Hexagonal cellular automata for flood modelling

1 downloads 0 Views 6MB Size Report
Sep 22, 2016 - A cellular automata API. • A high performance, open source C++ library. • Developed at the University of Exeter (Centre for Water. Systems).
Hexagonal cellular automata for flood modelling

September 22, 2016

L. M. de Sousa1 , M. J. Gibson2 , A. S. Chen2 , D. Savić2 and J. P. Leitão1 1 Swiss

Federal Institute of Aquatic Science and Technology; 2 University of Exeter

Outline

1. CADDIES and CAFlood 2. Why Hexagons? 3. EAT8a Test 4. Results 5. Analysis 6. Summary and future work

de Sousa et alia

1

CADDIES and CAFlood

de Sousa et alia

CADDIES and CAFlood

2

CADDIES

A cellular automata API • A high performance, open source C++ library • Developed at the University of Exeter (Centre for Water Systems) • Classes: Grid, Box, Function, Clock, . . . • Compilation for diverse back-ends • Focus on parallel computing: • OpenMP - multi-core processors • OpenCL - multi-core graphical cards

de Sousa et alia

CADDIES and CAFlood

3

CAFlood

A fast flood analysis model • Developed on the CADDIES API • Applies a numerical simplification of Manning’s equation: • weight based system for inter-cellular water transfer • high performance maintaining accuracy

• Main simulation results: • Water depths (and levels) • Water velocities Guidolin M, Chen AS, Ghimire B, Keedwell EC, Djordjević S, Savić DA. 2016. A weighted cellular automata 2D inundation model for rapid flood analysis, Environmental Modelling & Software, Volume 84, Pages 378-394

de Sousa et alia

CADDIES and CAFlood

4

The CAFlood engine 2 3

0

1

4

de Sousa et alia

CADDIES and CAFlood

5

The CAFlood engine water mass

2 3

0

1 time step

4

cell edge length water depth

de Sousa et alia

CADDIES and CAFlood

6

The CAFlood worlds

Water levels

de Sousa et alia

North-South velocities

CADDIES and CAFlood

East-West velocities

7

Why Hexagons?

de Sousa et alia

Why Hexagons?

8

Anisotropic neighbourhood The border paradox with squared grids

Goolay MJE. 1969. Hexagonal parallel pattern transformations. IEEE Transactions on Computers. 18(8):733-740.

de Sousa et alia

Why Hexagons?

9

Hexagonal neighbourhood Unequivocal and isotropic

Goolay MJE. 1969. Hexagonal parallel pattern transformations. IEEE Transactions on Computers. 18(8):733-740.

de Sousa et alia

Why Hexagons?

10

Hexagons in the Fourier spectrum Gains in sampling and computation efficiency

Fourier transform with hexagons vs. squares: • Less 13.4% samples to capture the same signal • Less 25% computational cycles to calculate the transform • Less 25% memory usage Mersereau R. 1979. The processing of hexagonally sampled two-dimensional signals. In: Proceedings of the IEEE ; Vol. 67. p. 930-949. de Sousa et alia

Why Hexagons?

11

Hexagons in the Fourier spectrum Biological sampling systems are hexagonal

Light receiving cells in mammals eyes are distributed in an hexagonal pattern

Yellot JI. 1981. Spectral consequences of photoreceptor sampling in the rhesus retina. Science. (212):382-385.

de Sousa et alia

Why Hexagons?

12

Hexagons reproduce the Navier-Stokes equation

An hexagonal grid with six flow vectors linking each cell to its neighbours approaches the Navier-Stokes equilibrium in the continuum

Frisch U, Hasslacher B, Pomeu Y. 1986. Lattice-gas automata for the Navier-Stokes equation. Physical Review Letters. 56(14):1505-1508.

de Sousa et alia

Why Hexagons?

13

Hexagons preserve flow directions better

de Sousa LM, Nery F, Sousa R, Matos, J. 2006. Assessing the accuracy of hexagonal versus square tiled grids in preserving DEM surface flow directions. Procs. of the 7th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences. de Sousa et alia

Why Hexagons?

14

The HexASCII specification and API

41 2

21 31 42

11 22 32 12

43 23 33

2.2

13

O

3.1

15º

ncols 4 nrows 3 xll 3.1 yll 2.2 side 2 no_data 9999 angle 15 11 21 31 41 12 22 32 42 13 23 33 43

de Sousa LM, Leitão JP. 2016. HexASCII: a file format for cartographical hexagonal grids International Journal of Geographical Information Science. In review. https://github.com/ldesousa/HexAsciiBNF

de Sousa et alia

Why Hexagons?

15

The hexagonal CAFlood worlds

Water levels

North-South velocities

Northwest-Southeast velocities

de Sousa et alia

Why Hexagons?

Southwest-Northeast velocities

16

EAT8a Test

de Sousa et alia

EAT8a Test

17

The EAT8a test

Rain and water inflow events • Real topography • 966 x 406 meters area • 4 m2 cells • Total simulation time: 18 000 seconds • Rain event: 400 mm/hr in the [60, 240] seconds interval • Water inflow event: • • • •

de Sousa et alia

inflow area of 1x1 m at the north east corner active in the [1 200; 3 300] seconds interval gradual volume increase and decrease volume inflow peak of 2 m3 /s at 2 300 seconds

EAT8a Test

18

Digital elevation models

de Sousa et alia

EAT8a Test

19

Results

de Sousa et alia

Results

20

Execution times

Single processor run • Squares : 18m 25s • Hexagons : 24m 30s • 33% increase in run time • There is one extra velocities world!

de Sousa et alia

Results

21

Flooded areas Areas over 100 m2 with more than 0.15 m of water depth

0

de Sousa et alia

Results

Flood areas (hexagons) Flood areas (squares) 125

250 m

22

Peak Water Depth

Water depth (m) ]0; 0.15] ]0.15; 0.3] ]0.3; 0.45] ]0.45; 0.6] ]0.6; 1]

de Sousa et alia

Results

23

Peak Water Velocity

Velocity (m/s) >1.5 ]1.2; 1.5] ]0.8; 1.2] ]0.4; 0.8] ]0; 0.4]

de Sousa et alia

Results

24

Analysis

de Sousa et alia

Analysis

25

Peak Water Depth Peak Water Depth

Peak Water Depth shape

0.20

Hexagons Squares

60

0.15

density

Water depth (m)

40

0.10

20 0.05

0

0.00 0.00

0.02

0.04

0.06

Water depth (m)

de Sousa et alia

Hexagons

Squares

Cell shape

Analysis

26

Peak Water Velocity Peak Water Velocity

Peak Water Velocity 1.25

shape Hexagons Squares 6 1.00

Velocity (m/s)

0.75

density

4

0.50

2

0.25

0

0.00 0.00

0.25

0.50

0.75

1.00

Velocity (m/s)

de Sousa et alia

Hexagons

Squares

Cell shape

Analysis

27

Water Velocity at 600 seconds Water Velocity at 600 seconds

Water Velocity at 600 seconds 1.25

shape Hexagons Squares 6 1.00

Velocity (m/s)

0.75

density

4

0.50

2

0.25

0

0.00 0.00

0.25

0.50

0.75

1.00

Velocity (m/s)

de Sousa et alia

Hexagons

Squares

Cell shape

Analysis

28

Water Velocity at 2 400 seconds Water Velocity at 2 400 seconds

Water Velocity at 2 400 seconds 1.25

shape Hexagons Squares 6 1.00

Velocity (m/s)

0.75

density

4

0.50

2

0.25

0

0.00 0.00

0.25

0.50

0.75

1.00

Velocity (m/s)

de Sousa et alia

Hexagons

Squares

Cell shape

Analysis

29

Flood Hazard Maximum water depth and velocity at 600 and 2 400 seconds

600 sec. Squares 600 sec. Hexagons 2 400 sec. Squares 2 400 sec. Hexagons

Defra/Environment Agency Flood and Coastal Defence. Flood Risks to People Phase 1. R&D Technical Report FD2317. de Sousa et alia

Analysis

30

Summary and future work

de Sousa et alia

Summary and future work

31

Summary

Conclusions so far

de Sousa et alia

Summary and future work

32

Summary

Conclusions so far • Hexagons are slower: one extra velocities world

de Sousa et alia

Summary and future work

32

Summary

Conclusions so far • Hexagons are slower: one extra velocities world • Flooded areas are similar, terrain aspect is the main flow driver

de Sousa et alia

Summary and future work

32

Summary

Conclusions so far • Hexagons are slower: one extra velocities world • Flooded areas are similar, terrain aspect is the main flow driver • Higher number of cells with low water depth with hexagons

de Sousa et alia

Summary and future work

32

Summary

Conclusions so far • Hexagons are slower: one extra velocities world • Flooded areas are similar, terrain aspect is the main flow driver • Higher number of cells with low water depth with hexagons • Relevant differences in water velocity

de Sousa et alia

Summary and future work

32

Summary

Conclusions so far • Hexagons are slower: one extra velocities world • Flooded areas are similar, terrain aspect is the main flow driver • Higher number of cells with low water depth with hexagons • Relevant differences in water velocity • Are squared automata underestimating risk?

de Sousa et alia

Summary and future work

32

Future Work

Further developments

de Sousa et alia

Summary and future work

33

Future Work

Further developments • Confirm flood risk assessment with hexagons

de Sousa et alia

Summary and future work

33

Future Work

Further developments • Confirm flood risk assessment with hexagons • Lower resolution grids: any advantages of hexagonal automata vs. squared automata?

de Sousa et alia

Summary and future work

33

Future Work

Further developments • Confirm flood risk assessment with hexagons • Lower resolution grids: any advantages of hexagonal automata vs. squared automata? • Parallelisation - can it improve hexagonal automata performance?

de Sousa et alia

Summary and future work

33

Thank you! http://www.eawag.ch/en/department/sww/projects/caddies/ https://git.exeter.ac.uk/groups/caddies

de Sousa et alia

Summary and future work

34

Grid Geometry Cell and neighbourhood dimensions for 1 m2 cells

0.62

1

1.18 1

de Sousa et alia

1.42

Summary and future work

35