Interfaces in Advanced Materials

39 downloads 197 Views 9MB Size Report
Strain Energy Released by forming edge dislocations ... Surface Terrace Induced Strain in Epitaxial Films d. Δd. APB .... strain and improved by tensile strain.
Interfaces in Advanced Materials – A Key Role for Active Device Application

Chonglin Chen Department of Physics, University of Texas at San Antonio, Texas [email protected]

• Introduction • Interface in Epitaxial Ferroic Thin Films • Surface-Step-Terrace Induced Nano Domain Structures • Giant MR Effects in Ferromagnetic Manganite La1-xCaxMnO3 thin Films • Summary

Acknowledgements Collaborations: Z. Yuan, J. Weaver, S. Liu, Y. Lin,* L. Chen,* and X. Chen* – Oxide Thin Film & Nanostructure Lab. A. J. Jacobson, W. Donnor –University of Houston J. C. Jiang -- Louisiana State University E. I. Meletis – University of Texas at Arlington Q. X. Jia -- Los Alamos National Laboratory W. Chang – Naval Research Laboratory X. H. Chen -- Univ. Sci. Tech. China, Hefei, P. R. China C. L. Jia, and K. Urban -- Institut Fur Festk. (IFF), Germany

Sponsors: The State of Texas National Science Foundation Department of Energy

Neumann’s Principle and Heckmann Diagram at Interfaces The symmetry elements of any physical property of a crystal must include the symmetry elements of the point group of the crystal.

• Symmetry • Dimensions • Strain • Unbalanced Charge • Quantum Effects • Many others

Real Surface Structures Chen & Tsong, PRB (1988)

(001) SrTiO3

200 nm

After annealing

BO2 Terminated

AO Terminated

Perovskite ABO3

A

B

O

200 nm Chen PRL (1994), SS (1998)

Charge in Interface 1017/cm2

Basic Concepts of Epitaxy film

substrate

Commensurate Growth (homoepitaxy)

Heteroepitaxial Growth Chen, PLD Principles & Appl. (2006)

Strain Energy Released by forming edge dislocations The strained film said: “We are all tired enough, please give us a break!”

Oh, it is much comfortable, although a few of our colleagues are still suffering the pressure.















































Strain energy released

af

>

as

The single said: “It is OK, my effort is to make all of you happy!” Chen, PLD Principles & Appl. (2006)

Surface Terrace Induced Strain in Epitaxial Films Δd

d APB

Strained Domain

APB

Science (submitted)

Highly Epitaxial growth of SrRuO3 film on (001) SrTiO3 2θ

Intensity (x103)

2.5

20

30

40

50

2.0

60

(002)STO

1.5 1.0 (004)SRO

0.5

Intensity (x103)

0.0 40 20

(002)STO

STO

(004)SRO

30

o

0.094

0.091o

20

10

10 0

0 23

24

22

θ

23

STO

24

θ

100 nm 2.0 1.5 1.0

8

2 MeV He+ RBS-Channeling Spectra

χmin = 2.2%

0.0

Ru surface

Random

4

0

50

100

150

200

Distance (nm)

Ru interface

250

400

1

300

2

ρ (μΩcm)

Counts (x1000)

6

0.5

2

Aligned x 3 0 150

200

250

300

350

200

As grown 3x10 15 /cm 2 9x10 15 /cm 2 2.5x10 16/cm 2 4.0x10 16/cm 2 6.0x10 16/cm 2

100

Channel 0 0

50

100

150

200

250

300

T (K)

Chen, et al., APL (1997)

(Ba,Sr)TiO3 Thin Films on (001) LaAlO3

Ferroelectric BSTO (50:50) on (001) LaAlO3

Chen et al., APL (2002)

Cross-section TEM of Ba0.6Sr0.4TiO3 films on (001) MgO

Ba0.6Sr0.4TiO3

(a)

MgO

2 nm

Ba0.6Sr0.4TiO3

(b)

MgO

(a) HRTEM of the cross-sectional Ba0.6Sr0.4TiO3 / MgO showing a sharp interface. (b) Fourier filtered showing misfit dislocations at the interface. Jiang & Chen JAP (2002)

Mn:BSTO Films on (001) MgO

4.0 3.5 3.0

ε = 1200 Tan δ = 0.005 @ 12.84 GHz & RT

2.5 2.0 1.5 1.0

tunability = 80% -8

-4

0

4

8

Field (V/μm)

2000

0.1

0.08 1500 0.06 1000 0.04 500 0.02

0

0 15

20

25

Frequency (GHz)

APL. (Oct 10, 2005)

30

Loss-tangent

0.5

Relative Dielectric Constant

Dielectric constant (x1000)

Mn:BSTO (60:40) films on (001) MgO

Cross Sectional TEM Studies of PSTO

(a)

(b)

(e)

(c)

(d)

Dielectric Constants of PSTO Films 4500

Films

Tetrago nality

εr

Tuna bilty

PSTO on LAO

-0.11%

3100

48%

0.008

PSTO on NGO

-0.25%

4300

59%

0.01

[100 ] PSTO on NGO

0.51%

2033

48%

--

[010 ] PSTO on NGO

0.97%

1634

33%

--

Loss Tangent

Dielectric Constant

4000

PSTO on NGO

3500

Along PSTO [010] on NGO,Slow cooling

3000

PSTO on LAO

2500 2000 1500

PSTO [100] ]on NGO,slow cooling

1000 -60

-40

-20

0

20

40

60

Electric Field (kV/cm) Measured at 1MHz and room temperature by interdigital technique

• Dielectric constant and tunability tend to be reduced by compressive strain and improved by tensile strain. PRL. (submitted)

Dielectric Tunability of (Pb,Sr)TiO3 Thin Films 0.62

1.15 1.10

0.245 GHz 2.195 GHz 4.995 GHz 10.04 GHz 14.99 GHz 20 GHz

1.00 0.95

0.60 0.58

0.90

Tunability

Room Temperature Capacitance

1.05

0.85 0.80 0.75 0.70 0.65

0.56 0.54 0.52 0.50

0.60 0.55

0.48

0.50 -30

-20

-10

0

10

Voltage (V)

20

30

40

50

0

5

10

15

20

Frequency (GHz)

APL. (Oct 3, 2005)

Surface-Step-Terrace Induced Nanodomain Structures

Cross-section TEM of Ba0.6Sr0.4TiO3 films on (001) MgO

Ba0.6Sr0.4TiO3

(a)

MgO

100 nm

10 nm

Dark-field image of a common reflection showing periodically distributed dislocations at the interface.

Jiang & Chen JAP (2002)

Anti-Phase Domain Structure

APB (b)

2 nm

1 nm

HRTEM image of the BSTO/MgO interface showing that the antiphase boundaries start from the steps on the surface.

(c) Jiang & Chen JAP (2002)

Surface-Step-Terrace Induced Anti-Domain Structures [001]

[010]

I

1

A

II

K

2

III (c)

B

(a)

[100] NC-APB

C-APB

1 2

(b)

(d)

TEM images of Epitaxial Behavior of BSTO/LAO

Gao & Chen APL (1999); Chen APL (2002)

Measured with HP8510C Network Analyzer & Microwave Probe Calculated C & Q (0V and 40V DC Bias) from 0.5 GHz to 10 GHz #082102, MgO(1°off)

#082302, MgO(3°off)

0.4

40 V

0.5

150

0.2

40 V

0V

0.4

40 V

0.3

100

0.2

40 V

50

0.1

150

40 V 0.3

100 0.2

0V 4

6

8

0V

0.0 2

Frequency (GHz)

50

40 V

0.1

0V 0 10

150

0.4

50

0.1

0.0

0V

Q

100

0.5

Q

0.3

2

200

Capacitance (pF)

0V

200

Capacitance (pF)

0.5

Q

Capacitance (pF)

200

#082502, MgO(5°off)

4

6

8

0 10

0.0 2

Frequency (GHz)

4

6

8

0 10

Frequency (GHz)

Calculated C, εr & Q (0V and 40V DC Bias) at 2 GHz

Sample #

Gap Length (μm)

Gap Width (μm)

Film Thick. (μm)

C0V (pF)

εr (0V)

Q0V

C40V (pF)

εr (40V)

Q40V

Cap Tuning (40V)

εr Tuning (40V)

#082102 MgO (010, 1° off) #082302 MgO (010, 3° off) #082502 MgO (010, 5° off)

762

6

0.3

0.463

1028

24

0.351

682

54

24 %

34 %

762

6

0.3

0.386

790

32

0.324

598

60

16 %

24 %

762

6

0.3

0.519

1202

22

0.386

790

48

26 %

34 %

Ferroelectric BSTO (60:40) thin film on miscut (001) MgO substrates: UH Data #2

Measured with HP8510C Network Analyzer & Microwave Probe Calculated C & Q (0V and 40V DC Bias) from 0.5 GHz to 10 GHz

0V

0.8

70

0.6

60 0.6

40 0.2

40 V

30

0.0

70

0.8

60 0.4

40 V

0.2

50 40

0.0 30

40 V

-0.2

0V

1.0

0V

20 -0.2

80

10

-0.4

0

-0.6

80 70

0V

60 0.6

40 V

50

Q

50

0.4

MgO (5°off), #053102

Q

40 V

Q

Capacitance (pF)

0.8

80

Capacitance (pF)

1.0

MgO(3°off), #052902

Capacitance (pF)

MgO(1°off), #052402

0.4 40 0.2 30

40 V

0.0

20

20 10

-0.2

0

-0.4

0V

10

0V -0.4 2

4

6

8

10

2

Frequency (GHz)

4

6

8

0 2

10

Frequency (GHz)

4

6

MgO (010, 1° off) #052402 - 300 nm MgO (010, 3° off) #052902 - 300 nm MgO (010, 5° off) #053102 - 300 nm

10

Frequency (GHz)

Calculated C, εr & Q (0V and 40V DC Bias) at 2 GHz Sample #

8

Gap Length (μm) 762

Gap Width (μm) 5

Film Thick. (μm) 0.3

C0V (pF)

εr (0V)

Q0V

C40V (pF)

εr (40V)

Q40V

Cap Tuning (%)

εr Tuning (%)

0.774

1664

14

0.442

800

35

43 %

52 %

762

6

0.3

0.473

1059

13

0.345

663

23

27 %

37 %

762

4

0.3

0.924

1655

11

0.440

635

26

52 %

62 %

Ferroelectric Mn:BSTO (60:40) thin film on miscut (001) MgO substrates

Microstructures and Interface of BSTO Films on Vicinal (001) MgO

Chen et al, PRL

Dislocation Density and Average Spacing Misfit dislocations can be generated at interface to reduce misfit strain energy. The lattice misfit between substrate and film and the average spacing S of misfit dislocations are defined as: (as − a f ) f = as

S = as / f (001) MgO, 1o off

(001) MgO, 3o off

(001) MgO, 5o off

Calculation Data

6.951 nm

6.951 nm

6.951 nm

Observed Value

6.90 nm

6.54 nm

7.06 nm

Step Wide

120.67 nm

40.22

24.13

Edge Dislocation Number on Step

17.38

5.78

3.47

Chen et al, PRL (Submitted)

Surface Terrace Induced Strain in Epitaxial Films Δd

d APB

Strained Domain

APB

PRL (submitted)

Nano Phase Separation Behavior in CMR Manganites

Ferromagnetic La1-xCaxMnO3

A. P. Ramirez, Cond. Matt., 9 (1997) 8171 A. P. Ramirez, et al., PRL, 75 (1995) 3336

Electrical Properties of La0.67Ca0.33MnO3 -0.2 -0.4 0

-0.6

-200 -400

-0.8 MR (%)

-1.0

-600 -800

-1000 -1200

-1.2

-1400 0

2

4

6

8

10

12

14

H (Tesla)

-1.4 0.07

0

3T 5T 9T 14 T

-2 -4 -6 -8

0 -2

-10 -12

MR (%)x1000

3T 5T 9T 14 T

(ρ(H)-ρ(0))/ρ(H) (%)(x1000)

0.0

La0.67Ca0.33MnO3/STO

-4 -6 -8 -10 -12 -14

-14

-16 0

2

4

6 8 H (Tesla)

10

0.06

0

0.05

0T 0.04

3T

0.03

9T

0.01

14

10

0T 3T 5T 9T 14 T

-1

10

5T

0.02

12

-16

Resistivity (Ω cm)

Resistivity (Ω cm)

(ρ(H)-ρ(0))/ρ(H) (%) (x1000)

La0.67ca0.33MnO3/LAO

14T

-2

10

0.00 0

50

100

150

200

250

Temperature (K)

300

350

0

50

100

150

200

250

Temperature (K)

300

350

Chen, et al., PRB (2004)

Electrical Properties of LCMO on (001) MgO

Resistance ( Ω )

13

1012 1011 1010 10 9 108 107 106 105 104 103 102 101 10

MR effect ratio ~ 1010! 0 T Tc ~ constant! Previous record: ~106

0

3T 5T 6T 6.5 T 7T 8T 10 T 14 T

50 100 150 200 250 300 Temperature ( K )

Chen, et al., Nature (submitted)

Nano-Phase Separation – Nanoscale cluster Models

TEM Image of Epitaxial Behavior of LCMO/MgO

100 nm

Chen, et al., Nature (submitted)

Magnetoresistivity in Nanostructures

d

d

d = d (H ) The transmission wave are

h 2 d 2ϕ ' − + Voϕ ' = Eϕ ' 2 2m dz

KWB method: 1/ 2 μ φ ( / ) i ≡ 6.2 × 10 6 F 2 exp(−6.8 × 10 7 d ) μ +φ

Barrier Transmission rate:

1 T= ( k 2 + k '2 ) 2 2 1+ sinh k'd 2 2 4k k '

k’d>>1

16k 2 k '2 − 2 kd T≅ 2 e 2 (k + k ' ) Chen, et al., Nature (submitted)

Self-Assembly of Oxide Rods/Ribbons/Dots

Microstructures of Nanocolumnar Structures of (La,Sr)MnO3

Jiang & Chen, Nano Lett., (2004)

Magnetization in Magnetic Field and Temperatures 0.0015

0.0018

Epitaxy, 1000 Oe

0.0015 0.0013

0.0012

Magnetization (emu)

0.0010 0.0008

M (emu)

0.0005 0.0003 0.0000 -0.0003 -0.0005

Nanorod , H⊥ Nanorod , H// Epitaxy, H⊥ Epitaxy, H//

-0.0008 -0.0010

Epitaxy, 100 Oe

0.0009

Nanorod, 1000 Oe

0.0006 Nanorod, 100 Oe

0.0003

0.0000

-0.0013 -0.0015 -0.0018 -1000

-0.0003

-500

0

500

1000

H (Oe)

Magnetization hysteresis loops of LMO Films at 5 K in two different magnetic field directions

0

50

100

150

200

250

300

Temperature (K)

Temperature dependent magnetization of the two films in 100 Oe and 1000 Oe applied field for both FCW and FC runs.

Jiang & Chen, NanoLett. (2004)

Self-Assembly of Highly Epitaxial Oxide Nanoribbons GCO (200)

20

30

40

50

T( C)

experimental fitting log (f)

-8

4

-6

ω

5

3 2

6

0 0

2

4

6

8

10 5

Re (Z) (X10 ) Ω

60

19

20

70

500

12

14

nd

0.1

st

GC O/ NG O

on MgO 1 run

E a

0.01

=0 .7 4

eV

eV

-2

600

6 .8 =0 Ea

-4

700

18

on MgO 2 run gO /M CO G

5

-10

800

θ

on NGO

Conductivity σ (s/cm)

-12

Im (Z) (x10 Ω)

900

17



o

-14

16

NGO(300)

[010]NGO//[02-2]GCO

GCO(200)

NGO(100)

[100]NGO//[100]GCO

15

NGO(200)

14

[001]NGO//[022]GCO

1E-3 0.8

0.9

1.0

1.1

1.2

1.3

1.4

-1

1000/T(K ) Chen et al., Science, submitted

o

GCO(400)

FWHM=0.6

Self-Assembled Nanoribbon Structure of Gd:ZrO

GZO layer 2

GZO layer 1

(a)

(b)

LAO

(c)

(d)

Nanoribbon Structure of Gd:ZrO α

β

GZ O

β '

GZO[010]

GZO[10]

Domain β

GZO[001]

Domain α GZO[110]

GZO[001]

GZO[100]

Domain β’ LAO[010]

LA

(a ) O LAO

α

β

GZO[001]

β'

LAO[100]

GZO[110]

(b )

(c )

(d )

(e )

GZO[10]

Self-Assembly of ZnO Nanorods on SiN Buffered Si

Summary • Interface is a critical topic in advanced material thin films and active device fabrications • New/interesting physical phenomena have been found and achieved in the interface materials • More experimental and theoretical works are needed to explore the interface physics Contact Information: email: phone:

[email protected] (210) 458-6427