INTEGRAL AVERAGES OF MULTIPLE POISSON KERNELS

4 downloads 0 Views 86KB Size Report
No 17/2009. INTEGRAL AVERAGES OF MULTIPLE POISSON KERNELS. Serap Bulut. Abstract. In [3], Galbraith and Green obtained the mean value of the.
ACTA UNIVERSITATIS APULENSIS

No 17/2009

INTEGRAL AVERAGES OF MULTIPLE POISSON KERNELS

Serap Bulut Abstract. In [3], Galbraith and Green obtained the mean value of the Poisson kernel P (r, θ) for n > −1. In [4], Haruki and Rassias introduced two generalizations of the Poisson kernel which are Q(θ; a, b) and R(θ; a, b, c, d), and obtained the integral value of Q2 (θ; a, b) by means of R(θ; a, b, c, d). Also, they set as an open problem the result of mean values for n ∈ N. This problem is solved by Kim [5]. Then in [1], the author generalized the result of Kim and obtained the mean values of both Q(θ; a, b) and R(θ; a, b, c, d) for all real u. The purpose of this paper is to give integral averages of multiple Poisson kernels, introduced by Spreafico [6], for all real u. Thus we generalize the main result of Spreafico. 2000 Mathematics Subject Classification: Primary 31A10, 31B10; Secondary 33B15, 33C05. Keywords and phrases: Poisson Kernel, Integral Formula, Hypergeometric Function, Pochhammer symbol, Gamma Function.

1.Introduction It is well known that the Poisson kernel in two dimensions is defined by def

P (r, θ) =

1 − r2 , (1 − reiθ )(1 − re−iθ )

and the integral formula 1 Z 2π P (r, θ)dθ = 1 2π 0 151

S. Bulut - Integral averages of multiple Poisson kernels

holds. Here r is a real parameter satisfying |r| < 1. In [4], Haruki and Rassias introduced two generalizations of the Poisson kernel. The first generalization is defined by def

Q(θ; a, b) =

1 − ab , (1 − aeiθ )(1 − be−iθ )

where a, b are complex parameters satisfying |a| < 1 and |b| < 1. The second generalization is defined by R(θ; a, b, c, d) =

(1 −

aeiθ )(1

L(a, b, c, d) , − be−iθ )(1 − ceiθ )(1 − de−iθ )

where a, b, c, d are complex parameters satisfying |a| < 1, |b| < 1, |c| < 1 and |d| < 1 and def

L(a, b, c, d) =

(1 − ab)(1 − ad)(1 − bc)(1 − cd) . 1 − abcd

Then they proved the integral formulas 1 Z 2π Q(θ; a, b)dθ = 1, 2π 0 1 Z 2π R(θ; a, b, c, d)dθ = 1. 2π 0 If we set c = a and d = b in the last integral, then we obtain 1 Z 2π 1 + ab Q(θ; a, b)2 dθ = . 2π 0 1 − ab Afterwards they set the following definition and open problem. For n = 0, 1, 2, . . ., let 1 Z 2π Q(θ; a, b)n+1 dθ, In = 2π 0 def

where a, b are complex parameters satisfying |a| < 1 and |b| < 1. Open Problem. Compute In for n = 2, 3, 4, . . .. 152

S. Bulut - Integral averages of multiple Poisson kernels

In [5], Kim gave a solution to this open problem. In [1], the author generalized In as follows. Theorem A. [1] For any real number u, the following holds 1 Z 2π Ju := Q (θ; a, b)u dθ = (1 − ab)u 2 F1 (u, u; 1; ab) , 2π 0 where 2 F1 is the usual hypergeometric function. Note that, setting a = b = r generalizes the integral 1 Z 2π n+1 P (r, θ)dθ 2π 0 for all real n > −1, ([3]). In [1], the author also gave integral averages of R (θ; a, b, c, d) as X (u)j (u)k (u)l (u)m j k l m 1 Z 2π Ku := R (θ; a, b, c, d)u dθ = L (a, b, c, d)u a b cd . 2π 0 j!k!l!m! j+l=k+m

2.Multiple poisson kernels In [6], Spreafico obtained the integral formula −1 N X bN 1 Z 2π k Pa,b (θ) dθ = 2π 0 k=1 1 − ak bk

N Y

1 , n=1,n6=k (1 − an bk ) (bk − bn )

where a = (an ) and b = (bn ) are two vectors in the complex open unit N -ball and N Y 1 Pa,b (θ) := . iθ −iθ ) n=1 (1 − an e ) (1 − bn e Let us define −1

M (a, b)

−1 bN k := k=1 1 − ak bk N X

N Y

1 . n=1,n6=k (1 − an bk ) (bk − bn )

153

S. Bulut - Integral averages of multiple Poisson kernels

Then multiple Poisson kernel is of the form M (a, b)

PN (θ; a, b) :=

N Q n=1

(1 − an eiθ ) (1 − bn e−iθ )

and satisfies the integral formula 1 Z 2π PN (θ; a, b)dθ = 1. 2π 0 The purpose of this paper is to give integral averages of multiple Poisson kernels PN (θ; a, b), for all real u. Theorem 1. For all real u, the following holds N X Y (u)ln (u)mn ln mn 1 Z 2π u u Mu := PN (θ; a, b) dθ = M (a, b) an b n , 2π 0 ln !mn ! l=m n=1

where l :=

N X

ln

and

m :=

N X

mn .

n=1

n=1

Proof. Let u be any real number. Define the Pochhammer symbol by (u)k :=

Γ(u + k) Γ(u)

(u 6= −n,

n = 0, 1, 2, . . .) ,

where Γ is the gamma function. If u = −n is a nonpositive integer, define (−n)k := (−n) (−n + 1) · · · (−n + k − 1), so that (−n)k = 0 for k = n + 1, n + 2, . . .. Then ∞ X (u)k k 1 = w (|w| < 1) . u (1 − w) k=0 k! For z = eiθ , one computes that 1 Z 2π PN (θ; a, b)u dθ 2π 0 N M (a, b)u Z 2π Y 1 = dθ u iθ −iθ )u 2π 0 n=1 (1 − an e ) (1 − bn e

Mu =

154

S. Bulut - Integral averages of multiple Poisson kernels

=

M (a, b)u Z 2πi |z|=1

dz N Q

z

n=1 u

=

M (a, b) 2πi

Z |z|=1

(1 − an z)u (1 − bn /z)u

N 1 Y



z

 n=1

∞ X (u)ln

ln =0

ln !



alnn z ln  

∞ n X (u)mn bm n mn =0

mn ! z mn

  dz.

Thus we get Mu = M (a, b)u

N X Y (u)ln (u)mn l=m n=1

where l :=

N X

ln

and

ln !mn ! m :=

n=1

n alnn bm n ,

N X

mn .

n=1

Corollary 2. As a consequence of Theorem 1, we have (i) M1 = J1 = 1, for N = 1 and u = 1. (ii) M2 = J2 = 1+ab , for N = 1 and u = 2. 1−ab (iii) M1 = K1 = 1, for N = 2 and u = 1. (iv) M1 = 1, for N = 3 and u = 1 (see [2]). 2.References [1] S. Bulut, Integral averages of two generalizations of the Poisson kernel by Haruki and Rassias, J. Appl. Math. Stochastic Anal. Volume 2008 (2008), Article ID 760214, 6 pages. [2] S. Bulut, A new generalization of the Poisson kernel, Math. J. Okayama Univ. 48 (2006), 173-180. [3] A. S. Galbraith and J. W. Green, A note on the mean value of the Poisson kernel, Bull. Amer. Math. Soc. 53 (1947), 314-320. [4] H. Haruki and Th. M. Rassias, New generalizations of the Poisson kernel, J. Appl. Math. Stochastic Anal. 10 (1997), no. 2, 191-196. [5] B. Kim, The solution of an open problem given by H. Haruki and T. M. Rassias, J. Appl. Math. Stochastic Anal. 12 (1999), no. 3, 261-263. [6] M. Spreafico, Multiple Poisson kernels, Math. J. Okayama Univ. 51 (2009), 177-178.

155

S. Bulut - Integral averages of multiple Poisson kernels

Author: Serap Bulut Civil Aviation College Kocaeli University Arslanbey Campus ˙ 41285 Izmit-Kocaeli Turkey e-mail: [email protected]

156

Suggest Documents