k
S.-L. Eriksson (TUT)
Hyperbolic
44 / 63
Examples
x m , m 2 Z, is hypermonogenic e x = ∑ k1! x k , 1 sin x = ∑ (2k + ( 1)k x 2k +1 , 1)!
cos x = ∑ (2k1 )! ( 1)k x 2k If f (z ) = ∑ ak z k is holomorphic and ak 2 R, then f (x ) = ∑ ak x k is hypermonogenic.
S.-L. Eriksson (TUT)
Hyperbolic
44 / 63
Fueter Construction
If f = u + iv is holomorphic in an open set Ω e f (x ) = u x0 ,
q
C, then
x12 + ... + xn2 +
x1 e1 + .. + xn en q v x12 + .. + xn2
x0 ,
q
x12 + ... + xn2
is hypermonogenic.
S.-L. Eriksson (TUT)
Hyperbolic
45 / 63
The k-hypermonogenic functions in an open subset Ω of Rn +1 form a right C `0,n 1 -module.
S.-L. Eriksson (TUT)
Hyperbolic
46 / 63
The k-hypermonogenic functions in an open subset Ω of Rn +1 form a right C `0,n 1 -module. If f is a k-hypermonogenic function, then the function fen is hypermonogenic if and only if f = 0.
S.-L. Eriksson (TUT)
Hyperbolic
46 / 63
The k-hypermonogenic functions in an open subset Ω of Rn +1 form a right C `0,n 1 -module. If f is a k-hypermonogenic function, then the function fen is hypermonogenic if and only if f = 0. A function f : Ω ! C `0,n is k-hypermonogenic if and only if the n is k-hypermonogenic. function fe xk n
S.-L. Eriksson (TUT)
Hyperbolic
46 / 63
The k-hypermonogenic functions in an open subset Ω of Rn +1 form a right C `0,n 1 -module. If f is a k-hypermonogenic function, then the function fen is hypermonogenic if and only if f = 0. A function f : Ω ! C `0,n is k-hypermonogenic if and only if the n is k-hypermonogenic. function fe xk n
A function f : Ω ! C `0,n is left k-hypermonogenic if and only if the function fen satis…es the equation Dl g
S.-L. Eriksson (TUT)
ken Pg = 0. xn
Hyperbolic
46 / 63
Stokes theorem
Theorem For Ω an open subset of Rn++1 (or Rn +1 ), K Ω a smoothly bounded compact set with outer unit normal …eld ν, and f , g 2 C 1 (Ω, C `0,n ), Z
∂K
Z
dσ P (g νf ) k = xn Q (g νf ) dσ =
∂K
S.-L. Eriksson (TUT)
Z
Z
K K
P (Mkr g ) f + gMkl f
dx xnk
Q (M r k g ) f + gMkl f dx.
Hyperbolic
47 / 63
Theorem Let Ω be an open subset of Rn++1 and K Ω a smoothly bounded compact set with outer unit normal …eld ν. If f is hypermonogenic in Ω and y 2 K, then f (y ) =
2n 1 ω n +1
Z
K1 (x, y ) ν (x ) f (x )
K2 (x, y ) ν[ (x )f[ (x ) dσ.
∂K
where K1 (x, y ) = K2 (x, y ) =
S.-L. Eriksson (TUT)
ynn
jx jx
1
(x
y jn
1
ynn
1
y jn Hyperbolic
x (b 1
y)
jx jx
y)
1
ybjn
1
1
ybjn
1
.
48 / 63
Theorem Let Ω be an open subset of Rn++1 and K Ω a smoothly bounded compact set with outer unit normal …eld ν. If f is hypermonogenic in Ω and y 2 K f (x ) =
2n 1 ω n +1
Z
k (x, y ) Q y ν0 (y )f 0 (y ) + xQ 0 (ν(y )f (y )) ∂K
where k (x, y ) =
=
1 22n
2y n n
xnn 1 yn
D
x
Z 1
(x jx
1
jy x j jx yb j
y)
y jn
1
s2 sn
n 1
ds
(x yb) 1 1 jx ybjn 1
are hypermonogenic with respect to x in Rn +1 n fy, ybg. S.-L. Eriksson (TUT)
Hyperbolic
!
!
.
49 / 63
Theorem Let Ω be an open subset of Rn++1 and K Ω a smoothly bounded compact set with outer unit normal …eld ν. If f is continuous on Ω then 2n 1 g (x ) = ω n +1
Z
k (x, y ) Q y ν0 (y )f 0 (y ) + xQ 0 (ν(y )f (y )) dσ ∂K
is hypermonogenic in Rn++1 n∂K .
S.-L. Eriksson (TUT)
Hyperbolic
50 / 63
Riemannian Manifolds Riemannian metric on an open set Ω ds 2 =
Rn has the form
n
∑
gij dxi dxj ,
i ,j =0
where (gij ) is a second order covariant tensor
S.-L. Eriksson (TUT)
Hyperbolic
51 / 63
Riemannian Manifolds Riemannian metric on an open set Ω ds 2 =
Rn has the form
n
∑
gij dxi dxj ,
i ,j =0
where (gij ) is a second order covariant tensor We consider the conformal metric ds 2 =
2
∑ gii dxi2 ,
i =0
where gij = ρ2 (x ) δij . The mapping h : Rn ! Rn is conformal when h 0 (x ) 2 O (n ) jh0 (x )j
where O (n) is the set orthogonal transformations in Rn . S.-L. Eriksson (TUT)
Hyperbolic
51 / 63
Covariant tensor
if x = (x0 , x1 , .., xn ) are the old coordinates and x = (x 0 , x 1 , .., x n ) the new coordinates in terms of the change then ! ∂xh ∂xk (g ij ) = ∑ ghk . ∂x i ∂x j h,k
S.-L. Eriksson (TUT)
Hyperbolic
52 / 63
Dirac operator De…ne at each point x a tangent plane and extend it to a Cli¤ord algebra with the inner product (gij )
S.-L. Eriksson (TUT)
Hyperbolic
53 / 63
Dirac operator De…ne at each point x a tangent plane and extend it to a Cli¤ord algebra with the inner product (gij ) If e1 , . . . , en +1 de…nes - at each point of the manifold - an orthonormal basis for the tangent space, the Dirac operator is de…ned by DlM f DrM f
n +1
=
∑ ei Oei f ,
i =1 n +1
=
∑ (Oei f )ei ,
i =1
where f has values in C `0,n +1 and Oei denotes the covariant derivative with respect to the vector …eld ei S.-L. Eriksson (TUT)
Hyperbolic
53 / 63
Choosing the hyperbolic metric on the upper half space Rn++1 , de…ned by ∑n +1 dx 2 ds 2 = i =21 i , xn +1 an orthonormal basis for the tangent space is given by the tangent vectors ei = xn +1
S.-L. Eriksson (TUT)
∂ i = 1, . . . , n + 1. ∂xi
Hyperbolic
54 / 63
Choosing the hyperbolic metric on the upper half space Rn++1 , de…ned by ∑n +1 dx 2 ds 2 = i =21 i , xn +1 an orthonormal basis for the tangent space is given by the tangent vectors ei = xn +1
∂ i = 1, . . . , n + 1. ∂xi
The Christo¤el symbols associated with the metric are Γkij =
1 xn +1
(δj,k δi ,n +1 + δk,i δj,n +1
δi ,j δk,n +1 ) ,
δi ,k denoting the Kronecker delta. S.-L. Eriksson (TUT)
Hyperbolic
54 / 63
Oei ej = Oxn +1
∂ ∂xi
ej = xn +1 O
∂ ∂xi
ej
= xn +1 δi ,n +1
n +1 ∂ ∂ + xn2+1 ∑ Γkij ∂xj ∂xk k =1
= δi ,j en +1
δj,n +1 ei ,
for i, j = 1, . . . , n + 1.
S.-L. Eriksson (TUT)
Hyperbolic
55 / 63
Using the product rule, ci ν1
νk
= Oe i ( e ν 1
eν ) 8k jνj > /ν < ( 1) ei eν en +1 if i 2 ν and n + 1 2 ν j j = Oe i ( e ν ) = if i 2 / ν and n + 1 2 ν ( 1) ei eν > : 0 otherwise n
f =
∑ f ν eν ν
and observing that
Oe i ( f ν e ν ) = Oe i ( f ν ) e ν + f ν Oe i e ν ∂fν = xn +1 eν + fν ci ν ∂xi S.-L. Eriksson (TUT)
Hyperbolic
56 / 63
we conclude that n +1
Dhyp f
=
∑ ei Oei f
=
i =1
n +1
= xn +1
∂f
∑ ei ∂xi
i =1
∑
n +1 2 ν
S.-L. Eriksson (TUT)
(n + 1
∑
n +1/ 2ν
( 1)jνj jνj fν eν en +1
jνj) ( 1)jνj fν eν
Hyperbolic
57 / 63
In case n = 2 we thus have for f
= f1 e1 + f2 e2 + f3 e3 +f12 e1 e2 + f13 e1 e3 + f23 e2 e3 +f123 e1 e2 e3
the system Dhyp f
S.-L. Eriksson (TUT)
= x3 Deucl f + 2f3 f13 e1 f23 e2 +f1 e1 e3 + f2 e2 e3 2f12 e1 e2 e3
Hyperbolic
58 / 63
Set f = x3 g
S.-L. Eriksson (TUT)
Hyperbolic
59 / 63
Split g : Ω ! C `n +1 , Ω open in Rn +1 , into its even and odd parts 1 1 geven = (g + g 0 ) , godd = (g g 0 ) 2 2
S.-L. Eriksson (TUT)
Hyperbolic
59 / 63
Split g : Ω ! C `n +1 , Ω open in Rn +1 , into its even and odd parts 1 1 geven = (g + g 0 ) , godd = (g g 0 ) 2 2 Then x3 1 Dhyp f
even
= x3 Deucl godd + g3
x3 1 Dhyp f
odd
= x3 Deucl geven
S.-L. Eriksson (TUT)
Hyperbolic
g123 e12
g12 e1 e2 e3
59 / 63
Split g : Ω ! C `n +1 , Ω open in Rn +1 , into its even and odd parts 1 1 geven = (g + g 0 ) , godd = (g g 0 ) 2 2 Then x3 1 Dhyp f
even
= x3 Deucl godd + g3
x3 1 Dhyp f
odd
= x3 Deucl geven
g123 e12
g12 e1 e2 e3
The function godd satis…es the equation x3 Deucl w + Q w = 0
S.-L. Eriksson (TUT)
Hyperbolic
59 / 63
Split g : Ω ! C `n +1 , Ω open in Rn +1 , into its even and odd parts 1 1 geven = (g + g 0 ) , godd = (g g 0 ) 2 2 Then x3 1 Dhyp f
even
= x3 Deucl godd + g3
x3 1 Dhyp f
odd
= x3 Deucl geven
g123 e12
g12 e1 e2 e3
The function godd satis…es the equation x3 Deucl w + Q w = 0 The function geven satis…es the equation x3 Deucl w
S.-L. Eriksson (TUT)
P we3 = 0.
Hyperbolic
59 / 63
References
Cnops, J., Hurwitz pairs and applications of Möbius transformation, Habilitation thesis, Univ. Gent, 1994. Eriksson-Bique, S.-L, On modi…ed Cli¤ord analysis, Complex Variables,Vol. 45, (2001), 11–32. Eriksson-Bique, S.-L., k hypermonogenic functions. In Progress in Analysis, Vol I, World Scienti…c (2003), 337–348.
S.-L. Eriksson (TUT)
Hyperbolic
60 / 63
Eriksson, S.-L., Integral formulas for hypermonogenic functions, Bull. Bel. Math. Soc. 11 (2004), 705–717. Eriksson-Bique, S.-L. and Leutwiler, H. , On modi…ed quaternionic analysis in R3 , Arch. Math. 70 (1998), 228–234. Eriksson-Bique, S.-L. and Leutwiler, H., Hypermonogenic functions. In Cli¤ord Algebras and their Applications in Mathematical Physics, Vol. 2, Birkhäuser, Boston, 2000, 287–302.
S.-L. Eriksson (TUT)
Hyperbolic
61 / 63
Eriksson-Bique, S.-L. and Leutwiler, H., Hypermonogenic functions and Möbius transformations, Advances in Applied Cli¤ord algebras, Vol 11 (S2), December (2001), 67–76. Eriksson, S.-L. and Leutwiler, H., Hypermonogenic functions and their Cauchy-type theorems. In Trend in Mathematics: Advances in Analysis and Geometry , Birkhäuser, Basel/Switzerland, 2004, 97–112. Eriksson, S.-L. and Leutwiler, H., Contributions to the theory of hypermonogenic functions, Complex Variables and elliptic equations 51, Nos. 5-6 (2006), 547–561.
S.-L. Eriksson (TUT)
Hyperbolic
62 / 63
Leutwiler, H., Modi…ed Cli¤ord analysis, Complex Variables 17 (1992), 153–171. Leutwiler, H., Modi…ed quaternionic analysis in R3 , Complex Variables 20 (1992), 19–51. Eriksson, S-L., Bernstein, S.,Ryan, J., Qiao, Y., Function Theory for Laplace and Dirac-Hodge Operators in Hyperbolic Space, Journal d’Analyse Mathematique, Vol 98 (2006) 43–64.
S.-L. Eriksson (TUT)
Hyperbolic
63 / 63