µ(x). We denote the fuzzy subgroup µ by µ min(µ(x), µ(y)), ∀x, y ∈ H and ∀z ∈ xy , (ii) µ(x−1 ) > µ(x). In this case we write µ 0}. If G is a group and µ is a fuzzy subset of G, then we dene µa as follows:
µa = {x ∈ G | µx = µa}. Also we dene aµe and µa µb by
aµe = {ax | x ∈ µe },
µa µb = {xy | x ∈ µa , y ∈ µb }.
Theorem 2.11 [1]. Let G be a group and µ be a fuzzy subset of G. Dene oµ : G × G −→ P∗ (G) by aoµ b = µa µb . Then oµ is a hyperoperation on G. Moreover, if µ is a fuzzy normal subgroup of G, then (G, oµ ) is a polygroup.
Extension Principal:
Any function f : X −→ Y induces two functions
f : F S(X) −→ F S(Y ) and f −1 : F S(Y ) −→ F S(X), which are dened by
f (µ)(y) = sup{µ(x) | y = f (x)} for all µ ∈ F S(X), and f −1 (ν)(x) = ν(f (x)) for all ν ∈ F S(Y ). 3. Main results
In the sequel by H we mean a polygroup. Theorem 3.1. (i) If µ 0, µ(b) > 0 and, consequence a, b ∈ Supp(µ). Thus ab = ba and f (ab) = f (ba). f (a)f (b) = f (b)f (a). Thus xy = yx. Therefore ν is Abelian. Conversely, suppose that ν is Abelian. Let a, b ∈ Supp(µ). f (a), f (b) ∈ Supp(ν), henceforth f (a)f (b) = f (b)f (a), that is ab Therefore ν is fuzzy Abelian.
in the Then Then = ba.
Theorem 3.9. Let
µ t. Thus f (x) ∈ νs and so g is well-dened. Clearly g is injective and g(ab) = g(a)g(b), ∀a, b ∈ µt . Now suppose that y ∈ νs . Then ν(y) > s. On the other hand there exists an element x ∈ Supp(µ) such that y = f (x), thus kν(f (x)) > t, and hence x ∈ νt . Therefore g is surjective and hence µt ' νs .
Fuzzy isomorphism and quotient of fuzzy subpolygroups
Theorem 3.10. Let
Then ν /F P supp(ν).
181
µ t > 0, which is a contradiction. Thus a ∈ K and hence µ(a) = ν(a) > t. If a ∈ K , then µ(a) = ν(a) and µ(z) > min(µ(x), µ(a)) > t. Hence ν(z) > t, i.e. z ∈ νt . Therefore νt E µt .
Acknowledgment.
This research supported by the program "studies and researches between universities" project No. 31303386. References
[1]
: Hypergroup , PU.M.A. 8 (1997), 155 − 168.
R. Ameri, M. M. Zahedi
and join spaces induced by a fuzzy
subset
[2] [3]
[4]
R. Ameri: Fuzzy transposition hypergrouyps, Italian J. Pure and Appl. Math. (to appear). Ameri, M. M. Zahedi: Fuzzy subhypermodules over hyperrings, Proc. Sixth Intern. Congress on Algebraic Hyperstructures and Applications, Prague 1996, 1 − 14.
R.
[5]
: Sugil omomorphismi di semi-ipergrupi e di iper, Bull. U.M.I. (6)1-B (1982), 717 − 727.
P. Bonasinga, P. Corsini gruppi
:
D. S. Comer
, J. Algebra
Polygroups derived from cogorups
89
(1984),
397 − 405.
[6]
: (1984), 77 − 94.
D. S. Comer
Combinatorial aspect of relations
, Algebra Universalis
18
R. Ameri and H. Hedayati
184
[7] [8] [9]
P. Corsini
1993.
:
Prolegomena of Hypergroup Theory
, second eddition, Aviani
P. Corsini: Join space, power setes, fuzzy sets, Proc. Fifth Intern. Congress on Algebraic Hyper-structures and Applications, 1993, Iasi, Romania, Hardonic Press 1994. P. Corsini
:
, PU.M.A.
Fuzzy sets, join spaces and factor spaces
11
(2000),
439 − 446.
[10]
P. S. Das
:
Fuzzy groups and level subgroups
, J. Math. Anal. Appl. 84 (1981),
264 − 269.
[11] [12]
: Fuzzy Hv - groups (1999), 191 − 195.
B. Davvaz
tems
101
:
and anti fuzzy
Hv -subgroups, Fuzzy Sets Sys-
, Pasic J. Math. 80 (1979),
D. K. Harrison
Double coset and orbit spaces
451 − 491.
[13]
H. Hedayati, R. Ameri
[14]
S. Ioudilis
[15]
: Some equivalent conditions on 32nd Iranian Math. Confer., Babolsar. 2002 (to appear). : Polygroups et Soc. 22 (1981), 95 − 104.
: Transposition hypergroups: (1997), 97 − 119.
J. Jantociak
Algebra
187
[16]
J. Jantociak
[17]
B. B. Makumba
[18]
certaines de leurs proprietes
,
fuzzy hypergroups
, Bull. Greek. Math.
Noncommutative join spaces
, J.
: Homomorphisms, equivalences and reductions in hypergroups, Rivista di Mat. Pure ed Appl. 9 (1991), 23 − 47. :
1992.
Studies in fuzzy groups
, Ph.D Thesis, Rhodes University,
: Sur une generalization de la notion de group, 8i em Congr. Math. Scandinaves, Stockholm, 1934. 45 − 49. F. Marty
[19]
A. Rosenfeld
[20]
L. A. Zadeh
[21]
M. Zahedi, M. Bolurian, A. Hasankhani
:
:
Fuzzy groups
, J. Math. Anal. Appl.
, Inform. and Control
Fuzzy sets
, J. Fuzzy Math. 1 (1995), 1 − 15.
:
8
35
(1971), 512 − 517.
(1965), 338 − 353.
On polygroups and fuzzy sub-
polygroups
Department of Mathematics Faculty of Basic Science University of Mazandaran Babolsar Iran e-mail: [email protected]
Received June 4, 2004 Revised April 6, 2005