Fuzzy Markup Language for RealWorld Applications(Combined)-03272017-2.pdf. Fuzzy Markup Language for RealWorld Applicati
Fuzzy Markup Language for Real-World Applications 國立台南大學資訊工程學系 李健興 2017/03
Outline • WCCI 2016 Tutorial • Applications –Summarization Agent –Classification Agent –Prediction Agent –Demonstration 1
Human vs. Computer Go Competition History
Video
2
/5
Applications Summarization Agent
3
Applications Classification Agent
4
Applications Prediction Agent
5
Applications
Demonstration
6
/5
FUZZ-IEEE 2016 Tutorial: FUZZ-IEEE-03 Type-2 Fuzzy Ontology and Fuzzy Markup Language for Real-World Applications Organized by Chang-Shing Lee, National University of Tainan, Taiwan Giovanni Acampora, Nottingham Trent University, UK Yuandong Tian, Facebook AI Research, USA 24 July, 2016 0 / 71
FUZZ-IEEE 2016 Tutorial: FUZZ-IEEE-03 Part 1: Type-2 Fuzzy Ontology and Applications Chang-Shing Lee, NUTN, Taiwan Part 2: Fuzzy Markup Language Giovanni Acampora, NTU, UK Part 3: Real-World Application on Game of Go Yuandong Tian, Facebook AI Research, USA 1 / 71
FUZZ-IEEE 2016 Tutorial: FUZZ-IEEE-03 Part 1 Type-2 Fuzzy Ontology and Applications Chang-Shing Lee National University of Tainan, Taiwan
2 / 71
Research Team
3 / 71
Co-Sponsors
4 / 71
Type-2 Fuzzy Ontology Applications • • • • • •
FML IEEE 1855-2016 Standard Type-2 Fuzzy Set Fuzzy Ontology Game of Go Application Personalized Diet Recommendation Adaptive Learning Application
5 / 71
FML IEEE 1855-2016
6 / 71
Introduction to T2FS (1/5)
7 / 71
Introduction to T2FS (2/5) ~ A
u
( xi )
Vertical Slice
Wx '1
1
Wx ' N
~ UMF ( A)
~ UMF ( A)
u MF1 ( x ) i
u1
MFN ( x ) i
MFN ( x ) i
un
~ A
( x, u ) Embedded T2 FS
x
MF1 ( x i )
u
~ LMF ( A)
0
l Uncertainty About Left End-Point
x
x
i
r
Embedded T1 FS
~ Some eye Contact ( A)
Uncertainty About Right End-Point
8 / 71
Introduction to T2FS (3/5) u 1
~
UMF ( A)
~
UMF ( A)
Embedded FS
~
LMF ( A)
~
FOU ( A)
~
FOU ( A)
X 9 / 71
Introduction to T2FS (4/5) Type-2 FLS Output Processing Rules
Crisp inputs
Defuzzifier
Type-reducer
Fuzzifier
x X Fuzzy input sets ~
Ax (or Ax )
Inference
Crisp outputs
y Y
Type-reduced Set(Type-1)
Fuzzy output sets ~ Fx
第二型模糊邏輯系統
10 / 71
Introduction to T2FS (5/5) u
u
~
Low
1.0
Low
1.0
0.8
0.8
0.6
0.6
0.4
0.4
0.2
UMF
LMF
0.2 0 5
10
15
20
25
30
40
0
0
x( C )
5
A
10
15
20
25
30
40
x(0C )
( x , u) 1.0
u ( x , u)
0.8
~ A
0.6
1.0
0.4
0.8
0.2
5
10
15
20
25
30
40
0
0.6 0.4
0.2
x
0.4 0.6
0.2
0.8
0
0.2
0.4
0.6
0.8
1.0
u
1.0
u
11 / 71
12 / 71
13 / 71
14 / 71
15 / 71
16 / 71
Dynamic Assessment and IRT-based Learning Application
17 / 71
18 / 71
19 / 71
20 / 71
21 / 71
Video Demonstration • • • •
Taiwan Open 2009 Human vs. Computer Go @ IEEE WCCI 2012 Human vs. Computer Go @ FUZZ-IEEE 2011 Human vs. Computer Go in Taiwan in 2011
22 / 71
Adaptive linguistic assessment Domain Expert
Game Results Repository
T2FS Construction Mechanism
Human vs. MoGoTW
PSO Model Estimation Mechanism
Adaptive UCT-based Go-Ranking Mechanism Bradley-Terry Model Estimation Mechanism
MoGoTW
Game Results Repository
KB/RB Repository
Domain Expert
Adaptive Go-Ranking Assessment Ontology
T2FS-based Genetic Learning Mechanism
T2FS-based Fuzzy Inference Mechanism
Players Human-Performance Mapping Mechanism
Personal Profile Repository
Semantic Analysis Mechanism
Players Rank Repository
23 / 71
Go-ranking assessment ontology Adaptive Go-Ranking Assessment Ontology 13x13
7x7
9x9
...
NCKU FUZZ-IEEE 2013
NUTN
...
Certificated Rank 6D
...
Machine Spec HP ProLiant DL785
Komi 7.5
Where
Professional Player
Gender Male
Time Setting 45mins/Side
White
Class Layer
...
Who
Age 45
...
2013/7/8
...
Category Layer
IEEE WCCI 2012
Amateur Player
MoGoTW 2013/7/9
19x19
...
...
God Temple
Domain Layer
...
When How
Rule Chinese
Black
Round2
Round1
...
7.5
.
~ Komi
Game12 SN12,GR12
Game14 SN14,GR14
..
Game13 SN13,GR13
Game11 SN11,GR11
Game1K SN1K,GR1K
~
Game1K-1 SN1K-1,GR1K-1
RoundN
~
WinningRate 60
SN 121145
...
...
~
GameWeight 19
... RankActual 6D
RankMethod 6.38D SN: Simulation Number GR: Game Result
~
Low
~
Medium
What
~
High
24 / 71
Fuzzy inference structure Note: (1) M denotes number of fired rules (2) x {GW , WR , SN , Komi } (3) GW is GameWeight (4) WR is WinningRate
Rank ( x )
Output Layer
Type-Reduction Layer
AVG
Rank l (x )
Rank r (x )
KM
[ Rank lM , Rank rM ]
[ Rank l1 , Rank r1 ]
...
KM 1
MIN
Antecedent Layer ...
(GW ), Medium
Low
~ (G W )] (G W ), GW Low
[ Komi ~
( Kom i ), Low
~
KomiLow
M
[ f ( x ), f ( x )]
( Kom i )]
[
MIN ~
Komi Medium
( Kom i ),
~
( Kom i )]
~
( Komi )]
Komi Medium
...
~ [ GW
~ [ GW
KM
M
...
1
[ f ( x ), f ( x )]
...
Rule Layer
...
Consequent Layer
KM
~ GW Medium
(GW )]
[
~
GWHigh
(GW ),
~
GWHigh
(GW )]
[
~
KomiHigh
( Komi ),
KomiHigh
Input Layer
SN
GW
WR
Komi
25 / 71
Personalized Diet Recommendation
26 / 71
Diet assessment / recommendation ontology Adaptive Diet Assessment Ontology UK
Japan
Taiwan
Domain Layer
...
USA
...
ChiKu Campus
Category Layer
NUTN FuCheng Campus
...
RongYu Campus
...
VCI Lab.
UnderGraduate
OASE Lab.
Assistant
...
11/14/2009
6(6) servings
Meats & Proteins 6(6)servings
~ Fruits 3.5(3.5) servings
~ Dumpling 1.5(1.5) portions
~Corn Soup 1(1)portion 1(1) portion
1(1) portion
1(1) portion Fats & Nuts ~ 9(9.3) servings
Meats & Proteins ~ 10(9.65) servings
Carbohydrate ~ 1197(1196.8)kcal FGB ~ 1(0.66)
~Sugar 72(72)g
~ PCP 16(16.44)%
~
~
Low
~
Medium
How
Low-Fat Milk ~ 1.5(1.5) servings
What Corn Soup
High
Fruits
Caramel
~ Pudding
1(1) portion
...
~0(0) serving
Low-Fat Milk ~ 1(0.6) serving
~ Fat 874(874.35)kcal ~ PCF 35(35.28)%
~ PCR 124(123.93)%
... DHLDO ~ 4(4)
~
~Diet Goal 2000(2000)kcal
~1(1)portion
... DHLMethod ~ 3.4(3.42)
PCC: Percentage of Calories from Carbohydrate PCP: Percentage of Calories from Protein PCF: Percentage of Calories from Fat
Rclass_Semantic VeryLow
When
Vegetables ~ 3.5(3.5)servings
~Vegetables 0.5(0.5) serving
~ Protein 407(407.4)kcal
~ PCC 48(48.29)%
PCR: Percentage of Caloric Ratio FGB: Food Group Balance DHL: Dietary Healthy Level DO: Desired Output
11/30/2009
Seafood Spaghetti with Tomato Sauce ~1(1) portion
~Black Tea
~Soy Milk
~Pork Bun
Who
Dinner
...
Lunch
Where
Advisor
~
Actual Caloric Intake ~ 2500(2500)kcal
Breakfast
Whole Grains & Starches ~ 14.5(14.5) servings
...
~Fats & Nuts
Whole Grains & Starches ~ 12(12) servings
...
CASDL Lab.
Graduate
...
11/1/2009
Class Layer
~
VeryHigh
...
Recommended Semantics Layer
27 / 71
Personalized diet recommendation Step 6.2
Taiwan Step 5
…… Step 1
Personalized KB
…
Domain Experts Step 2
… Subjects
Step 4
Food Item > Fuzzy Set Right Linear Fuzzy Set …….. …………
Example: tipper.fml
Example : tipper.fml
Example : tipper.fml food rancid service poor tip cheap
service good tip average
Example : tipper.fml