Image Processing for Mechatronics, Lecture 10 - Google Sites

3 downloads 124 Views 945KB Size Report
Salem, Image Processing for Mechatronics Engineering, Winter Semester 2017. Lecture 14. 11. The Gaussian Filter radius(u
Image Processing for Mechatronics Engineering For senior undergraduate students Academic Year 2017/2018, Winter Semester

Lecture 14: Filtering in Frequency Domain 09.12.2017

Dr. Mohammed Abdel-Megeed Salem Media Engineering Technology, German University in Cairo

Course Info - Contents 1. 2. 3. 4. 5. 6. 7.

Introduction Elementary Image Information and Operations Fundamentals of Signal and Image Processing Image Acqusition and Digitization Sensing and Perception (HVS) Color Image Processing Image Processing Operations 1. 2. 3. 4.

Appendix 1: Random Process & Probability Distribution Function Elementary and Point Image Operations Local Image Operations and Filters Global Image Operation and Transforms

Salem, Image Processing for Mechatronics Engineering, Winter Semester 2017

Lecture 14

2

Outline Global Image Operation and Transforms 1. Fourier Transform 1. 2. 3. 4.

Signal Approximation Fourier Transform for 1D Signals Fourier Transform for 2D Signals Image Filtering in Frequency Domain

2. Discrete Cosine Transform 1. 2.

DCT-based Compression Hough Transform

Salem, Image Processing for Mechatronics Engineering, Winter Semester 2017

Lecture 14

3

Image Filtering in Frequency Domain • if we modify one of the Fourier coefficients before applying the inverse 2D DFT, then we obtain a modified function I . • We modify the 2D DFT I of I by multiplying the values in I, position by position, with the corresponding complex numbers in G [i.e., I(u, v) ·G(u, v)]. – We denote this operation by I ◦ G.

• The resulting complex array is transformed by the inverse 2D DFT into the modified image J . Salem, Image Processing for Mechatronics Engineering, Winter Semester 2017

Lecture 14

4

Image Filtering in Frequency Domain • Steps of Fourier Filtering Given is an image I and a complex-valued filter function G in the frequency domain. Input Image

Input Filter

Fourier Transform

Fourier Transform

Point -wise multi plicat ion

Salem, Image Processing for Mechatronics Engineering, Winter Semester 2017

Inverse Fourier Transform

Lecture 14

Output Processed Image

5

Image Filtering in Frequency Domain

• 1D profiles of rotation-symmetric filter functions. Top: A linear high-pass filter and an ideal low-pass filter. Bottom: An exponential high-emphasis filter and a linear band-pass filter

Salem, Image Processing for Mechatronics Engineering, Winter Semester 2017

Lecture 14

6

Ideal Low Pass Filter The ideal low-pass filter H(u,v) is described as H(u,v) =

1

radius(u,v)  d0

0

radius(u,v) > d0

radius(u,v) =  u2 + v2 ,

d0 = cut off frequency H(u,v)

H(u,v) v u

1 0

d0 radius(u,v)

http://www1.idc.ac.il/toky/imageproc-10/

Salem, Image Processing for Mechatronics Engineering, Winter Semester 2017

Lecture 14

7

Ideal Low Pass Filter

99.7%

99.37%

98.65%

http://www1.idc.ac.il/toky/imageproc-10/

Salem, Image Processing for Mechatronics Engineering, Winter Semester 2017

Lecture 14

8

The Ringing Problem

• 1D signal describing a step (in bold grey) and frequency components (in shades of brown to orange) whose addition defines the blue signal, which approximates the ideal step. http://www1.idc.ac.il/toky/imageproc-10/

Salem, Image Processing for Mechatronics Engineering, Winter Semester 2017

Lecture 14

9

The Ringing Problem H(u,v)

sinc(x)

Inverse Fourier Transform

h(x,y)

As d0 increases, the ringing and the bluering decreases. 250 200 150 100 50 0

Freq. domain

http://www1.idc.ac.il/toky/imageproc-10/

0

50

100

150

200

250

Spatial domain

Salem, Image Processing for Mechatronics Engineering, Winter Semester 2017

Lecture 14

10

The Gaussian Filter H(u,v)

H(u,v)

1

Softer Blurring + no Ringing

v

u

H(u,v) =

e

0

d0

radius(u,v)

-d2(u,v)/(2d02)

raduis(u,v) =  u2 + v2 http://www1.idc.ac.il/toky/imageproc-10/

Salem, Image Processing for Mechatronics Engineering, Winter Semester 2017

Lecture 14

11

The Gaussian Filter

99.11%

98.74%

96.44%

http://www1.idc.ac.il/toky/imageproc-10/

Salem, Image Processing for Mechatronics Engineering, Winter Semester 2017

Lecture 14

12

The Gaussian Filter H(u,v)

Inverse Fourier Transform

h(x,y)

300 250 200 150 100 50 0

Freq. domain

http://www1.idc.ac.il/toky/imageproc-10/

0

50

100

150

200

250

300

Spatial domain

Salem, Image Processing for Mechatronics Engineering, Winter Semester 2017

Lecture 14

13

In Spatial Domain? Averaging = convolution with

111 111 111

= point multiplication of the transform with sinc: 0.15 1 0.1

0.8 0.6

0.05

0.4 0.2

0 0

50

Image Domain

100

0 -50

0

50

Frequency Domain

http://www1.idc.ac.il/toky/imageproc-10/

Salem, Image Processing for Mechatronics Engineering, Winter Semester 2017

Lecture 14

14

In Spatial Domain? 1 2 1 2 4 2 1 2 1

Gaussian Averaging = convolution with

= point multiplication of the transform with a gaussian. 0.15 1 0.1

0.8 0.6

0.05

0.4 0.2

0 0

50

Image Domain

100

0 -50

0

50

Frequency Domain

http://www1.idc.ac.il/toky/imageproc-10/

Salem, Image Processing for Mechatronics Engineering, Winter Semester 2017

Lecture 14

15

Ideal High Pass Filter The ideal high-pass filter H(u,v) is described as H(u,v) =

0

radius(u,v)  d0

1

radius(u,v) > d0

radius(u,v) =  u2 + v2 ,

d0 = cut off frequency

H(u,v)

H(u,v)

v u

1 0

d0

radius(u,v)

http://www1.idc.ac.il/toky/imageproc-10/

Salem, Image Processing for Mechatronics Engineering, Winter Semester 2017

Lecture 14

16

The High-pass Gaussian Filter H(u,v)

H(u,v) 1

1 1/ e v

u

H(u,v) = 1- e

0

d0

radius(u,v)

-d2(u,v)/(2d02)

raduis(u,v) =  u2 + v2 http://www1.idc.ac.il/toky/imageproc-10/

Salem, Image Processing for Mechatronics Engineering, Winter Semester 2017

Lecture 14

17

The High-pass Gaussian Filter Original

High Pass Filtered

Salem, Image Processing for Mechatronics Engineering, Winter Semester 2017

Lecture 14

18

Emphasize High Frequency Filter The ideal high-pass filter H(u,v) is described as H(u,v) =

0

radius(u,v)  d0

1

radius(u,v) > d0

radius(u,v) =  u2 + v2 , H'(u,v) = K0 + H(u,v)

d0 = cut off frequency H'(u,v)

(Typically K0 =1)

1 0

d0

radius(u,v)

http://www1.idc.ac.il/toky/imageproc-10/

Salem, Image Processing for Mechatronics Engineering, Winter Semester 2017

Lecture 14

19

Emphasize High Frequency Filter

Original

High Frequency Emphasis

Salem, Image Processing for Mechatronics Engineering, Winter Semester 2017

Lecture 14

20

Emphasize High Frequency Filter

Original

High Frequency Emphasis

Salem, Image Processing for Mechatronics Engineering, Winter Semester 2017

Lecture 14

21

Emphasize High Frequency Filter

Original

High pass Emphasis

Salem, Image Processing for Mechatronics Engineering, Winter Semester 2017

High Frequency Emphasis + Histogram Equalization

Lecture 14

22

Band-pass Filtering H(u,v) =

0

raduis(u,v)  d0 -

1

d0-

0

radius(u,v) > d0 +

w 2

w 2

 raduis(u,v)  d0 +

w 2

w 2

radius(u,v) =  u2 + v2 d0 = cut off frequency w = band width H(u,v)

H(u,v)

v u

1 radius(u,v)

0

Salem, Image Processing for Mechatronics Engineering, Winter Semester 2017

d0- w 2

d0

d0+ w 2

Lecture 14

23

Local Frequency Filtering H(u,v) =

1

radius1(u,v)  d0 or radius2(u,v)  d0

0

otherwise

H(u,v) v

radius1(u,v) =  (u-u0)2 + (v-v0)2 radius2(u,v) =  (u+u0)2 + (v+v0)2

u H(u,v)

d0 = local frequency radius

1

u0,v0 = local frequency coordinates

0 -u0,-v0

Salem, Image Processing for Mechatronics Engineering, Winter Semester 2017

d0

radius(u,v) u0,v0

Lecture 14

24

Band Rejection Filtering H(u,v) =

0

radius1(u,v)  d0 or radius2(u,v)  d0

1

otherwise H(u,v)

radius1(u,v) =  (u-u0)2 + (v-v0)2

v

radius2(u,v) =  (u+u0)2 + (v+v0)2 u

d0 = local frequency radius

H(u,v)

u0,v0 = local frequency coordinates

1

0 -u0,-v0 Salem, Image Processing for Mechatronics Engineering, Winter Semester 2017

d0

radius(u,v) u0,v0

Lecture 14

25

Readings • Rafael G. Gonzalaz and Richard E. Woods, Digital Image Processing, 3rd Edition, Pearson Edu., 2008. – [Section 4.3: Smoothing Frequency-Domain Filters] – [Section 4.4: Sharpening Frequency-Domain Filters]

Salem, Image Processing for Mechatronics Engineering, Winter Semester 2017

Lecture 14

27

Contacts Image Processing for Mechatronics Engineering, for senior students, Winter Semester 2017 Dr. Mohammed Abdel-Megeed M. Salem Media Engineering Technology, German University in Cairo Office: C7.311 Ext. 3580 Tel.: +2 011 1727 1050 Email: [email protected]

Salem, Image Processing for Mechatronics Engineering, Winter Semester 2017

Lecture 14

28