Document not found! Please try again

Generalized Bilinear Differential Operators, Binary Bell Polynomials ...

3 downloads 0 Views 2MB Size Report
Jun 20, 2014 - (5). However, based on the Hirota -operators, Professor Ma put forward ..... The authors declare that there is no conflict of interests regardingΒ ...
Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2014, Article ID 738609, 6 pages http://dx.doi.org/10.1155/2014/738609

Research Article Generalized Bilinear Differential Operators, Binary Bell Polynomials, and Exact Periodic Wave Solution of Boiti-Leon-Manna-Pempinelli Equation Huanhe Dong,1 Yanfeng Zhang,1 Yongfeng Zhang,1 and Baoshu Yin2,3 1

College of Mathematics and System Science, Shandong University of Science and Technology, Qingdao 266590, China Institute of Oceanology, China Academy of Sciences, Qingdao 266071, China 3 Key Laboratory of Ocean Circulation and Wave, Chinese Academy of Sciences, Qingdao 266071, China 2

Correspondence should be addressed to Yanfeng Zhang; [email protected] Received 5 May 2014; Accepted 20 June 2014; Published 8 July 2014 Academic Editor: Tiecheng Xia Copyright Β© 2014 Huanhe Dong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We introduce how to obtain the bilinear form and the exact periodic wave solutions of a class of (2 + 1)-dimensional nonlinear integrable differential equations directly and quickly with the help of the generalized 𝐷𝑝 -operators, binary Bell polynomials, and a general Riemann theta function in terms of the Hirota method. As applications, we solve the periodic wave solution of BLMP equation and it can be reduced to soliton solution via asymptotic analysis when the value of 𝑝 is 5.

1. Introduction It is significantly important to research nonlinear evolution equations in exploring physical phenomena in depth [1, 2]. Since the soliton theory has been proposed, the research on seeking the exact solutions of the soliton equations has attracted great attention and made great progress. A series of methods have been proposed, such as PainlΒ΄eve test [3], BΒ¨acklund transformation method [4, 5], Darboux transformation [6], inverse scattering transformation method [7], Lie group method [8, 9], and Hamiltonian method [10, 11]. Particularly, Hirota direct method [12, 13] provides a direct approach to solve a kind of specific bilinear differential equations among the exciting methods. As we all know, once the bilinear forms of nonlinear differential equations are obtained, we can construct the multisoliton solutions, the bilinear BΒ¨acklund transformation, and Lax pairs easily. It is clear that the key of Hirota direct method is to find the bilinear forms of the given differential equations by the Hirota differential 𝐷-operators. Recently, Ma put forward generalized bilinear differential operators named 𝐷𝑝 -operators in

[14] which are used to create bilinear differential equations. Furthermore, different symbols are also used to furnish relations with Bell polynomials in [15], and even for trilinear equations in [16]. In this paper, we would like to explore the relations between multivariate binary Bell polynomials [17–19] and the 𝐷𝑝 -operators and to find the bilinear form of Boiti-LeonManna-Pempinelli (BLMP) equation [20, 21]. Then, we can obtain the exact periodic wave solution [22–25] of the BLMP equation with the help of a general Riemann theta function in terms of Hirota method. The paper is structured as follows. In Section 2, we will give a brief introduction about the difference between the Hirota differential 𝐷-operators and the generalized 𝐷𝑃 operators. In Section 3, we will explore the relations between multivariate binary Bell polynomials and the 𝐷𝑝 -operators. In Section 4, we will use the relation in Section 2 to seek the differential form of the BLMP equation and then take advantage of the Riemann theta function [26, 27] and Hirota method to obtain its exact periodic wave solution which can be reduced to the soliton solution via asymptotic analysis.

2

Abstract and Applied Analysis

2. Hirota Bilinear 𝐷-Operators and the Generalized 𝐷𝑝 -Operators

where, for an integer π‘˜, the π‘˜th power of 𝛼 is defined by

It is known to us that Hirota bilinear 𝐷-operators play a significant role in Hirota direct method. The 𝐷-operators are defined in [14] as the following: 𝐷π‘₯π‘š 𝐷𝑑𝑛 π‘Ž (π‘₯, 𝑑) 𝑏 (π‘₯, 𝑑) =

πœ• π‘š πœ•π‘› πœ•π‘¦π‘š πœ•π‘¦π‘›

󡄨 Γ— π‘Ž(π‘₯ + 𝑦, 𝑑 + 𝑠)𝑏(π‘₯ βˆ’ 𝑦, 𝑑 βˆ’ 𝑠)󡄨󡄨󡄨𝑠=0,𝑦=0 , (1) where π‘š, 𝑛 = 0, 1, 2, . . .. Generally, we have 𝐷π‘₯𝑛 π·π‘¦π‘š 𝐷𝑑𝑠 π‘Ž (π‘₯, 𝑦, 𝑑) 𝑏 (π‘₯σΈ€  , 𝑦󸀠 , 𝑑󸀠 ) =(

πœ• πœ• 𝑛 πœ• πœ• π‘š βˆ’ σΈ€ ) ( βˆ’ σΈ€ ) πœ•π‘₯ πœ•π‘₯ πœ•π‘¦ πœ•π‘¦

Γ—(

𝛼 = βˆ’1,

𝛼2 = 1,

𝛼3 = βˆ’1,

𝛼4 = 𝛼5 = 1,

𝛼6 = βˆ’1,

𝛼7 = 1,

𝛼8 = βˆ’1,

𝛼9 = 𝛼10 = 1,

𝑒𝑑𝑑 βˆ’ 𝑒π‘₯π‘₯ βˆ’ 3(𝑒 )π‘₯π‘₯ βˆ’ 𝑒π‘₯π‘₯π‘₯π‘₯ = 0,

(3)

under 𝑒 = 2(ln 𝐹)π‘₯π‘₯ , we have 3 4 𝐹 βˆ’ 𝐹π‘₯π‘₯ 𝐹 𝐹2 π‘₯

(4)

6 2 𝐹 𝐹 + 4𝐹π‘₯ 𝐹π‘₯π‘₯π‘₯ βˆ’ 𝐹π‘₯π‘₯π‘₯π‘₯ 𝐹 = 0; 𝐹 π‘₯ π‘₯π‘₯

.. .

2 𝐷5,π‘₯ 𝑓 β‹… 𝑔 = 𝑓π‘₯π‘₯ 𝑔 βˆ’ 2𝑓π‘₯ 𝑔π‘₯ + 𝑓𝑔π‘₯π‘₯ , 4 𝑓 𝐷5,π‘₯

Now, under 𝑒 = 2(ln 𝐹)π‘₯π‘₯ , the generalized bilinear Boussinesq equation can be expressed as 2 2 4 (𝐷5,𝑑 βˆ’ 𝐷5,π‘₯ βˆ’ 𝐷5,π‘₯ ) 𝐹 β‹… 𝐹 = 0.

(𝐷𝑑2 βˆ’ 𝐷π‘₯2 βˆ’ 𝐷π‘₯4 ) 𝐹 β‹… 𝐹 = 0.

(5)

However, based on the Hirota 𝐷-operators, Professor Ma put forward a kind of generalized bilinear 𝐷𝑝 -operators in [14]: 𝑛 π‘š 𝑠 𝐷𝑝,𝑦 𝐷𝑝,𝑑 𝑓 (π‘₯, 𝑦, 𝑑) 𝑔 (π‘₯σΈ€  , 𝑦󸀠 , 𝑑󸀠 ) 𝐷𝑝,π‘₯

(9)

β‹… 𝑔 = 𝑓4π‘₯ βˆ’ 4𝑓3π‘₯ 𝑔π‘₯ + 6𝑓π‘₯π‘₯ 𝑔π‘₯π‘₯ βˆ’ 4𝑓π‘₯ 𝑔3π‘₯ + 𝑓𝑔4π‘₯ .

we can get its bilinear form with 𝐷-operators

(10)

Then, we would like to discuss how to use the 𝐷-operator to seek the bilinear differential form of other nonlinear integrable differential equations with the help of binary Bell polynomial.

3. Binary Bell Polynomial

πœ• πœ• 𝑛 πœ• πœ• π‘š =( + 𝛼 σΈ€ ) ( + 𝛼 σΈ€ ) πœ•π‘₯ πœ•π‘₯ πœ•π‘¦ πœ•π‘¦ 󡄨󡄨 πœ• πœ• 𝑠 󡄨 , + 𝛼 σΈ€  ) 𝑓 (π‘₯, 𝑦, 𝑑) 𝑔 (π‘₯σΈ€  , 𝑦󸀠 , 𝑑󸀠 )󡄨󡄨󡄨 󡄨󡄨π‘₯σΈ€  =π‘₯,𝑦󸀠 =𝑦,𝑑󸀠 =𝑑 πœ•π‘‘ πœ•π‘‘ (6)

As we all know, Bell proposed three kinds of exponentform polynomials. Later, Lambert, Gilson, and their partners generalized the third type of Bell polynomials in [28, 29] which is used mainly in this paper. The multidimensional binary Bell polynomials which we will use are defined as follows:

π‘Œπ‘›1 π‘₯1 ,...,𝑛𝑙 π‘₯𝑙 (𝑦) = π‘Œπ‘›1 ,...,𝑛𝑙 (π‘¦π‘Ÿ1 , . . . π‘¦π‘Ÿπ‘™ ) βˆ’π‘¦ 𝑛1 𝑛𝑙 𝑦 (𝑛1 , . . . , 𝑛𝑙 β‰₯ 0) , 󡄨󡄨 = 𝑒 πœ•π‘₯1 , . . . , πœ•π‘₯𝑙 𝑒 Y𝑛1 π‘₯1 ,...,𝑛𝑙 π‘₯𝑙 (𝜐, πœ”) = π‘Œπ‘›1 ,...,𝑛𝑙 (𝑦)󡄨󡄨󡄨(𝑦 π‘Ÿ1 +β‹…β‹…β‹…+π‘Ÿπ‘™ )πœπ‘Ÿ π‘₯ ,...,π‘Ÿ π‘₯ +(1/2)(1βˆ’(βˆ’1)π‘Ÿ1 +β‹…β‹…β‹…+π‘Ÿπ‘™ )πœ” π‘Ÿ π‘₯ ,...,π‘Ÿ π‘₯ =(1/2)(1+(βˆ’1) 1 1

in which π‘¦π‘Ÿ1 π‘₯1 ,...,π‘Ÿπ‘™ π‘₯𝑙 = πœ•π‘₯π‘Ÿ11 , . . . , πœ•π‘₯π‘Ÿπ‘™π‘™ 𝑦(π‘₯1 , . . . , π‘₯𝑙 ).

(8)

𝐷5,π‘₯ 𝐷5,𝑑 𝑓 β‹… 𝑔 = 𝑓π‘₯𝑑 𝑔 βˆ’ 𝑓π‘₯ 𝑔𝑑 βˆ’ 𝑓𝑑 𝑔π‘₯ + 𝑓𝑔π‘₯𝑑 ,

2

Γ—(

(7)

By (6) and (8), it is clear to see that

where π‘š, 𝑛, 𝑠 = 0, 1, 2, . . .. For instance, for the Boussinesq equation

βˆ’

if π‘˜ ≑ π‘Ÿ (π‘˜) mod 𝑝

with 0 β©½ π‘Ÿ(π‘˜) < 𝑝. For example, if 𝑝 = 2π‘˜ (π‘˜ ∈ 𝑁), the 𝐷-operators are Hirota operators. If 𝑝 = 5, we have

(2)

󡄨󡄨 πœ• πœ• 𝑠 󡄨 , βˆ’ σΈ€  ) π‘Ž (π‘₯, 𝑦, 𝑑) 𝑏 (π‘₯σΈ€  , 𝑦󸀠 , 𝑑󸀠 )󡄨󡄨󡄨 󡄨󡄨π‘₯σΈ€  =π‘₯,𝑦󸀠 =𝑦,𝑑󸀠 =𝑑 πœ•π‘‘ πœ•π‘‘

βˆ’ 𝐹𝑑2 + 𝐹𝑑𝑑 𝐹 + 𝐹π‘₯2 +

π›Όπ‘˜ = (βˆ’1)π‘Ÿ (π‘˜) ,

𝑙 𝑙

1 1

1 1

In that way, we have

π‘Ÿ1 π‘₯1 ,...,π‘Ÿ1 π‘₯1

)

,

(11)

Abstract and Applied Analysis

3

𝑦π‘₯ (𝜐, πœ”) = 𝜐π‘₯ , 𝑦2π‘₯ (𝜐, πœ”) =

𝜐π‘₯2

When 𝑝 = 5, we can obtain that

+ πœ”π‘₯π‘₯ ,

(12)

𝑃5;𝑦,𝑑 = π‘žπ‘₯𝑑 ,

𝑦π‘₯,𝑦 (𝜐, πœ”) = πœ”π‘₯𝑦 + 𝜐π‘₯ πœπ‘¦ .

𝑃5;2π‘₯ = π‘žπ‘₯π‘₯ , 2 𝑃5;4π‘₯ = 3π‘ž2π‘₯ + π‘ž4π‘₯ ,

For convenience, we assume that

(17)

𝑃5;3π‘₯,𝑦 = π‘ž3π‘₯𝑦 + 3π‘žπ‘₯π‘₯ π‘žπ‘₯𝑦 , πœ‰(π‘₯1 ,...,π‘₯𝑙 )

𝐹=𝑒

πœ‰=

,

πœ”+𝜐 , 2

πœ‚(π‘₯1 ,...,π‘₯𝑙 )

𝐺=𝑒 πœ‚=

, (13)

πœ”βˆ’πœ 2

and read that

In this section, firstly, we will give the bilinear form of BLMP equation with the help of P-polynomials and the 𝐷𝑝 operators. And then, we construct the exact periodic wave solution of BLMP equation with the aid of the Riemann theta function, Hirota direct method, and the special property of the 𝐷𝑝 -operators when acting on exponential functions.

𝑛1 𝑛𝑙 , . . . , 𝐷𝑝,π‘₯ 𝐹 (πœ‰) β‹… 𝐺 (πœ‚) = πΊβˆ’1 (πœ‚) πΉβˆ’1 (πœ‰) 𝐷𝑝,π‘₯ 1 𝑙 𝑛𝑙

𝑙

𝑛

= βˆ‘ β‹… β‹… β‹… βˆ‘ βˆπ›Όπ‘˜π‘– (π‘˜π‘– ) (π‘’βˆ’πœ‰ πœ•π‘₯𝑛11 βˆ’π‘˜1 , . . . , πœ•π‘₯𝑛𝑙𝑙 βˆ’π‘˜π‘™ π‘’πœ‰ ) π‘˜1 =0

𝑖

π‘˜π‘™ =0 𝑖=1

4.1. Bilinear Form. BLMP equation can be written as

Γ— (π‘’βˆ’πœ‚ πœ•π‘₯𝑛11 βˆ’π‘˜1 , . . . , πœ•π‘₯𝑛𝑙𝑙 βˆ’π‘˜π‘™ π‘’πœ‚ ) =

𝑛1

Let us now utilize the P-polynomials given above to seek the bilinear form of BLMP equation with the 𝐷𝑝 -operators.

4. Boiti-Leon-Manna-Pempinelli Equation

𝑛1 𝑛𝑙 , . . . , 𝐷𝑝,π‘₯ 𝐹⋅𝐺 (𝐹𝐺)βˆ’1 𝐷𝑝,π‘₯ 1 𝑙

𝑛1

𝑃5;2π‘₯,𝑑 = 0.

𝑛𝑙

𝑙

𝑛 βˆ‘ β‹… β‹… β‹… βˆ‘ ∏ (π‘˜π‘– ) π‘Œπ‘›1 βˆ’π‘˜1 ,...,𝑛𝑙 βˆ’π‘˜π‘™ 𝑖 π‘˜1 =0 π‘˜π‘™ =0 𝑖=1

(πœ‰) , π‘Œπ‘˜1 ,...,π‘˜π‘™ (𝛼

𝑒𝑦,𝑑 + 𝑒3π‘₯,𝑦 βˆ’ 3𝑒2π‘₯ 𝑒𝑦 βˆ’ 3𝑒π‘₯ 𝑒π‘₯,𝑦 = 0. π‘Ÿ

βˆ‘π‘Ÿπ‘™1 π‘Ÿπ‘–

πœ‚)

Setting 𝑒 = βˆ’π‘žπ‘₯ , inserting it into (18), and integrating with respect to π‘₯ yields

π‘Ÿπ‘™

= π‘Œπ‘›1 ,...,𝑛𝑙 (π‘¦π‘Ÿ1 ,...,π‘Ÿπ‘™ = πœ‰π‘Ÿ1 ,...,π‘Ÿπ‘™ + π›Όβˆ‘π‘Ÿ1 π‘Ÿπ‘– πœ‚π‘Ÿ1 ,...,π‘Ÿπ‘™ ) = π‘Œπ‘›1 ,...,𝑛𝑙 (π‘¦π‘Ÿ1 ,...,π‘Ÿπ‘™ =

π‘žπ‘¦,𝑑 + π‘ž3π‘₯,𝑦 + 3π‘žπ‘₯π‘₯ π‘žπ‘₯,𝑦 βˆ’ πœ† = 0,

π‘Ÿπ‘™ 1 (1 + π›Όβˆ‘π‘Ÿ1 π‘Ÿπ‘– ) πœπ‘Ÿ1 ,...,π‘Ÿπ‘™ 2

𝑃5;𝑦,𝑑 (π‘ž) + 𝑃5;3π‘₯,𝑦 (π‘ž) βˆ’ πœ† = 0.

(14) We find that the link between Y-polynomials and the 𝐷𝑝 -operator can be given as the following through the above deduction: ln 𝐹 , πœ” = ln 𝐹𝐺) 𝐺

= π‘Œπ‘›1 ,...,𝑛𝑙 (π‘¦π‘Ÿ1 ,...,π‘Ÿπ‘™

(20)

From the above, we can get the bilinear form of (18):

= Y𝑝;𝑛1 π‘₯1 ,...,𝑛𝑙 π‘₯𝑙 (𝜐, πœ”) .

π‘Ÿπ‘™ 1 = (1 + π›Όβˆ‘π‘Ÿ1 π‘Ÿπ‘– ) πœπ‘Ÿ1 , . . . , π‘Ÿπ‘™ 2

(19)

where πœ† is an integral constant. Based on (17), (19) can be expressed as

π‘Ÿπ‘™ 1 + (1 + π›Όβˆ‘π‘Ÿ1 π‘Ÿπ‘– ) πœ”π‘Ÿ1 ,...,π‘Ÿπ‘™ ) 2

Y𝑝;𝑛1 π‘₯1 ,...,𝑛𝑙 π‘₯𝑙 (𝜐 =

(18)

3 (𝐷5,𝑦 𝐷5,𝑑 + 𝐷5,π‘₯ 𝐷5,𝑦 ) 𝐹 β‹… 𝐹 βˆ’ πœ† β‹… 𝐹2 = 0

with π‘ž = 2 ln 𝐹. 4.2. Periodic Wave Solutions. When acting on exponential functions, we find that 𝐷𝑝 -operators have a good property 𝐻 (𝐷𝑝,π‘₯1 , . . . , 𝐷𝑝,π‘₯𝑙 ) π‘’πœ‰1 β‹… π‘’πœ‰2

(15)

π‘Ÿπ‘™ 1 + (1 + π›Όβˆ‘π‘Ÿ1 π‘Ÿπ‘– ) πœ”π‘Ÿ1 , . . . , π‘Ÿπ‘™ ) . 2

Particularly, when 𝐹 = 𝐺, we define P-polynomials by P𝑝;𝑛1 π‘₯1 ,...,𝑛𝑙 π‘₯𝑙 (π‘ž) = Y𝑝;𝑛1 π‘₯1 ,...,𝑛𝑙 π‘₯𝑙 (𝜐 = 0, πœ” = 2 ln 𝐹 = π‘ž) . (16)

(21)

= 𝐻 (π‘˜1 + π›Όπ‘˜2 , 𝑙1 + 𝛼𝑙2 , 𝑀1 + 𝛼𝑀2 ) π‘’πœ‰1 +πœ‰2 ,

(22)

if we assume that πœ‰π‘– = π‘˜π‘– π‘₯ + 𝑙𝑖 𝑦 + 𝑀𝑖 𝑑 + πœ‰π‘–(0)

𝑖 = 1, 2, . . . .

(23)

As a result of the property above, we consider Riemann’s theta function solution of (18): ∞

2

𝐹 = βˆ‘ 𝑒2πœ‹π‘–π‘›πœ‚+πœ‹π‘–π‘› 𝜏 , 𝑛=βˆ’βˆž

(24)

4

Abstract and Applied Analysis

where 𝑛 ∈ 𝑍, 𝜏 ∈ 𝐢, Im 𝜏 > 0, πœ‚ = π‘˜π‘₯ + 𝑙𝑦 + 𝑀𝑑, with π‘˜, 𝑙, and 𝑀 being constants to be determined. Then, we have 𝐻 (𝐷𝑝,π‘₯ , 𝐷𝑝,𝑦 , 𝐷𝑝,𝑑 ) 𝐹 β‹… 𝐹 2

2

βˆ‘ 𝐻 (𝐷𝑝,π‘₯ , 𝐷𝑝,𝑦 , 𝐷𝑝,𝑑 ) 𝑒2πœ‹π‘–π‘›πœ‚+πœ‹π‘–π‘› 𝜏 𝑒2πœ‹π‘–π‘šπœ‚+πœ‹π‘–π‘š 𝜏

= βˆ‘

𝑛=βˆ’βˆž π‘š=βˆ’βˆž

= βˆ‘

(27)

∞

𝐻 (0) = βˆ‘ {[2πœ‹π‘– (1 βˆ’ 𝛼) 𝑛]2 𝑙 β‹… 𝑀 + [2πœ‹π‘– (1 βˆ’ 𝛼) π‘›π‘˜]3 𝑛=βˆ’βˆž

∞

∞

𝐻 (0) π‘’πœ‹π‘–π‘›π‘žπœ , π‘ž = 2𝑛; 𝐻 (π‘ž) = { πœ‹π‘–(2𝑛+2𝑛2 )(π‘ž+1)𝜏 𝐻 (1) 𝑒 , π‘ž = 2𝑛 + 1. For (21), we may let

∞

∞

From (26) we can infer that

2

β‹… 2πœ‹π‘– (1 βˆ’ 𝛼) 𝑛𝑙 βˆ’ πœ†} 𝑒2πœ‹π‘–π‘› 𝜏

βˆ‘ 𝐻 (2πœ‹π‘– (𝑛 + π›Όπ‘š) π‘˜, 2πœ‹π‘– (𝑛 + π›Όπ‘š) 𝑙,

𝑛=βˆ’βˆž π‘š=βˆ’βˆž

2

2

2πœ‹π‘– (𝑛 + π›Όπ‘š) 𝑀) 𝑒2πœ‹π‘–(𝑛+π‘š)πœ‚+πœ‹π‘–(𝑛 +π‘š )𝜏 ∞

∞

π‘ž=βˆ’βˆž

π‘š=βˆ’βˆž

2

∞

3

= βˆ‘ (βˆ’16𝑛2 πœ‹2 𝑙𝑀 + 25𝑛4 πœ‹4 π‘˜3 𝑙 βˆ’ πœ†) 𝑒2πœ‹π‘–π‘› 𝜏 𝑛=βˆ’βˆž

= 0,

= βˆ‘ { βˆ‘ 𝐻 ((2πœ‹π‘– (1 βˆ’ 𝛼) 𝑛 βˆ’ 𝛼 π‘ž) π‘˜,

∞

𝐻 (1) = βˆ‘ {2πœ‹ (𝑖 (1 βˆ’ 𝛼) 𝑛 βˆ’ 𝛼2 ) 𝑙

(2πœ‹π‘– (1 βˆ’ 𝛼) 𝑛 βˆ’ 𝛼2 π‘ž) 𝑙,

𝑛=βˆ’βˆž

β‹… 2πœ‹ (𝑖 (1 βˆ’ 𝛼) 𝑛 βˆ’ 𝛼2 ) 𝑀

(2πœ‹π‘– (1 βˆ’ 𝛼) 𝑛 βˆ’ 𝛼2 π‘ž) 𝑀)

3

+ [2πœ‹ (𝑖 (1 βˆ’ 𝛼) 𝑛 βˆ’ 𝛼2 ) π‘˜]

2

2

Γ— π‘’πœ‹π‘–(𝑛 +(𝑛+π›Όπ‘ž) )𝜏 } 𝑒2πœ‹π‘–(βˆ’π›Όπ‘ž)πœ‚

β‹… 2πœ‹ (𝑖 (1 βˆ’ 𝛼) 𝑛 βˆ’ 𝛼2 ) 𝑙 βˆ’ πœ†}

∞

= βˆ‘ 𝐻 (π‘ž) 𝑒2πœ‹π‘–(βˆ’π›Όπ‘ž)πœ‚ ,

2

Γ— 𝑒2πœ‹π‘–(𝑛 βˆ’2𝑛+1)𝜏

π‘ž=βˆ’βˆž

(25) where π‘ž = βˆ’(1/𝛼)(π‘š + 𝑛). To the bilinear form of BLMP equation, 𝐻(π‘ž) satisfies the period characters when 𝑝 = 5. The powers of 𝛼 obey rule (7), noting that ∞

∞

= βˆ‘ [βˆ’4(2𝑛 βˆ’ 1)2 πœ‹2 𝑙𝑀 + 16(2𝑛 βˆ’ 1)4 πœ‹4 π‘˜3 𝑙 βˆ’ πœ†] 𝑛=βˆ’βˆž

2

Γ— π‘’πœ‹π‘–(2𝑛 βˆ’2𝑛+1)𝜏 = 0. (28) Also, the powers of 𝛼 obey rule (7). For the sake of computational convenience, we denote that

2

𝐻 (π‘ž) = βˆ‘ 𝐻 ((2πœ‹π‘– (1 βˆ’ 𝛼) 𝑛 βˆ’ 𝛼 π‘ž) π‘˜, 𝑛=βˆ’βˆž

2

𝑔1 (𝑛) = 𝑒2πœ‹π‘–π‘› 𝜏 ,

2

(2πœ‹π‘– (1 βˆ’ 𝛼) 𝑛 βˆ’ 𝛼 π‘ž) 𝑙,

∞

π‘Ž11 = βˆ‘ βˆ’ 16𝑛2 πœ‹2 𝑙𝑔1 (𝑛) ,

πœ‹π‘–(𝑛2 +(𝑛+π›Όπ‘ž)2 )𝜏

2

(2πœ‹π‘– (1 βˆ’ 𝛼) 𝑛 βˆ’ 𝛼 π‘ž) 𝑀) 𝑒

𝑛=βˆ’βˆž ∞

∞

π‘Ž12 = βˆ‘ (256𝑛4 πœ‹4 π‘˜3 𝑙) 𝑔1 (𝑛) ,

= βˆ‘ 𝐻 (2πœ‹π‘– (2𝑛 βˆ’ π‘ž) π‘˜, 2πœ‹π‘– (2𝑛 βˆ’ π‘ž) 𝑙,

𝑛=βˆ’βˆž

𝑛=βˆ’βˆž

2

∞

2

2πœ‹π‘– (2𝑛 βˆ’ π‘ž) 𝑀) π‘’πœ‹π‘–(𝑛 +(π‘žβˆ’π‘›) )𝜏

π‘Ž13 = βˆ‘ 𝑔1 (𝑛) ;

∞

𝑛=βˆ’βˆž

β„Ž=βˆ’βˆž

𝑔2 (𝑛) = π‘’πœ‹π‘–(2𝑛 βˆ’2𝑛+1)𝜏 ,

= βˆ‘ 𝐻 (2πœ‹π‘– (2β„Ž βˆ’ (π‘ž βˆ’ 2)) π‘˜,

2

2πœ‹π‘– (2β„Ž βˆ’ (π‘ž βˆ’ 2)) 𝑙, 2πœ‹π‘– (2β„Ž βˆ’ (π‘ž βˆ’ 2)) 𝑀) 2

𝑛=βˆ’βˆž

2

β‹… π‘’πœ‹π‘–(β„Ž +(π‘žβˆ’β„Žβˆ’2) )𝜏 β‹… 𝑒2πœ‹π‘–(π‘žβˆ’1)𝜏 2πœ‹π‘–(π‘žβˆ’1)𝜏

= 𝐻 (π‘ž βˆ’ 2) 𝑒

∞

π‘Ž22 = βˆ‘ (16(2𝑛 βˆ’ 1)4 πœ‹4 π‘˜3 𝑙) 𝑔2 (𝑛) ,

, (26)

where β„Ž = 𝑛 + 𝛼.

∞

π‘Ž21 = βˆ‘ βˆ’ 4(2𝑛 βˆ’ 1)2 πœ‹2 𝑙𝑔2 (𝑛) ,

𝑛=βˆ’βˆž ∞

π‘Ž23 = βˆ‘ 𝑔2 (𝑛) . 𝑛=βˆ’βˆž

(29)

Abstract and Applied Analysis

5

By (28), (29), and (30), we can get that π‘Ž11 πœ” + π‘Ž12 βˆ’ πœ†π‘Ž13 = 0,

In view of (30), it is easy to see that πœ”= πœ†=

π‘Ž13 π‘Ž22 βˆ’ π‘Ž23 π‘Ž12 , π‘Ž11 π‘Ž23 βˆ’ π‘Ž13 π‘Ž21

(31)

π‘Ž12 π‘Ž21 βˆ’ π‘Ž11 π‘Ž22 . π‘Ž11 π‘Ž23 βˆ’ π‘Ž13 π‘Ž21

F(x, y, t = 10)

(30)

π‘Ž21 πœ” + π‘Ž22 βˆ’ πœ†π‘Ž23 = 0.

1.05 1 0.95 βˆ’100

100

x

Thus, we obtain the periodic wave solution of BLMP equation: 𝑒 = βˆ’2(ln 𝐹)π‘₯ ,

2

π‘Ž11 = βˆ‘ βˆ’ 16𝑛2 πœ‹2 𝑙 β‹… 𝑒2πœ‹π‘–π‘› 𝜏 2

8

󳨀→ 1 + π‘’πœ‚1

= 2 Γ— 256πœ‹4 π‘˜3 𝑙 (𝛾2 + 4𝛾8 + 9𝛾18 + β‹… β‹… β‹… ) , 2

𝑛=βˆ’βˆž

(33) πœ‹π‘–(2𝑛2 βˆ’2𝑛+1)𝜏

π‘Ž21 = βˆ‘ βˆ’ 4(2𝑛 βˆ’ 1) πœ‹ 𝑙 β‹… 𝑒

2

π‘Ž22 = βˆ‘ 16(2𝑛 βˆ’ 1)4 πœ‹4 π‘˜3 𝑙 β‹… π‘’πœ‹π‘–(2𝑛 βˆ’2𝑛+1)𝜏

2 3

𝐹 = 1 + 𝑒2πœ‹π‘–(π‘˜π‘₯+𝑙𝑦+4πœ‹ π‘˜ 𝑑+𝜏) ,

𝑛=βˆ’βˆž

= 32πœ‹4 π‘˜3 𝑙 (𝛾 + 34 𝛾5 + 54 𝛾13 + β‹… β‹… β‹… ) , 2

5. Conclusions and Remarks

𝑛=βˆ’βˆž

which lead to π‘Ž11 π‘Ž23 βˆ’ π‘Ž21 π‘Ž13 = 8πœ‹2 𝑙𝛾 + π‘œ (𝛾) , (34)

π‘Ž11 π‘Ž22 βˆ’ π‘Ž12 π‘Ž21 = π‘œ (𝛾) . So, we have πœ” β†’ 4πœ‹2 π‘˜3 and πœ† β†’ 0, as 𝛾 β†’ 0. It is interesting that if we set 𝑙1 = 2πœ‹π‘–π‘™,

𝑀1 = 2πœ‹π‘–π‘€,

πœ‚1 = π‘˜1 π‘₯ + 𝑙1 𝑦 + 𝑀1 𝑑 + πœ‹π‘–πœ,

(38)

solution of (18) can be shown in Figure 1.

π‘Ž23 = βˆ‘ π‘’πœ‹π‘–(2𝑛 βˆ’2𝑛+1)𝜏 = 1 + 2𝛾 + 2𝛾5 + 2𝛾13 + β‹… β‹… β‹…

π‘˜1 = 2πœ‹π‘–π‘˜,

(37)

Thus, if we assume that π‘˜ = 0.01, 𝑙 = 0.01, and 𝜏 = 𝑖 to the solution

= βˆ’8πœ‹2 𝑙 (𝛾 + 9𝛾5 + 25𝛾13 + β‹… β‹… β‹… ) ,

π‘Ž13 π‘Ž22 βˆ’ π‘Ž12 π‘Ž23 = 32πœ‹4 π‘˜3 𝑙𝛾 + π‘œ (𝛾) ,

From all the above, it can be proved that the periodic wave solution (32) just goes to the soliton solution 𝑀1 = 2πœ‹π‘–π‘€ 󳨀→ βˆ’π‘˜13 .

𝑛=βˆ’βˆž

∞

(πœ‚1 󳨀→ 0) . (36)

π‘Ž13 = βˆ‘ 𝑒2πœ‹π‘–π‘› 𝜏 = 1 + 2𝛾2 + 2𝛾8 + 2𝛾18 + β‹… β‹… β‹… ,

∞

2

= 1 + π‘’πœ‚1 + 𝛾2 (π‘’πœ‚1 + 𝑒2πœ‚1 ) + 𝛾6 (π‘’βˆ’2πœ‚1 + 𝑒3πœ‚1 ) + β‹… β‹… β‹… ,

𝑛=βˆ’βˆž

2 2

which can infer that

= 1 + π‘’πœ‹π‘–πœ‚ (𝑒2πœ‹π‘–πœ‚ + π‘’βˆ’2πœ‹π‘–πœ‚ ) + 𝑒4πœ‹π‘–πœ‚ (𝑒4πœ‹π‘–πœ‚ + π‘’βˆ’4πœ‹π‘–πœ‚ ) + β‹… β‹… β‹… ,

2

∞

y

𝑛=βˆ’βˆž

18

π‘Ž12 = βˆ‘ 256𝑛4 πœ‹4 π‘˜3 𝑙 β‹… 𝑒2πœ‹π‘–π‘› 𝜏

∞

βˆ’50

Figure 1: Solution of (18).

∞

= βˆ’32πœ‹ 𝑙 (𝛾 + 4𝛾 + 9𝛾 + β‹… β‹… β‹… ) , ∞

0 50

𝐹 = βˆ‘ 𝑒2πœ‹π‘–πœ‚+πœ‹π‘–π‘› 𝜏 ,

𝑛=βˆ’βˆž

2

0 100 βˆ’100

(32)

where 𝐹 is given by (24) and πœ”, πœ† are satisfied with (31). Then, assuming π‘’πœ‹π‘–πœ = 𝛾, based on (29), we may obtain that ∞

50

βˆ’50

(35)

In this paper, we obtain the bilinear form of bilinear differential equations by applying the 𝐷𝑝 -operators and binary Bell polynomials, which has proved to be a quick and direct method. Furthermore, together with Riemann theta function and Hirota method, we successfully get the exact periodic wave solution and figure of BLMP equation when 𝑝 = 5. There are many other interesting questions on bilinear differential equations, for example, how to apply the generalized operators into the discrete equations; it is known that researches on the discrete and differential equations are also significant. Besides, we will try to explore other operators to construct more nonlinear evolution equations simply and directly in the near future.

6

Conflict of Interests The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments This work was supported by National Natural Science Foundation of China (no. 11271007), Nature Science Foundation of Shandong Province of China (no. ZR2013AQ017), the Strategic Pioneering Program of Chinese Academy of Sciences (no. XDA 10020104), SDUST Research Fund (no. 2012 KYTD105), Open Fund of the Key Laboratory of Ocean Circulation and Waves, Chinese Academy of Science (no. KLOCAW1401), and Graduate Innovation Foundation from Shandong University of Science and Technology (no. YC130321).

References [1] H. W. Yang, B. S. Yin, and Y. L. Shi, β€œForced dissipative Boussinesq equation for solitary waves excited by unstable topography,” Nonlinear Dynamics, vol. 70, no. 2, pp. 1389–1396, 2012. [2] H. W. Yang, X. R. Wang, and B. S. Yin, β€œA kind of new algebraic Rossby solitary waves generated by periodic external source,” Nonlinear Dynamics, vol. 76, no. 3, pp. 1725–1735, 2014. [3] G. Wei, Y. Gao, W. Hu, and C. Zhang, β€œPainlevΒ΄e analysis, auto-BΒ¨acklund transformation and new analytic solutions for a generalized variable-coefficient Korteweg-de Vries (KDV) equation,” The European Physical Journal B. Condensed Matter and Complex Systems, vol. 53, no. 3, pp. 343–350, 2006. [4] Y. Yang and Y. Chen, β€œPseudopotentials, lax pairs and bΒ¨acklund transformations for generalized fifth-order KdV equation,” Communications in Theoretical Physics, vol. 55, no. 1, pp. 25–28, 2011. [5] E. Fan, β€œNew bilinear BΒ¨acklund transformation and Lax pair for the supersymmetric two-BOSon equation,” Studies in Applied Mathematics, vol. 127, no. 3, pp. 284–301, 2011. [6] S. Lou and X. Hu, β€œBroer-Kaup systems from Darboux transformation related symmetry constraints of KADomtsevPetviashvili equation,” Communications in Theoretical Physics, vol. 29, no. 1, pp. 145–148, 1998. [7] R. Hirota, β€œThe BΒ¨acklund and inverse scattering transform of the K-dV equation with nonuniformities,” Journal of the Physical Society of Japan, vol. 46, no. 5, pp. 1681–1682, 1979. [8] H. Dong and X. Wang, β€œA Lie algebra containing four parameters for the generalized Dirac hierarchy,” Applied Mathematics and Computation, vol. 215, no. 2, pp. 459–463, 2009. [9] G. W. Bluman and S. Kumei, Symmetries and Differential Equations, Springer, New York, NY, USA, 1989. [10] Y. Zhang, β€œA generalized Boite–Pempinelli–Tu (BPT) hierarchy and its bi-Hamiltonian structure,” Physics Letters A, vol. 317, no. 3-4, pp. 280–286, 2003. [11] W. Ma, β€œNonlinear continuous integrable Hamiltonian couplings,” Applied Mathematics and Computation, vol. 217, no. 17, pp. 7238–7244, 2011. [12] Y. S. Li, Soliton and Integrable System, Shanghai Scientific and Technological Education Publishing House, Shanghai, China, 1999.

Abstract and Applied Analysis [13] W. Ma, Y. Zhang, Y. Tang, and J. Tu, β€œHirota bilinear equations with linear subspaces of solutions,” Applied Mathematics and Computation, vol. 218, no. 13, pp. 7174–7183, 2012. [14] W. Ma, β€œBilinear equations, Bell polynomials and linear superposition principle,” Journal of Physics: Conference Series, vol. 411, no. 1, Article ID 012021, 2013. [15] W. X. Ma, β€œBilinear equations and resonant solutions characterized by Bell polynomials,” Reports on Mathematical Physics, vol. 72, no. 1, pp. 41–56, 2013. [16] W. Ma, β€œTrilinear equations, Bell polynomials, and resonant solutions,” Frontiers of Mathematics in China, vol. 8, no. 5, pp. 1139–1156, 2013. [17] W. X. Ma, β€œGeneralized bilinear differential equations,” Studies in Nonlinear Sciences, vol. 2, no. 4, pp. 140–144, 2011. [18] Y. Wang and Y. Chen, β€œIntegrability of an extended (2+1)dimensional shallow water wave equation with Bell polynomials,” Chinese Physics B, vol. 22, no. 5, Article ID 050509, 2013. [19] Y. Wang and Y. Chen, β€œBinary Bell polynomials, bilinear approach to exact periodic wave solutions of (2+1)-dimensional nonlinear evolution equations,” Communications in Theoretical Physics, vol. 56, no. 4, pp. 672–678, 2011. [20] C. R. Gilson, J. J. C. Nimmo, and R. Willox, β€œA (2 + 1)dimensional generalization of the AKNS shallow water wave equation,” Physics Letters A, vol. 180, no. 4-5, pp. 337–345, 1993. [21] Q. U. Chang- Zheng, β€œSymmetry algebras of generalized (2 + 1)-dimensional KdV equation,” Communications in Theoretical Physics, vol. 25, no. 3, pp. 369–372, 1996. [22] A. Nakamura, β€œA direct method of calculating periodic wave solutions to nonlinear evolution equations. I. Exact twoperiodic wave solution,” Journal of the Physical Society of Japan, vol. 47, no. 5, pp. 1701–1705, 1979. [23] T. Xia, B. Li, and H. Zhang, β€œNew explicit and exact solutions for the Nizhnik-NOVikov-Vesselov equation,” Applied Mathematics E-Notes, vol. 1, pp. 139–142, 2001. [24] Z. Zhao, Y. Zhang, and T. Xia, β€œDouble periodic wave solutions of the (2 + 1)-dimensional Sawada-Kotera equation,” Abstract and Applied Analysis, vol. 2014, Article ID 534017, 6 pages, 2014. [25] T. C. Xia, F. J. Yu, and D. Y. Chen, β€œMulti-component CKdV hierarchy of soliton equations and its multi-component integrable coupling system,” Communications in Theoretical Physics, vol. 42, no. 4, pp. 494–496, 2004. [26] J. D. Fay, β€œRiemann’s theta function,” in Theta Functions on Riemann Surfaces, vol. 352 of Lecture Notes in Mathematics, pp. 1–15, Springer, Berlin, Germany, 1973. [27] L. Alvarez-GaumΒ΄e, G. Moore, and C. Vafa, β€œTheta functions, modular invariance, and strings,” Communications in Mathematical Physics, vol. 106, no. 1, pp. 1–40, 1986. [28] F. Lambert, I. Loris, J. Springael, and R. Willox, β€œOn a direct bilinearization method: Kaup’s higher-order water wave equation as a modified nonlocal Boussinesq equation,” Journal of Physics A: Mathematical and General, vol. 27, no. 15, pp. 5325– 5334, 1994. [29] C. Gilson, F. Lambert, J. Nimmo, and R. Willox, β€œOn the combinatorics of the Hirota 𝐷-operators,” Proceedings of the Royal Society. London. Series A. Mathematical, Physical and Engineering Sciences, vol. 452, no. 1945, pp. 223–234, 1996.

Advances in

Operations Research Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Advances in

Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Applied Mathematics

Algebra

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Probability and Statistics Volume 2014

The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Differential Equations Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Submit your manuscripts at http://www.hindawi.com International Journal of

Advances in

Combinatorics Hindawi Publishing Corporation http://www.hindawi.com

Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Journal of

Mathematics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Discrete Mathematics

Journal of

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Discrete Dynamics in Nature and Society

Journal of

Function Spaces Hindawi Publishing Corporation http://www.hindawi.com

Abstract and Applied Analysis

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Journal of

Stochastic Analysis

Optimization

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014