13th IEEE Workshop on Variable Structure Systems, VSS’14, June 29 -July 2, 2014, Nantes, France.
+RZ WR ,PSOHPHQW 6XSHU7ZLVWLQJ &RQWUROOHU EDVHG RQ 6OLGLQJ 0RGH 2EVHUYHU" $VLI &KDODQJD1 6K\DP .DPDO2 /)ULGPDQ3 %%DQG\RSDGK\D\4 DQG -$0RUHQR5 Abstract² ,PSOHPHQWDWLRQ RI WKH 6XSHU7ZLVWLQJ &RQWURO 67& UHTXLUHV WKH ¿UVW WLPH GHULYDWLYH RI WKH VOLGLQJ VXUIDFH PXVW EH /LSVFKLW] LQ WLPH ,W LV VKRZQ WKDW LI ZH ZLOO XVH 67& EDVHG RQ WKH DEVROXWHO\ FRQWLQXRXV HVWLPDWLRQ RI WKH VXUIDFH FRQWUROOHU FDQ QRW EH LPSOHPHQWHG ,Q WKLV SDSHU WZR PHWKRG RORJLHV DUH SURSRVHG WR DYRLG WKH DERYH SUREOHP )RU VLPSOLFLW\ ZH DUH FRQVLGHULQJ KHUH RQO\ SHUWXUEHG GRXEOH LQWHJUDWRU ZKLFK FDQ EH JHQHUDOL]HG IRU DQ DUELWUDU\ RUGHU 1XPHULFDO VLPXODWLRQV DUH DOVR SUHVHQWHG WR VKRZ WKH HIIHFWLYHQHVV RI WKH SURSRVHG PHWKRG Index Terms² 6XSHU7ZLVWLQJ &RQWURO 67& 6XSHU7ZLVWLQJ REVHUYHU 672 KLJKHU RUGHU VOLGLQJ PRGH REVHUYHU
, , 1752'8&7,21 &RQWURO REVHUYDWLRQ DQG LGHQWL¿FDWLRQ RI V\VWHPV XQGHU XQFHUWDLQWLHVSHUWXEDWLRQV LV D PDMRU UHVHDUFK WRSLF LQ PRGHUQ FRQWURO WKHRU\ 7KH VOLGLQJ PRGH FRQWURO >@ >@ PHWKRGRO RJ\ LV RQH VXFK UREXVW FRQWURO WHFKQLTXH ZKLFK KDV LWV URRWV LQ WKH UHOD\ FRQWURO 2QH RI WKH PRVW LQWULJXLQJ DVSHFWV RI VOLGLQJ PRGH LV WKH GLVFRQWLQXRXV QDWXUH RI WKH FRQWURO DFWLRQ ZKRVH SULPDU\ IXQFWLRQ LV WR VZLWFK EHWZHHQ WZR GLVWLQF WLYHO\ GLIIHUHQW VWUXFWXUHV DERXW VRPH SUHGH¿QHG PDQLIROG VXFK WKDW D QHZ W\SH RI V\VWHP PRWLRQ FDOOHG VOLGLQJ PRGH H[LVWV LQ D PDQLIROG 7KLV SHFXOLDU V\VWHP FKDUDFWHULVWLF LV FODLPHG WR UHVXOW LQ D VXSHUE V\VWHP SHUIRUPDQFH ZKLFK LQFOXGHV LQVHQVLWLYLW\ WR SDUDPHWHU YDULDWLRQV DQG FRPSOHWH UHMHFWLRQ RI FHUWDLQ FODVV RI GLVWXUEDQFHV )XUWKHUPRUH WKH V\VWHP SRVVHVV QHZ SURSHUWLHV ZKLFK DUH QRW SUHVHQW LQ RULJLQDO V\VWHP 7KH PDLQ GLVDGYDQWDJH RI VOLGLQJ PRGH FRQWURO LV FKDW WHULQJ >@ >@ >@ 7R DYRLG FKDWWHULQJ HIIHFW 6XSHU7ZLVWLQJ DOJRULWKP >@ LV SURSRVHG 6XSHUWZLVWLQJ FRQWURO LV D FRQWLQ XRXV FRQWUROOHU HQVXULQJ DOO WKH PDLQ SURSHUWLHV RI ¿UVW RUGHU VOLGLQJ PRGH FRQWURO IRU WKH V\VWHP ZLWK /LSVFKLW] PDWFKHG ERXQGHG XQFHUWDLQWLHVGLVWXUEDQFHV 7KH VOLGLQJ PRGH DSSURDFK KDV EHHQ H[FHSWLRQDOO\ VXF FHVVIXO LQ WKH GHVLJQ RI VWDWH IHHGEDFN FRQWUROOHUV +RZHYHU LQ PRVW RI WKH SK\VLFDO V\VWHPV WKH VWDWHV DUH VHOGRP DYDLODEOH 7KHUHIRUH WKH VWDWH IHHGEDFN VOLGLQJ PRGH FRQWURO FDQQRW EH GLUHFWO\ XVHG IRU LPSOHPHQWDWLRQV ,Q WKLV VLWXDWLRQ 1 $VLI &KDODQJD 2 6K\DP .DPDO DQG 4 %%DQG\RSDGK\D\ LV ZLWK 6\VWHPV DQG &RQWURO (QJLQHHULQJ ,QGLDQ ,QVWLWXWH RI 7HFKQRORJ\ %RPED\ 0XPEDL± ,QGLD
[email protected] ,
[email protected] and
[email protected]
3 /)ULGPDQ LV ZLWK )DFXOWDG GH ,QJHQLHUÕD 8QLYHUVLGDG 1D FLRQDO $XWRQRPD GH 0H[LFR 81$0 &R\RDFDQ ') 0H[LFR
[email protected] 5 -$0RUHQR
LV ZLWK ,QVWLWXWR GH ,QJHQLHUÕD 8QLYHUVLGDG 1D FLRQDO $XWRQRPD GH 0H[LFR 81$0 &R\RDFDQ 0H[LFR
[email protected]
978-1-4799-5566-4/14/$31.00@2014 IEEE
RQH KDV WR UHVRUW WR G\QDPLF RXWSXW IHHGEDFN FRQWURO PHWKRGV >@ ZKLFK DUH PRUH SUDFWLFDO WKDQ WKH VOLGLQJ PRGH FRQWURO EDVHG RQ VWDWH IHHGEDFN 7KH VOLGLQJ PRGH REVHUYHUV DUH ZLGHO\ XVHG GXH WR WKH ¿QLWHWLPH FRQYHUJHQFH LQVHQVLWLYLW\ ZLWK UHVSHFW WR XQFHU WDLQWLHV DQG DOVR WKH HVWLPDWLRQ RI WKH XQFHUWDLQW\ >@ $ QHZ JHQHUDWLRQ RI REVHUYHUV EDVHG RQ WKH FDVFDGHG LQWHUFRQQHFWLRQ RI WKH 6XSHU7ZLVWLQJ $OJRULWKP 67$ KDYH EHHQ UHFHQWO\ GHYHORSHG >@ >@ 7KH 67$ LV D ZHOONQRZQ VHFRQG RUGHU VOLGLQJ PRGH DOJRULWKP LQWURGXFHG LQ >@ DQG LW KDV EHHQ ZLGHO\ XVHG IRU FRQWURO REVHUYDWLRQ >@ DQG UREXVW H[DFW GLIIHUHQWLDWLRQ )LQLWH WLPH FRQYHUJHQFH DQG UREXVWQHVV IRU WKH 67$ KDV EHHQ SURYHG E\ JHRPHWULFDO PHWKRGV >@ DQG E\ PHDQV RI /\DSXQRY EDVHG DSSURDFK >@ >@ 7KH VOLGLQJ PRGH REVHUYDWLRQ EDVHG RQ FDVFDGHG 67$ KDV VXFK DWWUDFWLYH IHDWXUHV DV LQVHQVLWLYLW\ PRUH WKDQ UREXVWQHVV ZLWK UHVSHFW WR XQNQRZQ LQSXWV DQG DOVR RIIHUV WKH SRVVLELOLW\ RI UHFRQVWUXFWLQJ WKH XQNQRZQ LQSXW WHUPV YLD WKH HTXLYDOHQW RXWSXW LQMHFWLRQ $OVR LWV LPSOHPHQWDWLRQ GRHV QRW QHHG WKH VHSDUDWLRQ SULQFLSOH WR EH SURYHG 7KHUH DUH VHYHUDO DSSOLFDWLRQV RI WKH 6XSHU7ZLVWLQJ &RQ WUROOHU 67& H[LVWLQJ LQ WKH OLWHUDWXUH ZKLFK LV EDVHG RQ WKH 6XSHU7ZLVWLQJ 2EVHUYHU 672 >@ IRU WKH DOOHYLDWH WKH FKDWWHULQJ SKHQRPHQRQ +RZHYHU WKH FRQWURO V\QWKHVLV RI WKHVH DSSOLFDWLRQV DUH EDVHG RQ WKH DSSUR[LPDWLRQ ZKLFK KDV QRW VRXQG DQDO\WLF PDWKHPDWLFDO EDFNJURXQG DQG DOVR SRRU SUHFLVLRQ 7KH SUHVHQW SDSHU LV ZULWWHQ LQ WKH WKH WXWRULDO IDVKLRQ DQG SRLQWLQJ RXW WKH PDMRU GUDZEDFNV RI WKH H[LVWLQJ 67& GHVLJQ EDVHG RQ WKH 672 ZKLFK LV IUHTXHQWO\ UHSRUWHG LQ WKH OLWHUDWXUH IRU JHWWLQJ DEVROXWHO\ FRQWLQXRXV FRQWURO VLJQDO DQG DOVR VXJJHVWHG WKH SRVVLEOH UHPHG\ 0 $,1 & 2175,%87,21 ,W LV REYLRXV WKDW LPSOHPHQWDWLRQ RI WKH 6XSHU7ZLVWLQJ &RQWURO 67& UHTXLUHV WKH ¿UVW WLPH GHULYDWLYH RI WKH FKRVHQ VOLGLQJ PDQLIROG PXVW EH /LSVFKLW] LQ WLPH ,W LV VKRZQ WKDW LI ZH ZLOO XVH 67& EDVHG RQ WKH DEVROXWHO\ FRQWLQXRXV HVWLPDWLRQ RI WKH VXUIDFH FRQWUROOHU FDQ QRW EH LPSOHPHQWHG ,Q WKLV SDSHU WZR PHWKRGRORJLHV DUH SURSRVHG WR DYRLG WKH DERYH SUREOHP )RU VLPSOLFLW\ ZH DUH FRQVLGHULQJ KHUH RQO\ SHUWXUEHG GRXEOH LQWHJUDWRU ZKLFK FDQ EH JHQHUDOL]HG IRU WKH DUELWUDU\ RUGHU VDPH DV >@ 6 758&785(
2) 7+(
3$3(5
7KH SDSHU LV RUJDQL]HG DV IROORZV 6HFWLRQ ,, GLVFXVVHV WKH VWDQGDUG VOLGLQJ PRGH 67& EDVHG RQ 672 IRU SHUWXUEHG
GRXEOH LQWHJUDWRU 6HFWLRQ ,,, GHWDLOV WKH 67& EDVHG RQ 6XSHU 7ZLVWLQJ 2XWSXW )HHGEDFN 672) +LJKHU RUGHU VOLGLQJ PRGH REVHUYHU EDVHG DEVROXWHO\ FRQWLQXRXV FRQWURO RI SHU WXUEHG GRXEOH LQWHJUDWRU LV GLVFXVVHG LQ 6HFWLRQ ,9 6HFWLRQ 9 FRQWDLQV QXPHULFDO UHVXOWV IROORZHG E\ WKH FRQFOXGLQJ 6HFWLRQ ,, 6 7$1'$5' 6 /,',1* 0 2'( 67& %$6(' 21 672 3 (5785%(' ' 28%/( , 17(*5$725
)25
7DNLQJ WKH WLPH GHULYDWLYH RI IRU GHVLJQLQJ WKH VXSHU WZLVWLQJ FRQWURO RQH FDQ ZULWH s˙ = c1 x˙ 1 + x ˆ˙ 2 .
$IWHU ¿QLWH WLPH t > T0 ZKHQ REVHUYHU VWDUW H[WUDFWLQJ WKH H[DFW LQIRUPDWLRQ RI WKH VWDWHV WKHQ RQH FDQ VXEVWLWXWH x˙ 1 = x ˆ2 $OVR XVLQJ DQG RQH FDQ IXUWKHU ZULWH
&RQVLGHU WKH G\QDPLFDO V\VWHP RI WKH IROORZLQJ IRUP
ˆ2 + u + k2 VLJQ(e1 ). s˙ = c1 x
x˙ 1 = x2 x˙ 2 = u + ρ1
7KHUHIRUH WKH V\VWHP LQ WKH FRRUGLQDWH RI x1 DQG s E\ XVLQJ DQG FRXOG EH ZULWWHQ DV
y = x1
ZKHUH y LV WKH RXWSXW YDULDEOH ρ1 LV D QRQ YDQLVKLQJ /LSVFKLW] GLVWXUEDQFH DQG |ρ˙ 1 | < ρ0 2XU DLP LV WR UHFRQVWUXFW WKH VWDWHV RI WKH V\VWHP DQG WKHQ GHVLJQ VXSHUWZLVWLQJ FRQWUROOHU EDVHG RQ WKH HVWLPDWHG LQIRUPDWLRQ $OWKRXJK WKLV LV DOUHDG\ UHSRUWHG LQ WKH OLWHUDWXUH KRZHYHU LQ WKH QH[W VXEVHFWLRQ ZH DUH JRLQJ WR VKRZ WKDW H[LVWLQJ PHWKRGRORJ\ LV QRW VWDQG RQ WKH VRXQG PDWKHPDWLFDO EDFNJURXQG A. Problem of Designing Super-Twisting Controller Using Super-Twisting Observer for the System 7KH VXSHUWZLVWLQJ REVHUYHU G\QDPLFV WR HVWLPDWH WKH VWDWHV LV ˆ2 + z1 xˆ˙ 1 = x ˙xˆ2 = u + z2 1
e˙ 1 e˙ 2
s˙ = c1 x ˆ2 + u + k2 VLJQ(e1 ).
1RZ VXSSRVH WKDW ZH ZLOO IROORZ WKH VWDQGDUG ZD\ RI VXSHU WZLVWLQJ FRQWURO GHVLJQ ZKLFK LV H[LVWLQJ LQ WKH OLWHUDWXUH DV t 1 2 ˆ2 − λ1 |s| VLJQ(s) − λ2 VLJQ(s)dτ. u = −c1 x 0
ZKHUH λ1 DQG λ2 DUH WKH GHVLJQHG SDUDPHWHUV IRU WKH FRQWURO 7KH FORVHG ORRS V\VWHP DIWHU DSSO\LQJ WKH FRQWURO WR x˙ 1 = s − c1 x1
1
s˙ = −λ1 |s| 2 VLJQ(s) −
0
t
λ2 VLJQ(s)dτ + k2 VLJQ(e1 )
RU x˙ 1 = s − c1 x1 1
s˙ = −λ1 |s| 2 VLJQ(s) + L + k2 VLJQ(e1 ) L˙ = −λ2 VLJQ(s)
= e2 − z1 = −z2 + ρ1
6R e1 DQG e2 ZLOO FRQYHUJH WR ]HUR LQ ¿QLWH WLPH t > T0 E\ VHOHFWLQJ WKH DSSURSULDWH JDLQV k1 DQG k2 >@ )RU WKLV RQH ˆ1 DQG x2 = x ˆ2 DIWHU ¿QLWH WLPH t > T0 FDQ VD\ WKDW x1 = x 6\VWHP UHSUHVHQWHG E\ LV UHODWLYH GHJUHH WZR V\VWHP ZLWK UHVSHFW WR RXWSXW YDULDEOH y = x1 WKHUHIRUH t GLUHFW VXSHU WZLVWLQJ FRQWURO u = −k1 |x1 |1/2 VLJQ(x1 ) − 0 k2 VLJQ(x1 )dτ t RU u = −k1 |ˆ x2 |1/2 VLJQ(ˆ x2 ) − 0 k2 VLJQ(ˆ x2 )dτ LV QRW DSSOL FDEOH 7KHUHIRUH ZH KDYH WR GH¿QH VOLGLQJ PDQLIROG RI WKH IRUP ˆ2 . s = c1 x1 + x
x˙ 1 = s − c1 x1
ZKHUH z1 = k1 |e1 | 2 VLJQ(e1 ) DQG z2 = k2 VLJQ(e1 ) DUH FRUUHFWLRQ WHUPV /HW XV GH¿QH WKH HUURU e1 = x1 − xˆ1 DQG ˆ2 DQG WKH HUURU G\QDPLFV LV e2 = x2 − x
Remark 1: ,W KDV WR QRWH WKDW RQH FDQ QRW GH¿QH VOLGLQJ VXUIDFH s = c1 x1 + x2 EHFDXVH ZH GR QRW KDYH H[DFW LQIRUPDWLRQ RI x2 +RZHYHU XVLQJ VXSHUWZLVWLQJ REVHUYHU ˆ2 >@ >@ ZH DUH DEOH WR H[WUDFW LQIRUPDWLRQ RI x2 DV x 7KHUHIRUH WDNLQJ VOLGLQJ PDQLIROG DV LV PXFK UHDVRQDEOH ˆ1 + x ˆ2 $OVR RQH FDQ QRW WDNH VOLGLQJ VXUIDFH DV s = c1 x EHFDXVH ZH KDYH H[DFW LQIRUPDWLRQ RI x1 VR H[DFW VOLGLQJ PDQLIROG IRU DSSO\LQJ FRQWURO LV JLYHQ E\
ZKHUH L LV VRPH ¿FWLWLRXV VWDWH YDULDEOH B. Discussion of above Mathematical Transformation ,W LV FOHDU IURP WKH DERYH PDWKHPDWLFDO WUDQVIRUPDWLRQ WKDW ZKHQ RQH FDQ XVH VXSHU WZLVWLQJ REVHUYHU 672 WR HVWLPDWH WKH VWDWH RI VHFRQG RUGHU XQFHUWDLQ V\VWHP DQG IROORZ WKH VWDQGDUG ZD\ RI WKH 67& GHVLJQ DV E\ VHOHFWLQJ VOLGLQJ PDQLIROG DV 7KHQ VHFRQG RUGHU VOLGLQJ PRWLRQ LV QHYHU VWDUW LQ WKH EHFDXVH s˙ FRQWDLQV WKH QRQ GLIIHUHQWLDEOH WHUP k2 VLJQ(e1 ) ZKLFK H[FOXGH WKH SRVVLELOLW\ RI ORZHU WZR VXEV\VWHP RI WR DFW DV WKH VXSHUWZLVWLQJ DQG ¿QDOO\ VWDUW WKH VHFRQG RUGHU VOLGLQJ PRWLRQ VR WKDW s = s˙ = 0 LQ ¿QLWH WLPH ,Q WKH QH[W VXEVHFWLRQ ZH DUH JRLQJ WR SURSRVH WKH SRVVLEOH PHWKRGRORJ\ RI WKH FRQWURO GHVLJQ VXFK WKDW QRQ GLIIHUHQWLDEOH WHUP k2 VLJQ(e1 ) LV FDQFHO RXW DQG WKHQ ORZHU WZR VXEV\VWHP RI DFW DV WKH VXSHUWZLVWLQJ DQG ¿QDOO\ VHFRQG RUGHU VOLGLQJ LV DFKLHYHG
C. Existence Condition of Sliding Mode using SuperTwisting Algorithm 7KH PDLQ DLP KHUH LV WR GHVLJQ u VXFK WKDW VOLGLQJ PRWLRQ RFFXUV LQ ¿QLWH WLPH )RU WKLV SXUSRVH FRQWURO LV VHOHFWHG DFFRUGLQJ WR WKH IROORZLQJ 3URSRVLWLRQ Proposition 1: 7KH FRQWURO LQSXW u ZKLFK LV GH¿QHG DV t 1 2 u = −c1 x ˆ2 − k2 VLJQ(e1 ) − λ1 |s| VLJQ(s) − λ2 VLJQ(s)dτ 0
ZKHUH λ1 > 0 DQG λ2 > 0 DUH VHOHFWLQJ DFFRUGLQJ WR >@ >@ OHDGV WR WKH HVWDEOLVKPHQW VHFRQG RUGHU VOLGLQJ LQ ¿QLWH WLPH ZKLFK IXUWKHU LPSOLHV DV\PSWRWLF VWDELOLW\ RI x1 DQG x2 Proof: 7KH FORVHG ORRS V\VWHP DIWHU VXEVWLWXWLQJ LQWR x˙ 1 = s − c1 x1
1
s˙ = −λ1 |s| 2 VLJQ(s) −
DVVXPLQJ WKDW DOO VWDWHV LQIRUPDWLRQ DUH DYDLODEOH $IWHU WKDW IRU UHDOL]LQJ WKH FRQWURO H[SUHVVLRQ EDVHG RQ VXSHUWZLVWLQJ WDNH WKH ¿UVW WLPH GHULYDWLYH RI VOLGLQJ VXUIDFH s XVLQJ s˙ = c1 x˙ 1 + x˙ 2
1RZ VXEVWLWXWH x˙ 1 DQG x˙ 2 IURP LQWR RQH FDQ ZULWH s˙ = c1 x2 + u + ρ1 1RZ GHVLJQ FRQWURO DV
1
u = −c1 x2 − λ1 |s| 2 VLJQ(s) −
t
0
λ2 VLJQ(s)dτ
DVVXPLQJ WKDW HYHU\ VWDWHV LQIRUPDWLRQ DUH DYDLODEOH $IWHU VXEVWLWXWLQJ WKH FRQWURO LQWR RQH FDQ ZULWH t 1 s˙ = −λ1 |s| 2 VLJQ(s) − λ2 VLJQ(s)dτ + ρ1 , 0
RU t
0
1
λ2 VLJQ(s)dτ
RU x˙ 1 = s − c1 x1 1
s˙ = −λ1 |s| 2 VLJQ(s) + ν ν˙ = −λ2 VLJQ(s)
/DVW WZR HTXDWLRQ RI KDV VDPH VWUXFWXUH DV VXSHU WZLVWLQJ 7KHUHIRUH RQH FDQ HDVLO\ REVHUYH WKDW DIWHU ¿QLWH WLPH t > T0 s = 0 ZKLFK IXUWKHU LPSOLHV WKDW WKH FORVHG ORRS V\VWHP LV JLYHQ DV
ˆ2 DUH DV\PSWRWLF VWDELOLW\ E\ 7KHUHIRUH ERWK VWDWHV x1 DQG x FKRRVLQJ c1 > 0 $OVR ZKHQ REVHUYHU HVWLPDWLQJ WKH H[DFW VWDWH x ˆ2 = x2 DIWHU ¿QLWH WLPH WKHQ x2 DOVR JRLQJ WR ]HUR VLPXOWDQHRXVO\ DV x ˆ2 ,W LV FOHDU IURP WKH PDWKHPDWLFDO GHULYDWLRQ RI FRQWURO WKDW ZKHQ RQH FDQ XVH VXSHU WZLVWLQJ REVHUYHU 672 WR HVWLPDWH WKH VWDWH RI VHFRQG RUGHU XQFHUWDLQ V\VWHP DQG WKHQ GHVLJQ VXSHU WZLVWLQJ EDVHG FRQWUROOHU 67& E\ VHOHFW LQJ VOLGLQJ PDQLIROG DV WKH FRQWURO LV VWLOO GLVFRQWLQXRXV EHFDXVH LW FRQWDLQV WKH GLVFRQWLQXRXV WHUP k2 VLJQ(e1 ) 7KHUH IRUH DEVROXWHO\ FRQWLQXRXV FRQWURO GHVLJQ EDVHG RQ 672 67& LV QRW SRVVLEOH %HIRUH JRLQJ WR SURSRVH WKH VROXWLRQ RI DERYH PHQWLRQHG SUREOHP LW LV QHFHVVDU\ WR GLVFXVV WKH H[LVWLQJ PHWKRGRORJ\ ZKLFK LV QRW PDWKHPDWLFDOO\ VRXQG EXW VWLOO D ORW RI OLWHUDWXUH KDV EHHQ EDVHG RQ LW ,,, 67& %$6(' 21 6 83(5 7 :,67,1* 2 87387 ) (('%$&. 672) ,Q WKH H[LVWLQJ VWUDWHJ\ LW LV UHSRUWHG WKDW ¿UVW FRQVLGHU WKH IROORZLQJ VOLGLQJ VOLGLQJ VXUIDFH s = c1 x1 + x2
ν˙ = −λ2 VLJQ(s) + ρ˙ 1 .
1RZ VHOHFW λ1 > 0 DQG λ2 > 0 DFFRUGLQJ WR >@ ZKLFK OHDGV WR VHFRQG RUGHU VOLGLQJ LQ ¿QLWH WLPH SURYLGHG ρ1 LV /LSVFKLW] DQG |ρ˙ 1 | < ρ0 :KHQ s = 0 WKHQ x1 = x2 = 0 DV\PSWRWLFDOO\ VDPH DV GLVFXVVHG DERYH E\ VHOHFWLQJ c1 > 0 ,Q ODVW LW GLVFXVVHG WKDW FRQWURO LV QRW LPSOHPHQWDEOH EHFDXVH ZH GR QRW KDYH LQIRUPDWLRQ RI x2 VR UHSODFH x2 E\ ˆ1 DQG x2 = x ˆ2 x ˆ2 ,W LV DUJXHG WKDW DIWHU ¿QLWH WLPH x1 = x WKHUHIRUH FRQWURO VLJQDO DSSOLHG WR RULJLQDO V\VWHP LV t 1 u = −c1 xˆ2 − λ1 |ˆ s| 2 VLJQ(ˆ s) − λ2 VLJQ(ˆ s)dτ 0
x˙ 1 = −c1 x1 x ˆ2 = −c1 x1
s˙ = −λ1 |s| 2 VLJQ(s) + ν
ZKHUH sˆ = c1 x ˆ1 + x ˆ2 ZLWKRXW FRQVLGHULQJ WKH G\QDPLFV RI x ˆ˙ 2 IRU ZKLFK FRQWURO GHULYDWLRQ LV H[SOLFLWO\ GHSHQGHQW DQG LW FRQWDLQV WKH GLVFRQWLQXRXV WHUP k2 VLJQ(e1 ) 2QH FDQ HDVLO\ VHH WKDW DYHUDJH YDOXH RI WKLV GLVFRQWLQXRXV WHUP LV HTXDO WR QHJDWLYH RI WKH GLVWXUEDQFH 6R ZKDWHYHU FRQWURO ZH DUH DSSO\LQJ IRU WKH UHDO V\VWHP LV RQO\ DSSUR[LPDWH QRW WKH H[DFW +RZHYHU WKH H[DFW FRQWUROOHU LV DOZD\V GLVFRQWLQXRXV ZKLFK DOUHDG\ GLVFXVVHG DQG PDWKHPDWLFDOO\ SURYHG LQ WKH DERYH VHFWLRQ 1RZ LQ WKH QH[W VHFWLRQ ZH DUH JRLQJ WR SURSRVHG WKH QHZ VWUDWHJ\ ZKLFK JLYHV WKH FRUUHFW ZD\ WR LPSOHPHQW FRQWLQ XRXV 67& ZKHQ RQO\ RXWSXW LQIRUPDWLRQ RI WKH SHUWXUEHG GRXEOH LQWHJUDWRU LV DYDLODEOH ,9 + ,*+(5 2 5'(5 6 /,',1* 0 2'( 2 %6(59(5 %$6(' & 217,18286 & 21752/ 2) 3 (5785%(' ' 28%/( , 17(*5$725 7KH KLJKHU RUGHU VOLGLQJ PRGH REVHUYHU +2602 G\QDP LFV WR HVWLPDWH WKH VWDWHV IRU WKH SHUWXUEHG GRXEOH LQWHJUDWRU LV JLYHQ DV ˆ2 + z1 x ˆ˙ 1 = x ˆ3 + u + z2 x ˆ˙ 2 = x x ˆ˙ 3 = z3
2
1
ZKHUH z1 = k1 |e1 | 3 VLJQ(e1 ) z2 = k2 |e1 | 3 VLJQ(e1 ) DQG z3 = k3 VLJQ(e1 ) DUH FRUUHFWLRQ WHUPV /HW XV GH¿QH WKH HUURU e1 = x1 − x ˆ1 DQG e2 = x2 − x ˆ2 DQG WKH HUURU G\QDPLFV LV e˙ 1 = e2 − z1 e˙ 2 = −ˆ x3 − z2 + ρ1 ˙x ˆ3 = z3
x3 +ρ1 LI ρ1 LV /LSVFKLW] 1RZ GH¿QH WKH QHZ YDULDEOH e3 = −ˆ DQG |ρ˙ 1 | < ρ0 WKHQ RQH FDQ IXUWKHU ZULWH DV e˙ 1 = e2 − z1 e˙ 2 = e3 − z2 e˙ 3 = −z3 + ρ˙ 1
6R e1 e2 DQG e3 ZLOO FRQYHUJH WR ]HUR LQ ¿QLWH WLPH t > T0 E\ VHOHFWLQJ WKH DSSURSULDWH JDLQV k1 k2 DQG k3 >@ $IWHU WKH FRQYHUJHQFH RI HUURU RQH FDQ ¿QG WKDW x1 = xˆ1 x2 = xˆ2 DQG x ˆ3 = ρ1 DIWHU ¿QLWH WLPH t > T0 1RZ WDNLQJ WKH WLPH GHULYDWLYH RI IRU GHVLJQLQJ WKH VXSHU WZLVWLQJ FRQWURO RQH FDQ ZULWH ˆ˙ 2 . s˙ = c1 x˙ 1 + x $IWHU ¿QLWH WLPH t > T0 ZKHQ REVHUYHU VWDUW H[WUDFWLQJ WKH H[DFW LQIRUPDWLRQ RI WKH VDWHV WKHQ RQH FDQ VXEVWLWXWH x˙ 1 = x ˆ2 $OVR XVLQJ DQG RQH FDQ IXUWKHU ZULWH ˆ2 + x ˆ3 + u + z2 s˙ = c1 x
1 3
= c1 x ˆ2 + u + k2 |e1 | VLJQ(e1 ) +
t
0
k3 VLJQ(e1 )dτ
7KHUHIRUH WKH V\VWHP LQ WKH FRRUGLQDWH RI x1 DQG s E\ XVLQJ DQG FRXOG EH ZULWWHQ DV x˙ 1 = s − c1 x1
1 3
s˙ = c1 x ˆ2 + u + k2 |e1 | VLJQ(e1 ) +
0
t
k3 VLJQ(e1 )dτ
A. Existence Condition of Sliding Mode using Super-twisting Algorithm 7KH PDLQ DLP KHUH LV WR GHVLJQ u VXFK WKDW VOLGLQJ PRWLRQ RFFXUV LQ ¿QLWH WLPH )RU WKLV SXUSRVH FRQWURO LV VHOHFWHG DFFRUGLQJ WR WKH IROORZLQJ WKHRUHP Proposition 2: 7KH FRQWURO LQSXW u ZKLFK LV GH¿QHG DV t 1 u = −c1 x ˆ2 − k2 |e1 | 3 VLJQ(e1 ) − k3 VLJQ(e1 )dτ 0 t 1 λ2 VLJQ(s)dτ − λ1 |s| 2 VLJQ(s) − 0
RU
ˆ2 − u = −c1 x
t
k3 VLJQ(e1 )dτ t 1 λ2 VLJQ(s)dτ − λ1 |s| 2 VLJQ(s) − 0
0
EHFDXVH REVHUYHU LV PXFK IDVWHU WKDQ FRQWUROOHU ZKLFK PDNHV e1 = 0 LQ ¿QLWH WLPH DQG LI λ1 > 0 DQG λ2 > 0 DUH VHOHFWLQJ DFFRUGLQJ WR >@ >@ OHDGV WR WKH HVWDEOLVKPHQW s HTXDO WR ]HUR LQ ¿QLWH WLPH LW IXUWKHU LPSOLHV DV\PSWRWLF VWDELOLW\ RI x1 DQG x2 Proof: 3URRI LV WKH VDPH DV WKH 3URSRVLWLRQ 1
B. Discussion of HOSMO based STC Design ,W LV FOHDU IURP WKH 67& FRQWURO H[SUHVVLRQ EDVHG RQ +2602 LV FRQWLQXRXV $OVR ZKHQ ZH GHVLJQ 67& FRQWURO EDVHG RQ +2602 WKHQ RQH KDV WR WXQH RQO\ REVHUYHU JDLQ DFFRUGLQJ WR WKH ¿UVW GHULYDWLYH RI GLVWXUEDQFH EHFDXVH LW LV QHFHVVDU\ IRU WKH FRQYHUJHQFH RI WKH HUURU YDULDEOHV RI WKH +2602 +RZHYHU GXULQJ FRQWUROOHU GHVLJQ WKHUH LV QR H[SOLFLW JDLQ FRQGLWLRQ IRU WKH λ2 ZLWK UHVSHFW WR GLVWXUEDQFHV 2QH FDQ DOVR REVHUYH WKDW 67& GHVLJQ EDVHG 672) ZKLFK LV SURSDJDWLQJ LQ WKH OLWHUDWXUH ZLWKRXW DQ\ VRXQG PDWKHPDWLFDO MXVWL¿FDWLRQ UHTXLUHV WZR JDLQV RQH LV 672 REVHUYHU JDLQ k2 EDVHG RQ WKH H[SOLFLW PD[LPXP ERXQG RI WKH GLUHFW GLVWXUEDQFH DQG DQRWKHU LV λ2 IRU WKH 67& EDVHG RQ WKH PD[LPXP ERXQG RI WKH GHULYDWLYH RI GLVWXUEDQFH 7KHUHIRUH RQH FDQ FRQFOXGH IURP WKH DERYH REVHUYDWLRQ WKDW VRXQG PDWKHPDWLFDO DQDO\VLV UHGXFHV WKH WZR JDLQV FRQGLWLRQV ZLWK UHVSHFW WR GLVWXUEDQFH E\ VLPSO\ RQH JDLQ FRQGLWLRQ $OVR WKH SUHFLVLRQ RI WKH VOLGLQJ PDQLIROG LV PXFK LPSURYHG E\ XVLQJ WKH +2602 EDVHG 67& UDWKHU WKDQ 672 EDVHG 67& 'XH WR WKH LQFUHDVH RI WKLV SUHFLVLRQ RI VOLGLQJ YDULDEOH SUHFLVLRQ RI WKH VWDWHV DUH DOVR PXFK HIIHFWHG ,Q RWKHU ZRUG LI ZH WDON DERXW VWDELOL]DWLRQ SUREOHP WKHQ VWDWHV DUH PXFK FORVHU WR RULJLQ LQ WKH FDVH RI +2602 EDVHG 67& UDWKHU WKDQ 672 EDVHG 67& :H RQO\ WDON DERXW FORVHQHVV RI VWDWHV YDULDEOH ZLWK UHVSHFW WR HTXLOLEULXP SRLQW EHFDXVH RQO\ DV\PSWRWLF VWDELOLW\ LV SRVVLEOH LQ WKH ERWK RI GHVLJQ PHWKRGRORJ\ 9 1 80(5,&$/ 6 ,08/$7,21 )RU WKH VLPXODWLRQ LQLWLDO FRQGLWLRQV RI SHUWXUEHG GRXEOH LQWHJUDWRU IRU WKH DOO WKUHH FDVHV 67&672 67&672) DQG 672+2602 LV WDNHQ DV x1 = 10 x2 = 0 DQG ρ1 = 2 + 3 sin(t) 2WKHU JDLQV IRU WKH DOO WKUHH FDVHV DUH VHOHFWHG DV IROORZV • 67&672 ± 67& JDLQV k1 = 3 DQG k2 = 4 ± 672 JDLQV λ1 = 3.5 DQG λ2 = 6 • 67&672) ± 67& JDLQV k1 = 2 DQG k2 = 1 ± 672 JDLQV λ1 = 3.5 DQG λ2 = 6 • 67&+2602 ± 67& JDLQV k1 = 2 DQG k2 = 1 ± 672 JDLQV λ1 = 6 λ2 = 11 DQG λ3 = 6 (YROXWLRQ RI WKH RXWSXW ZLWK UHVSHFW WR WLPH DQG LWV SUHFLVLRQ LQ WKH ]RRPHG YHUVLRQ RI ¿JXUH DIWHU DSSO\LQJ WKH 67& EDVHG RQ 672 672) DQG +2602 DUH VKRZQ LQ WKH )LJ ZKHQ WKH RXWSXW KDV QRQQRLV\ PHDVXUHPHQW DQG )LJ LQ WKH FDVH RI QRLV\ PHDVXUHPHQW RI WKH DPSOLWXGH 10−2 )LJV DQG VKRZ WKDW WKH HYROXWLRQ RI WKH VOLGLQJ PDQLIROG DQG DQG LWV SUHFLVLRQ LQ WKH ]RRPHG YHUVLRQ RI ¿JXUH LQ WKH FDVH RI QRQQRLV\ DQG QRLV\ PHDVXUHPHQW UHVSHFWLYHO\ (UURU HYROXWLRQ DORQJ ZLWK SUHFLVLRQ LQ WKH FDVH RI 672 DQG +2602 DUH VKRZQ LQ WKH )LJ DQG ZLWK DQG ZLWKRXW QRLV\ PHDVXUHPHQW UHVSHFWLYHO\ )LJV DQG VKRZ WKDW FRQWURO HYROXWLRQ RI 67& EDVHG RQ 672 DQG +2602 ZLWK
DQG ZLWKRXW QRLV\ PHDVXUHPHQW 6LPLODUO\ FRQWURO HYROXWLRQ ZLWK DQG ZLWKRXW QRLV\ PHDVXUHPHQW LQ WKH FDVH RI 67& EDVHG RQ 672) LV VKRZQ LQ )LJV DQG UHVSHFWLYHO\
67&í+2602 67&í672)
í
67&í+2602 67&í672 67&í672)
í
í
í
í
í
2XWSXW[
[
&RQWURO
í
í
í
í
í
í
í
)LJ
í
7LPHVHF
7LPHVHF
(YROXWLRQ RI 67& EDVHG RQ +2602 DQG 672) ZUW WLPH
67&í672
)LJ (YROXWLRQ RI RXWSXW ZUW WLPH IRU WKH 67& EDVHG RQ +2602 672) DQG 672
&RQWURO
í
67&í+2602 67&í672 67&í672)
í
6OLGLQJVXUIDFH
í
[
í
7LPHVHF
í
)LJ
(YROXWLRQ RI 67& EDVHG RQ 672 ZUW WLPH
í
7LPHVHF
67&í+2602 67&í672) 67&í672
)LJ (YROXWLRQ RI VOLGLQJ PDQLIROG ZUW WLPH IRU WKH 67& EDVHG RQ +2602 672) DQG 672 2XWSXW[
í
UGRUGHUREVHUYHU VXSHUWZLVWLQJREVHUYHU
í
[
í
(UURUH
7LPHVHF
í
)LJ (YROXWLRQ RI RXWSXW ZUW WLPH IRU WKH 67& EDVHG RQ +2602 672) DQG 672 XQGHU QRLV\ PHDVXUHPHQW
í
)LJ
7LPHVHF
(YROXWLRQ RI HUURU ZUW WLPH XVLQJ 672 DQG +2602
9, & 21&/86,21 ,W LV VKRZQ LQ WKH SDSHU WKDW LI RQH ZDQWV WR LPSOHPHQW DEVROXWHO\ FRQWLQXRXV 67& VLJQDO IRU WKH SHUWXUEHG GRXEOH LQWHJUDWRU WKH GHULYDWLYH RI WKH FKRVHQ PDQLIROG PXVW EH /LSVFKLW] LQ WKH WLPH 7KHUHIRUH ZH KDYH WKH QHHG RI VHFRQG
RUGHU REVHUYHUGLIIHUHQWLDWRUV LQ WKLV FDVH 7KH VDPH LV DOVR WUXH IRU WKH KLJKHU RUGHU SHUWXUEHG FKDLQ RI LQWHJUDWRUV ZKHQ ZH ZDQW WR V\QWKHVL]H DEVROXWHO\ FRQWLQXRXV 67& VLJQDO XQGHU WKH RXWSXW LQIRUPDWLRQ 1XPHULFDO VLPXODWLRQV DUH DOVR SUHVHQWHG WR VXSSRUW WKH HIIHFWLYHQHVV RI WKH SURSRVHG PHWKRGRORJ\ $&.12:/('*0(17 7KH DXWKRUV JUDWHIXOO\ DFNQRZOHGJHV WKH ¿QDQFLDO VXS SRUW IURP 3$3,,7 81$0 JUDQW IURP &21$&\7
>@ $ 3RO\DNRY DQG $ 3R]Q\DN ³5HDFKLQJ WLPH HVWLPDWLRQ IRU VXSHU WZLVWLQJ VHFRQG RUGHU VOLGLQJ PRGH FRQWUROOHU YLD /\DSXQRY IXQFWLRQ GHVLJQLQJ´ IEEE Transactions on Automatic Control YRO QR SS ± >@ -DLPH $ 0RUHQR DQG 0 2VRULR ³6WULFW /\DSXQRY IXQFWLRQV IRU WKH VXSHUWZLVWLQJ DOJRULWKP´ IEEE Transactions on Automatic Control YRO QR SS ± >@ @ & (GZDUGV DQG 6 6SXUJHRQ Sliding Mode Control 7D\ORU DQG )UDQFLV (GV/RQGRQ >@ , %RLNR Discontinuous control systems: frequency-domain analysis and design. 6SULQJHU >@ $ /HYDQW ³6OLGLQJ RUGHU DQG VOLGLQJ DFFXUDF\ LQ VOLGLQJ PRGH FRQWURO´ International Journal of Control YRO QR SS ± >@ $ /HYDQW ³5REXVW H[DFW GLIIHUHQWLDWLRQ YLD VOLGLQJ PRGH WHFKQLTXH´ Automatica. YRO QR SS ± >@ $ /HYDQW ³+LJKHURUGHU VOLGLQJ PRGHV GLIIHUHQWLDWLRQ DQG RXWSXW IHHGEDFN FRQWURO´ Int. J. Control YRO / QR SS ±
&RQWURO
í
í
í
7LPHVHF
)LJ (YROXWLRQ RI FRQWURO 67& EDVHG RQ 672 ZUW WLPH XQGHU QRLV\ PHDVXUHPHQW
>@ - 'DYLOD / )ULGPDQ DQG / $ ³6HFRQGRUGHU VOLGLQJPRGH REVHUYHU IRU PHFKDQLFDO V\VWHPV´ IEEE Transactions on Automatic Control YRO QR SS ±