Document not found! Please try again

Inductive Power Transfer Systems for Bus-Stop-Powered ... - MDPI

3 downloads 0 Views 11MB Size Report
Jun 30, 2016 - advantages of the AFE converter are bidirectional power flow and low total ... The primary side of the IPT system is DC-AC H-bridge inverters.
energies Letter

Inductive Power Transfer Systems for Bus-Stop-Powered Electric Vehicles Chung-Chuan Hou * and Kuei-Yuan Chang Department of Electrical Engineering, Chung Hua University, Hsinchu 30012, Taiwan; [email protected] * Correspondence: [email protected]; Tel.: +886-3-518-6351 Academic Editor: Chunhua Liu Received: 20 February 2016; Accepted: 20 June 2016; Published: 30 June 2016

Abstract: This study presents an inductive power transfer (IPT) system for electric vehicles (EVs) based on EE-shaped ferrite cores. The issues of the IPT system such as efficiency, air gap, displacement, dislocation, and motion are discussed. Furthermore, finite element analysis software is utilized to simulate the IPT system operated under large air gap conditions. Simulation and measurement results are presented to validate the performance of the proposed scheme and meet the requirements for bus-stop-powered EVs. Keywords: inductive power transfer; bus-stop-powered; electric vehicles

1. Introduction As the air pollution problems caused by gasoline-powered vehicles have become more and more serious, electric vehicles (EVs) [1–3] or hybrid EVs have been regarded as good solutions and gained increasing attention. However, the batteries used in EVs or hybrid EVs have some significant disadvantages, such as high cost and heaviness, limited capacitance and charging/discharging cycles, and long charging time, etc. The roadway-powered EVs [4–8] scheme has therefore been discussed to reduce the battery capacitance and to extend the driving range. This study would like to furthermore present the inductive power transfer (IPT) system [9–13] for bus-stop-powered EVs [14] with much less cost than the roadway-powered EVs system. Figure 1 shows the IPT system for bus-stop-powered EVs or hybrid EVs. The active front-end (AFE) converter is utilized as interface between the AC voltage grid and DC voltage grid. The advantages of the AFE converter are bidirectional power flow and low total harmonic distortion (THD) of the line current. The primary side of the IPT system is DC-AC H-bridge inverters. The multi-H-bridge inverters are utilized to increase the transfer power and efficiency of the IPT system. The secondary side of the IPT system is a pick-up coil and receiver built in the EVs or hybrid EVs. The IPT receiver is utilized to charge up battery or supply power to motor through the inverter. The IPT system for moving EVs or hybrid EVs is convenient for charging up battery and could also extend driving range. Furthermore, the position regulation sensors of the IPT system are utilized to control the operation of multi-H-bridge inverters and improve the efficiency of the IPT system.

Energies 2016, 9, 512; doi:10.3390/en9070512

www.mdpi.com/journal/energies

Energies 2016, 9, 512 Energies 2016, 9, 497 

22 of 14  of 14

Energies 2016, 9, 497 

2 of 14 

Bus Bus stop stop

Battery Battery

IPT Receiver IPT Receiver

Inverter Inverter

Motor Motor

IPT IPT H-bridge H-bridge Inverter Inverter

AFE AFE

    Figure 1. Inductive power transfer system for bus‐stop‐powered EVs or hybrid EVs.  Figure 1. Inductive power transfer system for bus‐stop‐powered EVs or hybrid EVs.  Figure 1. Inductive power transfer system for bus-stop-powered EVs or hybrid EVs.

2. Inductive Power Transfer System  2. Inductive Power Transfer System  2. Inductive Transfer Figure  Power 2  shows  the  System simplified  IPT  system  based  on  EE‐shaped  ferrite  cores  for  Figure  2  shows  the  simplified  IPT  system  based  on  EE‐shaped  ferrite  cores  for  bus‐stop‐powered EVs or hybrid EVs. As shown in Figure 2a, the DC bus voltage is V dc, the DC‐AC  Figure 2 shows the simplified IPT system based on EE-shaped ferrite cores for bus-stop-powered bus‐stop‐powered EVs or hybrid EVs. As shown in Figure 2a, the DC bus voltage is V dc , the DC‐AC  H‐bridge inverter is utilized to generate the high frequency square wave voltage Vin. The EE‐shaped  EVs or hybrid EVs. As shown in Figure 2a, the DC bus voltage is Vdc , the DC-AC H-bridge inverter H‐bridge inverter is utilized to generate the high frequency square wave voltage Vin. The EE‐shaped  ferrite cores are utilized to transfer the power to secondary side load (by pick‐up coil and receiver).  is utilized to generate the high frequency square wave voltage Vin . The EE-shaped ferrite cores are ferrite cores are utilized to transfer the power to secondary side load (by pick‐up coil and receiver).  The primary inductance and secondary inductance are Lp and Ls. The mutual inductance is M (=Lm).  utilized to transfer the power to secondary side load (by pick-up coil and receiver). The primary The primary inductance and secondary inductance are Lp and Ls. The mutual inductance is M (=Lm).  The coupling coefficient (k) is defined as in (1):  inductance and secondary inductance are Lp and Ls . The mutual inductance is M (=Lm ). The coupling The coupling coefficient (k) is defined as in (1):  coefficient (k) is defined as in (1): M k M (1)  M   (1) kk “  ? LLPPLLSS   (1) 

LP LS

As cores are  are A B (38  (38 mm),  mm),   As  shown shown  in in  Figure Figure  2b, 2b,  the the  dimensions dimensions  of of  the the  EE-shaped EE‐shaped  cores  A  (80 (80  mm), mm),  B  C (20 mm), D (28 mm), E (59 mm), F (20 mm), G (F/2), H (E/2–F/2), and I (A/4–E/4). The material As  shown  in  Figure  2b,  the  dimensions  of  the  EE‐shaped  cores  are  A  (80  mm),  B  (38  mm),  C (20 mm), D (28 mm), E (59 mm), F (20 mm), G (F/2), H (E/2–F/2), and I (A/4–E/4). The material of    of the EE-shaped cores is 3C90 made by Ferroxcube (NewTaipei  TaipeiCity, Taiwan,  City, Taiwan, R.O.C.).  R.O.C.). The C (20 mm), D (28 mm), E (59 mm), F (20 mm), G (F/2), H (E/2–F/2), and I (A/4–E/4). The material of  the EE‐shaped cores is 3C90 made by Ferroxcube (New  The relative relative  ´ 7 −7 H/m). permeability space: 4π4π  ˆ× 1010 Figure 2c the equivalent the EE‐shaped cores is 3C90 made by Ferroxcube (New  Taipei  City, Taiwan,  R.O.C.).  The  relative  permeability is is 2300 2300 (permeability (permeability ofof free free  space:  H/m).  Figure  2c  shows shows  the  equivalent  −7 resonant circuit of the primary series resonant and secondary parallel (SP) topology IPT system and permeability  is  2300  (permeability  of  free  space:  4π  ×  10 H/m).  Figure  2c  shows  the  equivalent  circuit of the primary series resonant and secondary parallel resonant (SP) topology IPT system and  Figure 2d shows the secondary parallel resonant (P) topology IPT system, respectively. circuit of the primary series resonant and secondary parallel resonant (SP) topology IPT system and  Figure 2d shows the secondary parallel resonant (P) topology IPT system, respectively.  Figure 2d shows the secondary parallel resonant (P) topology IPT system, respectively. 

    (a)  (a) 

(b) (b)

(c)  (c) 

(d) (d)

   

Figure 2.  Simplified  inductive power transfer system. (a)  Circuit of the  IPT  system; (b)  EE‐shaped  Figure 2. Simplified inductive power transfer system. (a) Circuit of the IPT system; (b) EE-shaped Figure 2.  Simplified  inductive power transfer system. (a)  Circuit of the  IPT  system; (b)  EE‐shaped  cores; (c) Equivalent circuit of the SP topology; (d) Equivalent circuit of the P topology.  cores; (c) Equivalent circuit of the SP topology; (d) Equivalent circuit of the P topology. cores; (c) Equivalent circuit of the SP topology; (d) Equivalent circuit of the P topology. 

Energies 2016, 9, 512

3 of 14

The mutual inductance is M (=Lm ) and the equivalent resistance of core loss is Rm . The primary and secondary leakage inductances are Llp and Lls as in (2). Llp “ p1´kqLp , Lls “ p1´kqLs

(2)

The primary and secondary resistances are rp and rs . The load is simplified as RL . The primary series resonant capacitor is CP and the secondary parallel resonant capacitor is Cs. The transfer function of the SP topology IPT system is given as in (3): νout psq s2 ˆ CP ˆ Lm ˆ R L {rRm ˆ pR L ` rS qs “ 2 νin psq p1 ` psH q ˆ p1 ` ω2ζ 1 s ` ωs2 q ˆ p1 ` ω2ζn22 s ` n1

n1

(3)

s2 2 q ωn2

The pole (s = ´PH ) operated at the high frequency domain is as in (4): p H “ Rm ˆ p

1 1 1 ` ` q Ll p Lls Lm

(4)

The complex-conjugate poles operated at the low frequency domain are as in (5): s “ ´pζ 1 ˘ j

b 1 ´ ζ 12 qωn1

(5)

b where the damping ratio is ζ 1 “ r P CP ωn1 {2, natural undamped frequency is ωn1 “ 1{CP pLl p ` Lm q b and resonant frequency is ωr1 “ 1 ´ ζ 12 ωn1 , respectively. The complex-conjugate poles operated at the middle frequency domain are as in (6): s “ ´pζ 2 ˘ j

b 1 ´ ζ 22 qωn2

(6) d

where the damping ratio is ζ 2 “ 1{2R L CS ωn2 , natural undamped frequency is ωn2 “

p1`rS { R L q

Ll p ˆLm

CS p Lls ` L

`Lm q

lp b 2 and resonant frequency is ωr2 “ 1 ´ ζ 2 ωn2 , respectively. According to (3), the transfer function of the IPT system with P topology is reduced as in (7):

νout psq s ˆ Lm ˆ R L {pr P ˆ pR L ` rS qq “ 2 νin psq p1 ` psL q ˆ p1 ` psH q ˆ p1 ` ω2ζn22 s ` ωs2 q

(7)

n2

The high frequency pole (s = ´PH ) is as in (4) and the low frequency pole (s = ´PL ) is as in (8): p L “ r P {pLl p ` Lm q

(8)

The complex-conjugate poles operated at the middle frequency domain are as in (9): s “ ´pζ ˘ j

b 1 ´ ζ 2 qωn

(9) d

where the damping ratio is ζ “ 1{2R L CS ωn , natural undamped frequency is ωn “

p1`rS { R L q

Ll p ˆLm

CS p Lls ` L

`Lm q

lp a 2 and resonant frequency is ωr “ 1 ´ ζ ωn , respectively. According to (3) and (7), there are two pairs of resonant poles in the SP topology IPT system and one pair of resonant poles in the P topology IPT system.

Energies 2016, 9, 512 Energies 2016, 9, 497 

4 of 14 4 of 14 

3. Frequency Response of the IPT System  3. Frequency Response of the IPT System The  parameters parameters  of of  the the  IPT IPT  system system  are are  as as  follows: follows:  the  inductance  and and  secondary secondary  The the primary  primary inductance inductance are Lp (325 μH) and Ls (325 μH). The primary series resonant capacitor is C P (0.2 μF) and  inductance are Lp (325 µH) and Ls (325 µH). The primary series resonant capacitor is CP (0.2 µF) the secondary parallel resonant capacitor is Cs (0.2 μF). The resistances r p  and r s  are 0.72 Ω. The load  and the secondary parallel resonant capacitor is Cs (0.2 µF). The resistances rp and rs are 0.72 Ω. The resistance R L is 100 Ω.  load resistance RL is 100 Ω. Figure 33 shows shows the the  frequency  response  of  the  IPT  system  on  EE‐shaped  cores  with  Figure frequency response of the IPT system basedbased  on EE-shaped cores with varied varied air gap (fsw: 10–100 kHz). In SP topology, the resonant frequencies ω r1  and ω r2  move to each  air gap (fsw: 10–100 kHz). In SP topology, the resonant frequencies ω r1 and ω r2 move to each other as other  the air  gap is increased as  shown 3a. in Figure  3a.  In  P  topology,  resonant  value is  the airas  gap is increased as shown in Figure In P topology, the resonantthe  peak value ispeak  decreased as decreased as the air gap is increased as shown in Figure 3b. Therefore, the SP topology is suitable  the air gap is increased as shown in Figure 3b. Therefore, the SP topology is suitable for a large air gap for  a  large  and air  gap  IPT  system suits and athe  P  topology  suits  a  small  gap  IPT  system.  The  IPT system the P topology small air gap IPT system. Theair  coupling coefficient and coupling  resonant coefficient and resonant frequency of the IPT system with varied air gap are given in Table 1.  frequency of the IPT system with varied air gap are given in Table 1. Table 1. Coupling coefficient and resonant frequency of the IPT system with varied air gap.  Table 1. Coupling coefficient and resonant frequency of the IPT system with varied air gap.

Gap Llp  Lls  Lm  k  ωr1  ωr2  ωr 

Llp Lls Lm k ω r1 ω r2 ωr

5 mm 5 mm 217.7 μH  217.7 µH 217.7 μH  217.7 µH 107.3 μH  107.3 µH 0.33  0.33 15 kHz 15 kHz  23 kHz 23 kHz  20 kHz 20 kHz 

10 mm 10 mm 237.2 μH  237.2 µH 237.2 μH  237.2 µH 87.8 μH  87.8 µH 0.27  0.27 17 kHz 17 kHz  22 kHz 22 kHz  20 kHz 20 kHz 

Bode Diagram

M agn itu de (abs)

6 4

10mm Gap:5mm

2

Bode Diagram

1.5

90

-45

0

10

10mm

0.5 00

-90

Gap:5mm

1

1800

-180 1 10

20 mm  282.7 μH  282.7 282.7 μH  µH 282.7 µH 42.3 μH  42.3 µH 0.13 0.13  20 kHz 20 kHz  20 kHz 20 kHz  20 kHz 20 kHz  20 mm

2

20mm

P h ase (deg)

P h ase (deg)

M agn itu de (abs)

8

Gap

20mm

-90 -135 -180 1 10

2

Frequency (kHz)

10

2

 

Frequency (kHz)

(a) 

(b) 200

200 20mm 150

150 Pout(W )

Pin(W )

20mm 100

100

10mm 50

0 1 10

5mm

Frequency(kHz)

50

10

2

0 1 10

(c) Figure 3. Cont.

10mm 5mm

Frequency(kHz)

10

2

 

Energies 2016, 9, 512 Energies 2016, 9, 497 

5 of 14 5 of 14 

14

14

12

12

5mm

10

8 6

Po u t(W )

P in (W )

10

10mm

4 2 01 10

5mm

8 6

10mm

4

20mm

2

Frequency(kHz)

10

2

01 10

20mm

Frequency(kHz)

10

2

 

(d) Figure 3. Frequency response of the IPT system based on EE‐shaped cores with varied air gap. (a) SP  Figure 3. Frequency response of the IPT system based on EE-shaped cores with varied air gap. (a) SP topology (MATLAB); (b) P topology (MATLAB); (c) Input power and output power of SP topology  topology (MATLAB); (b) P topology (MATLAB); (c) Input power and output power of SP topology dc: 30 V); (d) Input power and output power of P topology (test results; Vdc: 30 V).  (test results; V (test results; Vdc : 30 V); (d) Input power and output power of P topology (test results; Vdc : 30 V).

Figure 3c shows the input power and output power of the SP topology IPT system with varied  Figure 3c shows the input power and output power of the SP topology IPT system with varied air air  gap  (test  results;  Vdc:  30  V).  The  resonant  frequencies  of  the  IPT  system  are  15  kHz  (ωr1)  and    gap (test results; Vdc : 30 V). The resonant frequencies of the IPT system are 15 kHz (ω r1 ) and 23 kHz 23 kHz (ωr2) under air gap 5 mm, 17 kHz (ωr1) and 22 kHz (ωr2) under air gap 10 mm, and 20 kHz  (ω r2 ) under air gap 5 mm, 17 kHz (ω r1 ) and 22 kHz (ω r2 ) under air gap 10 mm, and 20 kHz (ω r1,2 ) (ωr1,2) under air gap 20 mm, respectively. The input power and output power are increased and the  under air gap 20 mm, respectively. The input power and output power are increased and the efficiency efficiency is decreased as air gap increased. The measurement results of the SP topology IPT system  is decreased as air gap increased. The measurement results of the SP topology IPT system are given in are  given  in  Table  2.  Figure  3d  shows  the  input  power  and  output  power  of  the  P  topology  IPT  Table 2. Figure 3d shows the input power and output power of the P topology IPT system with varied system  with  varied  air  gap  (test  results;  Vdc:  30  V).  The  input  power,  output  power,  and  the  air gap (test results; Vdc : 30 V). The input power, output power, and the efficiency are decreased as air efficiency are decreased as air gap increased. The measurement results of the P topology IPT system  gap increased. The measurement results of the P topology IPT system are given in Table 2. As shown are  given  in  Table  2.  As  shown  in  Figure  3,  the  measurement  results  agree  with  the  simulation  in Figure 3, the measurement results agree with the simulation results produced by using MATLAB. results produced by using MATLAB.  Table 2. Input power, output power, and efficiency of the IPT system. Table 2. Input power, output power, and efficiency of the IPT system.  5 mm ωr1 : 5 mm ωr2 : 10 mm ωr1 : 10 mm ω r2 : 20 mm ωr1,2 : 5 mm  10 mm  10 mm  20 mm  5 mm  15 kHz ωr2: 23 kHz  23 kHz 17 kHz 22 kHz ωr1: 17 kHz  ωr2: 22 kHz  ω20r1,2kHz : 20 kHz  ωr1: 15 kHz  Input power 30 W 66 W 45 W 72 W 177 W TOPOLOGY SP TOPOLOGY   Input power  30 W  66 W  45 W  72 W  177 W  Output power 28 W 59.3 W 38.4 W 64 W 136.9 W Output power  28 W  59.3 W  38.4 W  64 W  136.9 W  Efficiency 94% 90% 85% 89% 77% Efficiency  94%  90%  85%  89%  77%  20 mm ωr : 5 mmr: 20 kHz ωr : 20 kHz 10 mm rω GapGap 5 mm ω 10 mm ω : 20 kHz 20 mm ω r : 20 kHz 20 kHzr: 20 kHz Input power  13.2 W  7.2 W  3.9 W  P TOPOLOGY Input power 13.2 W 7.2 W 3.9 W P TOPOLOGY  Output power  11.9 W  5.5 W  Output power 11.9 W 5.5 W 1.61.6 W  W Efficiency  90%  77%  40%  Efficiency 90% 77% 40% SP

Gap Gap

4. Simulation and Experimental Results  4. Simulation and Experimental Results Figure 4 shows the prototype of measurement for the P topology IPT system operated at small  Figure 4 shows the prototype of measurement for the P topology IPT system operated at small air  gap.  The multi-H-bridge multi‐H‐bridge inverters inverters are are  utilized  increase  transfer  power  efficiency  of  air gap. The utilized toto  increase thethe  transfer power andand  efficiency of the the P topology IPT system as shown in Figure 4a. The X‐Z table and controller are utilized to move  P topology IPT system as shown in Figure 4a. The X-Z table and controller are utilized to move the the  pick‐up  coil IPT and  IPT  receiver  along  the  shown 4b. in The Figure  4b.  The ofparameters  of  pick-up coil and receiver along the X-axis as X‐axis  shown as  in Figure parameters measurement measurement are the same as Section 3. The issues of the IPT system [13] such as efficiency, air gap  are the same as Section 3. The issues of the IPT system [13] such as efficiency, air gap (Z-axis), (Z‐axis), displacement (X‐axis), dislocation (Y‐axis), and motion (X‐axis) are discussed as follow:  displacement (X-axis), dislocation (Y-axis), and motion (X-axis) are discussed as follow:

Energies 2016, 9, 512 Energies 2016, 9, 497  Energies 2016, 9, 497  V dc V dc

6 of 14 6 of 14  6 of 14  i p1 i p1 V p1 V p1

C dc1 C dc1

i p2 i p2 V p2 V p2

C dc2 C dc2

IPT system IPT system

is iL is C si L V s C s Load Vs Load EE cores EE cores

i p3 i p3 V p3 V p3

C dc3 C dc3

H-bridge Inverter H-bridge Inverter

(a) (a)

 

 

 

(b) (b)

 

Figure  4.  Prototype  of  measurement  for  the  P  topology  IPT  system.  (a)  multi‐H‐bridge  inverters    Figure  4.  Figure 4. Prototype  Prototypeof  ofmeasurement  measurementfor  forthe  the P  P topology  topology IPT  IPT system.  system. (a)  (a) multi‐H‐bridge  multi-H-bridgeinverters  inverters  (b) prototype of measurement.  (b) prototype of measurement.  (b) prototype of measurement.

Efficiency(%) Efficiency(%)

4.1. Air Gap  4.1. Air Gap  4.1. Air Gap Figure  5  shows  the  efficiency,  input  power,  and  output  power  of  the  P  topology  IPT  system  Figure  5  the efficiency, efficiency,  input  power,  and  output  power  of P the  P  topology  IPT  system  Figure 5 shows  shows the power of the topology IPTThe  system based based  on  one  H‐bridge  inverter input with power, varied and air output gap  and  operating  frequency.  switching  based  on  one  H‐bridge  inverter  with  varied  air  gap  and  operating  frequency.  The  switching  on one H-bridge variedto  air100  gapkHz.  and operating frequency. The5a,  switching frequency (fsw) frequency  (fsw) inverter is  from with 10  kHz  As  shown  in  Figure  for  various  operating  frequency  (fsw)  is  from  10  kHz  to  100  kHz.  As  shown  in  Figure  5a,  for  various  operating  is from 10 kHz to 100 kHz. As shown in Figure 5a, for various operating frequencies, the IPT system frequencies, the IPT system exhibits superior performance at the resonant frequency (20 kHz). The  frequencies, the IPT system exhibits superior performance at the resonant frequency (20 kHz). The  exhibits superior at the resonantby  frequency (20operating  kHz). Thefrequency.  efficiency of the IPT systemthe  is efficiency  of  the performance IPT  system  is  decreased  increased  Table  3  shows  efficiency  of  the  IPT  system  is  decreased  by Table increased  operating  frequency.  Table  3  shows  the  decreased by increased operating frequency. 3 shows the efficiency, input power, and output efficiency, input power, and output power of the P topology IPT system at 20 kHz. The maximum  efficiency, input power, and output power of the P topology IPT system at 20 kHz. The maximum  power of the P topology IPT system at 20 kHz. The maximum efficiency of the IPT system is 93% at efficiency of the IPT system is 93% at air gap 5 mm. Figure 5b shows the efficiency, input power,  efficiency of the IPT system is 93% at air gap 5 mm. Figure 5b shows the efficiency, input power,  air gap 5 mm. Figure 5b shows the efficiency, input power, and output power of the IPT system with and output power of the IPT system with varied air gap from 5 mm to 65 mm (fsw: 20 kHz). The  and output power of the IPT system with varied air gap from 5 mm to 65 mm (fsw: 20 kHz). The  varied air gap from 5 mm to 65 mm (fsw: 20 kHz). The efficiency, input power, output power, and efficiency, input power, output power, and power loss of the IPT system are 50.9%, 49.5 W, 25.2 W,  efficiency, input power, output power, and power loss of the IPT system are 50.9%, 49.5 W, 25.2 W,  power lossW  of (gap:  the IPT 49.5 W, 25.2 24.3 W (gap: mm). The and  24.3  21 system mm).  are The 50.9%, performances  of W, the and P  topology  IPT 21system  are performances increased  by ofa  and  24.3  W  (gap:  21  mm).  The  performances  of  the  P  topology  IPT  system  are  increased  by  a  the P topology IPT system are increased by a decreased air gap. decreased air gap.  decreased air gap. 

Pout(W) Pout(W)

Pin(W) Pin(W)

100 100 50 50 0 1 0101 10 300 300 200 200 100 1000 1 0101 10 300 300 200 200 100 1000 1 0101 10

Frequency(kHz) Frequency(kHz)

Frequency(kHz) Frequency(kHz)

Frequency(kHz) Frequency(kHz)

(a) (a)

Figure 5. Cont.

5mm 5mm 10mm 10mm 20mm 20mm 2 102 10 5mm 5mm 10mm 10mm 20mm 20mm 2 102 10 5mm 5mm 10mm 10mm 20mm 20mm 2 102 10

 

 

7 of 14

Energies 2016, 9, 497 

7 of 14 

Pout(W )

Pin(W )

E fficiency(% )

Energies 2016, 9, 512

100 50 0 300 200 100 0 300 200 100 0

10

20

30 40 Gap(mm)

50

60

10

20

30 40 Gap(mm)

50

60

10

20

30 40 Gap(mm)

50

60

 

(b) 100

10mm 15mm 20mm

Efficiency(%)

80

60

40

20

0

100

200

300

400

500

600

Load(Ohm) (c)

700

800

900

1000

 

Figure 5. Efficiency, input power, and output power of the P topology IPT system with varied air  Figure 5. Efficiency, input power, and output power of the P topology IPT system with varied air gap gap and frequency (Vdc: 150 V; RL: 100 Ω). (a) Efficiency, input power, and output power; (b) Varied  and frequency (Vdc : 150 V; RL : 100 Ω). (a) Efficiency, input power, and output power; (b) Varied air air gap from 5 mm to 65 mm (20 kHz); (c) Varied load (20 kHz).  gap from 5 mm to 65 mm (20 kHz); (c) Varied load (20 kHz). Table 3. Efficiency, input power, and output power of the IPT system with varied air gap at 20 kHz.  Table 3. Efficiency, input power, and output power of the IPT system with varied air gap at 20 kHz.

Air Gap (mm)  Air Gap (mm) Efficiency  Efficiency Input Power(W)  Input Power(W) Output Power(W)  Output Power(W)

5 5 93%  93% 300  300 278  278

10

20

10 85% 

20 60% 

85% 150  150 128  128

60% 54  54 32  32

Figure 5c shows the efficiency of the P topology IPT system with varied load 50–1000 Ω (Vdc: 150 V;  Figure 5c shows the efficiency of the P topology IPT system with varied load 50–1000 Ω (Vdc : 150 V; fsw: 20 kHz). The efficiency, input power, and output power of the P topology IPT system are 85%,  fsw: 20 kHz). The efficiency, input power, and output power of the P topology IPT system are 85%, 150 W, and 128 W under load 100 Ω (gap: 10 mm). The efficiency, input power, and output power  150 W, and 128 W under load 100 Ω79%,  (gap:150  10 mm). The119  efficiency, input power, and output powerThe  of of  the  P  topology  IPT  system  are  W,  and  W  under  load  200  Ω  (gap:  15  mm).  the P topology IPT system are 79%, 150 W, and 119 W under load 200 Ω (gap: 15 mm). The efficiency, efficiency, input power, and output power of the P topology IPT system are 72%, 120 W, and 86 W  input power, and output power of the P topology IPT system are 72%, 120 W, and 86 W under load under load 300 Ω (gap: 20 mm). The efficiency of the P topology IPT system is affected by the load  300 Ω (gap: 20 mm). The efficiency of the P topology IPT system is affected by the load and air gap. and air gap.   

20 kHz). Table 4 shows the efficiency, input power, output power, and power loss of the IPT system.  Table 4 is for displacements of 10 mm and 20 mm, respectively. The performances of the IPT system  are increased by decreased displacement.  Energies 2016, 9, Table  4. 512 Displacement  effect  of  the  IPT  system  with  varied  air  gap  from  5  mm  to  40  mm 8 of   14

(fsw: 20 kHz).  5 10 15 20 25 30  35  40 Efficiency  86.8% 73.2% 61.4% 49.5% 33.3% 22.9%  14.8%  7.4% Displacement:  The displacement is defined as moving the X-axis. 6 shows Input power (W)  219 along105  72  Figure 49.5  37.5 the displacement 31.5  28.5  effect 27 of 10 mm  the IPT system based on one H-bridge inverter with varied air gap from 5 mm to 40 mm (fsw: 20 kHz). Output power (W)  191.1  77.2  44.1  24.5  12.5  7.2  4.2  2  Table 4 shows the efficiency, output62.7%  power, 45.4%  and power loss 24.2%  of the IPT system. Table6.0%  4 is Efficiency  input power,76.3%  33.3%  15.0%  10.6%  Displacement:  for displacements of 10 mm and 20 mm, respectively. the IPT 30  system are Input power (W)  97.5  64.5 The performances 46.5  37.5  of33  27  increased 27  20 mm  Output power (W)  74.4  40.5  21.1  12.5  8  4.5  2.9  1.6  by decreased displacement.

Pout(W)

Pin(W)

Efficiency(%)

Displacement  4.2. Displacement Air Gap (mm) 

100

10mm 20mm

50 0 5

10

15

20 25 Gap(mm)

30

35

200

10mm 20mm

100 0 5

10

15

20 25 Gap(mm)

30

35

200

40 10mm 20mm

100 0 5

40

10

15

20 25 Gap(mm)

30

35

40

 

(a)

(b) Figure 6. Displacement effect of the IPT system with varied air gap from 5 mm to 40 mm (V dc: 150 V;  Figure 6. Displacement effect of the IPT system with varied air gap from 5 mm to 40 mm (Vdc : 150 V; fsw: 20 kHz). (a) Efficiency, input power; and output power (b) Displacement.  fsw: 20 kHz). (a) Efficiency, input power; and output power (b) Displacement.

4.3. Dislocation  Table 4. Displacement effect of the IPT system with varied air gap from 5 mm to 40 mm (fsw: 20 kHz). The dislocation is defined as moving along the Y‐axis. Figure 7 shows the dislocation effect of  Displacement Air Gap (mm) 5 10 15 20 25 30 35 40 the  IPT  system  based  on  one  H‐bridge  inverter  with  varied  air  gap  from  5  mm  to  40  mm  (fsw:    Efficiency 86.8% 73.2% 61.4% 49.5% 33.3% 22.9% 14.8% 7.4% Displacement: 20 kHz). The dislocation effect of the IPT system with varied air gap is given in Table 5. Table 5 is  Input power (W) 219 105 72 49.5 37.5 31.5 28.5 27 10 mm 44.1 24.5 performances  12.5 7.2of  the  4.2 2 for  dislocations  Output of  10 power mm (W)and  191.1 20  mm, 77.2 respectively.  The  IPT  system  are  Efficiency 76.3% 62.7% 45.4% 33.3% 24.2% 15.0% 10.6% 6.0% increased by decreased dislocation.  Displacement: Input power (W) 97.5 64.5 46.5 37.5 33 30 27 27 20 mm Output power (W) 40.5 21.1 12.5 8 4.5 2.9 1.6   74.4 4.3. Dislocation The dislocation is defined as moving along the Y-axis. Figure 7 shows the dislocation effect of the IPT system based on one H-bridge inverter with varied air gap from 5 mm to 40 mm (fsw: 20 kHz). The dislocation effect of the IPT system with varied air gap is given in Table 5. Table 5 is for dislocations of 10 mm and 20 mm, respectively. The performances of the IPT system are increased by decreased dislocation.

Dislocation  Dislocation: 10 mm 

Pout(W)

Pin(W)

Efficiency(%)

Dislocation: 20 mm  Energies 2016, 9, 512

Air Gap (mm)  Efficiency  Input power (W)  Output power (W)  Efficiency  Input power (W)  Output power (W) 

5 87.5%  171  147.9  41.8%  37.5  15.7 

10 72.1%  87  62.7  31.2%  34.5  10.8 

15 54.7%  58.5  32  21.7%  31.5  6.8 

20 41.4%  43.3  18  18.1%  30  5.4 

25 28.1%  36  10.1  11.8%  28.5  3.3 

100

10

15

20 25 Gap(mm)

30

35

200

10

15

20 25 Gap(mm)

30

35

200

40

40 10mm 20mm

100 0 5

40 7.4%  27  2  4.4%  25.5  9 of 14 1.1 

10mm 20mm

100 0 5

35  11%  28.5  3.1  6.0%  27  1.6 

10mm 20mm

50 0 5

30  17.1%  30  5.1  8.1%  27  2.2 

10

15

20 25 Gap(mm)

30

35

40

 

(a)

(b) Figure 7. Dislocation effect of the IPT system with varied air gap from 5 mm to 40 mm (fsw: 20 kHz).  Figure 7. Dislocation effect of the IPT system with varied air gap from 5 mm to 40 mm (fsw: 20 kHz). (a) Efficiency, input power; and output power (b) Dislocation.  (a) Efficiency, input power; and output power (b) Dislocation.

4.4. Motion 

Table 5. Dislocation effect of the IPT system with varied air gap from 5 mm to 40 mm.

As shown in Figure 4, three H‐bridge inverters are connected with each primary E‐shaped core  Dislocation Airto  Gap (mm) 5 10 15 E‐shaped  20 core. 25 30 of  E‐shaped  35 40 and  are  utilized  transfer  power  to  a  secondary  The  width  core  is    Efficiency 87.5% 72.1% 54.7% 41.4% 28.1% 17.1% 11% C Dislocation: =  20  mm  (Figure  2b).  The  space  of  each  primary  E‐shaped  core  is  20  mm  (Table  4).  The 7.4% three  Input power (W) 171 87 58.5 43.3 36 30 28.5 27 10 mm operation  modes  of power three (W) H‐bridge  are  regulation  Output 147.9 inverters  62.7 32 controlled  18 by  position  10.1 5.1 3.1sensors.  2 The  mode  1H  is  designed  inverter  operated  each  11.8% time;  mode  two  H‐bridge  Efficiency as  one  H‐bridge  41.8% 31.2% 21.7% 18.1% 8.1% 2H,  6.0% 4.4% Dislocation: Input power (W) 37.5 34.5 31.5 30 28.5 27 27 25.5for  inverters;  mode  3H,  three  H‐bridge  inverters,  respectively.  The  operating  range  of  mode  1H  20 mm Output power (W) 15.7 10.8 6.8 5.4 3.3 2.2 1.6 1.1 each H‐bridge inverter is 40 mm without overlap as moving along X‐axis. The total operating range  of  mode  1H  for  three  H‐bridge  inverters  is  120  mm.  The  operating  range  of  mode  2H  for  each  4.4. Motion H‐bridge  inverter  is  80  mm  as  moving  along  X‐axis.  The  nearby  two  H‐bridge  inverters  are  operated with 40 mm overlap. The total operating range of mode 2H for three H‐bridge inverters is  As shown in Figure 4, three H-bridge inverters are connected with each primary E-shaped core and are160 mm. The operating range of mode 3H for three H‐bridge inverters are the same range 140 mm  utilized to transfer power to a secondary E-shaped core. The width of E-shaped core is C = 20 mm as moving along the X‐axis.  (Figure 2b). The space of each primary E-shaped core is 20 mm (Table 4). The three operation modes of Figure 8 shows the efficiency, input power, and output power of the IPT system in motion. The  three H-bridge inverters are controlled by position regulation sensors. The mode 1H is designed as oneair gaps of the IPT system are 10 mm (Figure 8a) and 20 mm (Figure 8b) as moving along the X‐axis.  H-bridge inverter operated each time; mode 2H, two H-bridge inverters; mode 3H, three H-bridge As  shown  in  Figure The 8a,b,  comparing  modes  1H,  2H,  and  3H, H-bridge the  efficiency,  input  and  inverters, respectively. operating range of mode 1H for each inverter is 40power,  mm without overlap as moving along X-axis. The total operating range of mode 1H for three H-bridge inverters is 120 mm. The operating range of mode 2H for each H-bridge inverter is 80 mm as moving along X-axis. The nearby two H-bridge inverters are operated with 40 mm overlap. The total operating range of mode 2H for three H-bridge inverters is 160 mm. The operating range of mode 3H for three H-bridge inverters are the same range 140 mm as moving along the X-axis. Figure 8 shows the efficiency, input power, and output power of the IPT system in motion. The air gaps of the IPT system are 10 mm (Figure 8a) and 20 mm (Figure 8b) as moving along the X-axis. As shown in Figure 8a,b, comparing modes 1H, 2H, and 3H, the efficiency, input power, and output power of mode 1H vary seriously due to each H-bridge inverter being operated without overlap; the

Energies 2016, 9, 512 Energies 2016, 9, 497 

10 of 14

10 of 14 

E ffic e n c y (% )

output  power  of  mode  1H  vary  seriously  due  to  each  H‐bridge  inverter  being  operated  without  input power of mode 3H is high, but the efficiency of mode 3H is low due to the wide operating range overlap; the input power of mode 3H is high, but the efficiency of mode 3H is low due to the wide  for three H-bridge inverters; the efficiency, input power, and output power of mode 2H are high and operating range for three H‐bridge inverters; the efficiency, input power, and output power of mode  stable due to the adequate overlap operation for three H-bridge inverters. The motion effect of the 2H  are  high  and  stable  due  to  the  adequate  overlap  operation  for  three  H‐bridge  inverters.  The  IPT system as moving along X-axis is given in Table 6 (mode 1H), Table 7 (mode 2H), and Table 8 motion effect of the IPT system as moving along X‐axis is given in Tables 6 (mode 1H), 7 (mode 2H),  (mode 3H), respectively. The efficiency, input power, and output power of mode 2H are 76%, 224 W, and 8 (mode 3H), respectively. The efficiency, input power, and output power of mode 2H are 76%,  and 169 Wand  (air169 W  gap: 10(air  mm; X-axis: 0 mm) and 51%, 107 W,51%, 107 W,  and 54.1 W and  (air gap: 20 mm; X-axis: mm;  0 mm). 224  W,  gap:  10  mm;  X‐axis: 0  mm) and  54.1 W  (air gap: 20  Among mode 1H, 2H, and 3H, mode 2H exhibits superior performances of the IPT system and meets X‐axis: 0 mm). Among mode 1H, 2H, and 3H, mode 2H exhibits superior performances of the IPT  thesystem and meets the requirements for bus‐stop‐powered EVs.  requirements for bus-stop-powered EVs. 100

1H 2H 3H

50 0 -40

-20

-10

0

X-Axis

10

20

30

40 1H 2H 3H

P in (W )

300 200 100 0 -40

-30

-30

-20

-10

0

X-Axis

10

20

30

40 1H 2H 3H

P o u t(W )

300 200 100 0 -40

-30

-20

-10

0

X-Axis

10

20

30

40

  E ffic e n c y (% )

(a) 100

1H 2H 3H

50 0 -40

-30

-20

-10

0

X-Axis

10

20

30

40 1H 2H 3H

P in (W )

300 200 100 0 -40

-20

-10

0

X-Axis

10

20

30

40 1H

P o u t(W )

300 200 100 0 -40

-30

2H 3H

-30

-20

-10

0

X-Axis

10

20

30

40

  (b) Figure 8. Efficiency, input power, and output power of the IPT system in motion. (a) Air gap: 10 mm  Figure 8. Efficiency, input power, and output power of the IPT system in motion. (a) Air gap: 10 mm (b) Air gap: 20 mm.  (b) Air gap: 20 mm.   Table 6. Motion effect of the IPT system as moving along X-axis; mode 1H (fsw: 20 kHz). Air Gap

X-Axis (mm)

´40

´30

´20

´10

0

10

20

30

40

Air Gap: 10 mm

Efficiency Input power (W) Output power (W)

85% 150 128

81% 117 95

0% 0 0

78% 98 77

85% 150 128

78% 98 77

0% 0 0

81% 117 95

85% 150 128

Air Gap: 20 mm

Efficiency Input power (W) Output power (W)

56% 54 30

49% 49 24

0% 0 0

43% 45 19

56% 54 30

43% 45 19

0% 0 0

49% 49 24

56% 54 30

Air Gap: 10 mm 

Air Gap: 20 mm 

Input power (W)  Output power (W)  Efficiency  Input power (W)  Output power (W) 

150  128  56%  54  30 

117  95  49%  49  24 

0  0  0%  0  0 

98  77  43%  45  19 

150  128  56%  54  30 

98  77  43%  45  19 

0  0  0%  0  0 

117  95  49%  49  24 

Energies 2016, 9, 512

150  128  56%  54  30  11 of 14

Table 7. Motion effect of the IPT system as moving along X‐axis; mode 2H (fsw: 20 kHz).  Table 7. Motion effect of the IPT system as X-axis;0 mode 2H 20 kHz). X‐Axis (mm)  −40 −30moving −20along−10 10 (fsw:20  30  Efficiency  76%  76%  75%  75%  76%  75%  75%  76%  Air Gap X-Axis (mm) ´30 ´20 ´10 30 40 Air Gap: 10 mm  Input power (W)  238 ´40 240  230  230  0 224  10 230 20 230  240  Efficiency 76% 173  75% 75% 76% 182  76% Output power (W)  181 76% 182  173  76% 169  75%173 75% 173  Air Gap: 10 mm Input power (W) 238 240 230 230 224 230 230 240 238 Efficiency  52%  50%  49%  16951%  173 49% 173 50%  Output power (W) 181 51%  182 173 173 182 51%  181 Air Gap: 20 mm  Input power (W)  115 52% 114  113  51% 107  49%113 50% 114  Efficiency 51% 114  50% 49% 51% 114  52% Air Gap: 20 mm Input power (W) 115 58.3  114 114 113 114 58.3  115 Output power (W)  59.4  57.2  55.1  10754.1  113 55.1 114 57.2 

40 76%  238  181  52%  115  59.4 

Table 8. Motion effect of the IPT system as moving along X‐axis; mode 3H (fsw: 20 kHz).  Table 8. Motion effect of the IPT system as moving along X-axis; mode 3H (fsw: 20 kHz). Air Gap  X‐Axis (mm) −40  −30 −20 −10 0 10 20  30  Air Gap X-Axis (mm) ´40 59.7%  ´30 ´20 0 10 20 40 Efficiency  58.1%  59.4%  62.4% ´1063.0%  62.4%  59.7% 30 59.4%  Air  Gap:  Efficiency 237  59.4% 59.7% 63.0% 268.5  62.4% 59.7% Input power (W)  246  58.1%250.5  268.5  62.4% 277.5  250.5  59.4% 246 58.1% 10 mm  Air Gap: 10 mm Input power (W) 237 246 250.5 268.5 277.5 268.5 250.5 246 237 Output power (W)  137.8  167.4  167.4 174.8  149.6  146.2146.2  Output power (W) 146.2  137.8 149.6  146.2 149.6 174.8 167.4  167.4 149.6 137.8 Efficiency  31.3%  33.7%  34.4%  36.1% 36.1% 37.5%  36.1%  34.4% 33.7% 33.7%  Efficiency 31.3% 33.7% 34.4% 37.5% 36.1% 34.4% 31.3% Air  Gap: Air Gap: 20 mm Input power (W) 135 145.5  142.5 145.5 150 145.5 135 Input power (W)  135  142.5  150  150150 150 150  145.5  142.5142.5  20 mm  Output power (W) 42.3 48.0 50.0 54.1 56.2 54.1 50.0 48.0 42.3 Output power (W)  42.3  48.0  50.0  54.1  56.2  54.1  50.0  48.0 

40 58.1%  237  137.8  31.3%  135  42.3 

Air Gap 

Output power (W)

59.4

58.3

57.2

55.1

54.1

55.1

57.2

58.3

59.4

Figure 9 shows the waveforms of the P topology IPT system operated at mode 1H. As shown in Figure 9 shows the waveforms of the P topology IPT system operated at mode 1H. As shown  Figure 4b,4b,  thethe  X-ZX‐Z  table is utilized to move the secondary E-shaped core along X-axis a speed of in  Figure  table  is  utilized  to  move  the  secondary  E‐shaped  core the along  the at X‐axis  at  a  16.7 cm/s. The time intervals of T1, T2, and T3 are 0.24 s. The mode 1H is designed as one H-bridge speed of 16.7 cm/s. The time intervals of T1, T2, and T3 are 0.24 s. The mode 1H is designed as one  inverter operated at each time interval. Therefore, voltage (vs ) and current (is ) waveforms of the IPT H‐bridge inverter operated at each time interval. Therefore, voltage (v s) and current (i s) waveforms  system are varied seriously. of the IPT system are varied seriously. 

(a) 

(b)

Figure  of of the  P  topology  IPT  system  operated  at  mode  1H  (air  gap: gap: 10  mm;  time: time: 100  Figure9. 9.Waveforms  Waveforms the P topology IPT system operated at mode 1H (air 10 mm; ms/div.; voltage: 200 v/div.; current i p1, ip2, and ip3: 5 A/div.; current is: 2 A/div.). (a) Voltages; (b) Currents.  100 ms/div.; voltage: 200 v/div.; current ip1 , ip2 , and ip3 : 5 A/div.; current is : 2 A/div.). (a) Voltages; (b) Currents.

Figure 10 shows the waveforms of the P topology IPT system operated at mode 2H (speed: 16.7  cm/s). The time intervals of T1, T2, T3, and T4 are 0.24 s. The voltage (vs) and current (is) waveforms  Figure 10 shows the waveforms of the P topology IPT system operated at mode 2H (speed: of mode 2H are high and stable due to the adequate overlap operation for three H‐bridge inverters.  16.7 cm/s). The time intervals of T1, T2, T3, and T4 are 0.24 s. The voltage (vs ) and current (is ) Compared  Figure  10 (mode  2H) with  Figure  9  (mode  1H),  mode 2H  exhibits  high  efficiency 76%,  waveforms of mode 2H are high and stable due to the adequate overlap operation for three H-bridge inverters. Compared Figure 10 (mode 2H) with Figure 9 (mode 1H), mode 2H exhibits high efficiency 76%, stable input power and output power. Therefore, the P topology IPT system operated at mode 2H is validated to meet the requirements for bus-stop-powered EVs.

stable input power and output power. Therefore, the P topology IPT system operated at mode 2H is  validated to meet the requirements for bus‐stop‐powered EVs.  Energies 2016, 9, 497 

12 of 14 

stable input power and output power. Therefore, the P topology IPT system operated at mode 2H is  Energies 2016, 9, 512 12 of 14 validated to meet the requirements for bus‐stop‐powered EVs. 

(a) 

(b)

Figure  10.  Waveforms  of  the  P  topology  IPT  system  operated  at  mode  2H  (air  gap:  10  mm;  time:    100  ms/div.;  voltage:  200  v/div.;  current  ip1,  ip2,  and  ip3:  5  A/div.;  current  is:  2  A/div.)  (a)  Voltages;    (b) Currents. 

(a)  5. IPT System Operated at Large Air Gap 

(b)

Figure  10.  Waveforms  of  the  P  topology  IPT  system  operated  at  mode  2H  (air  gap:  10  mm;  time:    Figure 10. Waveforms of the P topology IPT system operated at mode 2H (air gap: 10 mm; time: The ms/div.;  IPT  system  operated  at  large  air  is  restricted  by current  the  EE‐shaped  ferrite  cores  used.  ip2,  and  ip3:  5  A/div.;  is:  2  A/div.)  (a)  Voltages;    100  voltage:  200  v/div.;  current  ip1, gap  100 ms/div.; voltage: 200 v/div.; current ip1 , ip2 , and ip3 : 5 A/div.; current is : 2 A/div.) (a) Voltages; Therefore,  finite  element  analysis  (FEA)  software  is  utilized  to  validate  the  performances  of  the  (b) Currents.  (b) Currents.

proposed scheme. Figure 11 shows the IPT system based on the FEA software. According to Figures  5. IPT System Operated at Large Air Gap  2b, and Figure 11a which shows the 3D model of the EE‐shaped ferrite cores, the dimensions are A  5. IPT System Operated at Large Air Gap (760 mm), B (30  mm), C (760 mm), D (20  mm), E (720  mm), F (40 mm), G (F/2), H (E/2–F/2), and I  The  IPT  system  operated  at  large  air  gap  is  restricted  by  the  EE‐shaped  ferrite  cores  used.  The IPT system operated at large air gap is restricted by the EE-shaped ferrite cores used. (A/4–E/4). The air gap between the EE‐shaped cores is 150 mm. The material of the EE‐shaped cores  Therefore,  finite  element  analysis  (FEA)  software  is  utilized  to  validate  the  performances  of  the  Therefore, finite element analysis (FEA) software utilized the performances the is 3C90  made  by  Ferroxcube.  Figure  11b  shows  the iscircuit  of  to the validate SP  topology  based  on  the of FEA  proposed scheme. Figure 11 shows the IPT system based on the FEA software. According to Figures  proposed scheme. Figure 11 shows the IPT system based on the FEA software. According to Figure 2b, software.  The  primary and  secondary  excitation  windings  are 11 turns and 11 turns,  respectively.  2b, and Figure 11a which shows the 3D model of the EE‐shaped ferrite cores, the dimensions are A  and primary  Figure 11a which showsinductances  the 3D model EE-shaped cores, dimensions are A The  and  secondary  are ofLpthe   (147  μH)  and ferrite Ls  (147  μH). the The  primary  series  (760 mm), B (30  mm), C (760 mm), D (20  mm), E (720  mm), F (40 mm), G (F/2), H (E/2–F/2), and I  (760 mm), B (30 mm), C (760 mm), D (20 mm), E (720 mm), F (40s (0.43 μF). Therefore, the resonant  mm), G (F/2), H (E/2–F/2), and I capacitor and secondary parallel capacitor are C p (0.43 μF) and C (A/4–E/4). The air gap between the EE‐shaped cores is 150 mm. The material of the EE‐shaped cores  (A/4–E/4). The air gap between the EE-shaped cores is 150 mm. The material of the EE-shaped frequency is designed as 20 kHz.  is 3C90  made  by  Ferroxcube.  Figure  11b  shows  the  circuit  of  the  SP  topology  based  on  the  FEA  cores is 3C90 made by Ferroxcube. Figure 11b shows the circuit of the SP topology based on the FEA Figure 12a,b show the waveforms of the SP topology IPT system based on FEA. As shown in  software.  The  primary and  secondary  excitation  windings  are 11 turns and 11 turns,  respectively.  software. The and secondary excitation windings are 11 turns 11the  turns, respectively. The Figure  12a,  the primary input  voltage  is  a  square  wave  with  amplitude  300  V and and  output  voltage  is  a  The  primary  and  secondary  inductances  are  Lp  (147  μH)  and  Ls  (147  μH).  The  primary  series  primary and secondary inductances are Lp (147 µH) and Ls (147 µH). The primary series capacitor and sinusoidal wave with amplitude 793 V. The amplitudes of the input current and output current are  capacitor and secondary parallel capacitor are C p (0.43 μF) and Cs (0.43 μF). Therefore, the resonant  secondary parallel capacitor are Cp 12b.  (0.43The  µF) efficiency,  and Cs (0.43 µF).power,  Therefore, resonant frequency is 41  A  and  43  A  as  shown  in  Figure  input  and the output  power  of  the  SP  frequency is designed as 20 kHz.  designed as 20 kHz. topology IPT system are 80%, 3930 W, and 3136 W, respectively.  Figure 12a,b show the waveforms of the SP topology IPT system based on FEA. As shown in  Figure  12a,  the  input  voltage  is  a  square  wave  with  amplitude  300  V  and  the  output  voltage  is  a  sinusoidal wave with amplitude 793 V. The amplitudes of the input current and output current are  41  A  and  43  A  as  shown  in  Figure  12b.  The  efficiency,  input  power,  and  output  power  of  the  SP  topology IPT system are 80%, 3930 W, and 3136 W, respectively. 

(a) 

(b)

Figure 11. IPT system based on finite element analysis (V Figure 11. IPT system based on finite element analysis (Vdcdc: 300 V; fsw: 20 kHz; air gap: 150 mm).  : 300 V; fsw: 20 kHz; air gap: 150 mm).  (a) 3D Model of EE‐shaped ferrite cores; (b) Circuit of the SP topology.  (a) 3D Model of EE-shaped ferrite cores; (b) Circuit of the SP topology.

(a)  (b) Figure 12a,b show the waveforms of the SP topology IPT system based on FEA. As shown in Figure 12a, the input voltage is a square wave with amplitude 300 V and the output voltage  is a Figure 11. IPT system based on finite element analysis (V dc: 300 V; fsw: 20 kHz; air gap: 150 mm).  (a) 3D Model of EE‐shaped ferrite cores; (b) Circuit of the SP topology.  sinusoidal wave with amplitude 793 V. The amplitudes of the input current and output current are 41 A and 43 A as shown in Figure 12b. The efficiency, input power, and output power of the SP topology IPT system are 80%, 3930 W, and 3136 W, respectively. Figure 12c,d show the waveforms of the P topology IPT system based on FEA. As shown in Figure 12c, the input voltage is a square wave with amplitude 300 V and the output voltage is a sinusoidal wave with amplitude 432 V. The amplitudes of the input current and output current are 25.5 A and 23 A as shown in Figure 12d. The efficiency, input power, and output power of the

Energies 2016, 9, 512

13 of 14

P topology IPT system are 59.8%, 1560 W, and 934 W, respectively. Comparing the SP topology (Figure 12a,b) with the P topology (Figure 12c,d), the IPT system adopting a SP topology exhibits superior performances under large (150 mm) air gap conditions. Energies 2016, 9, 497  13 of 14 

(a)

(b)

(c)

(d) Figure 12. Waveforms of the IPT system based on finite element analysis (Vdc: 300 V; fsw: 20 kHz;    Figure 12. Waveforms of the IPT system based on finite element analysis (Vdc : 300 V; fsw: 20 kHz; air gap: 150 mm). (a) Input and output voltages of SP topology; (b) Input and output currents of SP  air gap: 150 mm). (a) Input and output voltages of SP topology; (b) Input and output currents of SP topology; (c) Input and output voltages of P topology; (d) Input and output currents of P topology.  topology; (c) Input and output voltages of P topology; (d) Input and output currents of P topology.

Figure  12c,d  show  the  waveforms  of  the  P  topology  IPT  system  based  on  FEA.  As  shown  in  6. Figure  Conclusions 12c,  the  input  voltage  is  a  square  wave  with  amplitude  300  V  and  the  output  voltage  is  a  sinusoidal wave with amplitude 432 V. The amplitudes of the input current and output current are  This study discusses the IPT system based on EE-shaped ferrite cores. The transfer function and 25.5  A  and  23  A  as  in  Figure  and 12d. PThe  efficiency,  power,  and  output  power  of  the    frequency response of shown  the SP topology topology IPT input  systems are presented. The SP topology P  topology  IPT  system  are  59.8%,  1560  W,  and  934  W,  respectively.  Comparing  the  SP  topology  (Figure 12a,b) with the P topology (Figure 12c,d), the IPT system adopting a SP topology exhibits  superior performances under large (150 mm) air gap conditions. 

Energies 2016, 9, 512

14 of 14

is suitable for large air gaps and the P topology is suitable for small air gaps. The issues of the IPT system such as efficiency, air gap, displacement, dislocation, and motion are discussed. Finite element analysis is utilized to validate the SP topology IPT system operated under large air gap conditions. Furthermore, multi-H-bridge inverters are utilized to increase the transfer power of the IPT system. The three operation modes (1H, 2H, and 3H) of three H-bridge inverters are controlled by position regulation sensors. Among mode 1H, 2H, and 3H, mode 2H exhibits superior performance in the IPT system and meets the requirements for bus-stop-powered EVs. Acknowledgments: This work was supported by the Ministry of Science and Technology of R.O.C. under grant MOST 103-2221-E-216-008. Author Contributions: Chung-Chuan Hou modeled the system, analyzed the experimental data, wrote the draft and revised the paper; Kuei-Yuan Chang established the experimental platform, measured and analyzed the experimental data. Conflicts of Interest: The authors declare no conflict of interest.

References 1. 2. 3. 4. 5. 6.

7. 8. 9. 10.

11. 12. 13. 14.

Miller, J.M.; Onar, O.C.; Chinthavali, M. Primary-side power flow control of wireless power transfer for electric vehicle charging. IEEE J. Emerg. Sel. Top. Power Electron. 2015, 3, 147–162. [CrossRef] Wang, C.; Stielau, O.H.; Covic, G.A. Design considerations for a contactless electric vehicle battery charger. IEEE Trans. Ind. Electron. 2005, 52, 1308–1314. [CrossRef] Li, S.; Mi, C.C. Wireless power transfer for electric vehicle applications. IEEE J. Emerg. Sel. Top. Power Electron. 2015, 3, 4–17. Choi, S.Y.; Gu, B.W.; Jeong, S.Y.; Rim, C.T. Advances in wireless power transfer systems for roadway-powered electric vehicles. IEEE J. Emerg. Sel. Top. Power Electron. 2015, 3, 18–36. [CrossRef] Zhang, W.; Wong, S.; Tse, C.K.; Chen, Q. An optimized track length in roadway inductive power transfer systems. IEEE J. Emerg. Sel. Top. Power Electron. 2014, 2, 598–608. [CrossRef] Shin, J.; Shin, S.; Kim, Y.; Ahn, S.; Lee, S.; Jung, G.; Jeon, S.; Cho, D. Design and implementation of shaped magnetic-resonance-based wireless power transfer system for roadway-powered moving electric vehicles. IEEE Trans. Ind. Electron. 2014, 61, 1179–1192. [CrossRef] Chen, L.; Nagendra, G.R.; Boys, J.T.; Covic, G.A. Double-coupled systems for IPT roadway applications. IEEE J. Emerg. Sel. Top. Power Electron. 2015, 3, 37–49. [CrossRef] Nagendra, G.R.; Chen, L.; Covic, G.A.; Boys, J.T. Detection of EVs on IPT highways. IEEE J. Emerg. Sel. Top. Power Electron. 2014, 2, 584–597. [CrossRef] Kurs, A.; Karalis, A.; Moffatt, R.; Joannopoulos, J.D.; Fisher, P.; Soljacic, M. Wireless power transfer via strongly coupled magnetic resonances. Science 2007, 317, 83–86. [CrossRef] [PubMed] Zhang, W.; Wong, S.; Tse, C.K.; Chen, Q. Analysis and comparison of secondary series- and parallel-compensated inductive power transfer systems operating for optimal efficiency and load-independent voltage-transfer ratio. IEEE Trans. Power Electron. 2014, 29, 2979–2990. [CrossRef] Aldhaher, S.; Luk, P.C.; Whidborne, J.F. Electronic tuning of misaligned coils in wireless power transfer systems. IEEE Trans. Power Electron. 2014, 29, 5975–5982. [CrossRef] Pantic, Z.; Lee, K.; Lukic, S.M. Multifrequency inductive power transfer. IEEE Trans. Power Electron. 2014, 29, 5995–6005. [CrossRef] Pinuela, M.; Yates, D.C.; Lucyszyn, S.; Mitcheson, P.D. Maximizing dc-to-load efficiency for inductive power transfer. IEEE Trans. Power Electron. 2013, 28, 2437–2447. [CrossRef] Musavi, F.; Eberle, W. Overview of wireless power transfer technologies for electric vehicle battery charging. IET Power Electron. 2013, 7, 60–66. [CrossRef] © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

Suggest Documents