introduction & study objectives materials & methods ...

2 downloads 0 Views 6MB Size Report
Fiddy S. Prasenya1, Ikha Safitri1,2, Ita Widowan2, Eko Windarto1,2, Romain Gasnneau1, Priscilla. Decohgnies3, Michèle Morançais3, Bruno Cognie3, Réjean ...
FP7   BIOVADIA  

Marennine  allelopathy  effect:  is  it  a  problem  for  aquaculture?   1 1,2 2 1,2 1 Fiddy  S.  Prase-ya ,  Ikha  Safitri ,  Ita  Widowa- ,  Eko  Windarto ,  Romain  Gas-neau ,  Priscilla   3 3 3 4 1 DecoBgnies ,  Michèle  Morançais ,  Bruno  Cognie ,  Réjean  Tremblay ,  Jean-­‐Luc  Mouget  

   

1Université  du  Maine,  Laboratoire  Mer  -­‐  Molécules  –  Santé,  Le  Mans,  France

         2Diponegoro  University,  Marine  Science  Department,  Semarang,  Indonesia   4Ins-tut  Science  de  la  Mer,  Université  du  Québec  à  Rimouski,  Canada                3Université  de  Nantes,  Laboratoire  Mer  -­‐  Molécules  –  Santé,  Nantes,  France    

INTRODUCTION  &  STUDY  OBJECTIVES   Ø  The  pennate  diatom  Haslea  ostrearia  is  able  to  synthesize  a   blue   water   soluble   pigment,   marennine,   which   is   responsible   for  oyster  greening  phenomenon    

MATERIALS  &  METHODS   Ø  BIOLOGICAL  MATERIALS     Ø  Ø  Ø  Ø  Ø  Ø 

Haslea  ostrearia  (HO)   Chaetoceros  calcitrans  (CC)   Skeletonema  costatum  (SC)   Phaeodactylum  tricornutum  (PT)   Tisochrysis  lutea  (TL)   Tetraselmis  suecica  (TS)  

Ø  CULTURE  CONDITIONS    

H.  ostrearia   C.  gigas  with   marennine  

C.  gigas  without   marennine  

Ø  Marennine   exhibits   different   biological   ac-vi-es,   e.g.,   an-oxidant,  an-bacteria  and  allelopathy  

Ø  ASW  medium   Ø  16°C,   100   μmol   photon   m-­‐2   s-­‐1,   photoperiod  14h/10h  L/D  

Ø  PARAMETERS  MEASURED    

IMn   EMn  

Possible   allelopathic   interac-on?  

Ø  The  aims  of  this  study  are:     Ø  To   assess   the   allelopathic   effect   of   H.   ostrearia   on   microalgae   species  relevant  for  aquaculture  by  co-­‐culturing  method   Ø  To   assess   the   sensi-vity   of   microalgae   species   on   marennine’s   exposure   and   to   determine   possible   diet   combina-ons   for   the   aquaculture  applica-on  

-­‐  -­‐  -­‐  -­‐ 

-­‐  Cell  biovolume   (Hillebrand  1999)  

Cell  concentraQon   Growth  rate   Percent  InhibiQon  (I%)   Marennine  concentraQon  (EMn)  

RESULTS  AND  DISCUSSIONS  

600

H. ostrearia C. calcitrans S. costatum P. tricornutum T. suecica T. lutea

C

200

60 R2 = 0.858

40

20

0

120

2

4

6

8

10

0

12

0

40

B

2

4

6

8

10

12

14

16

D

100

30

R2 = 0.628

60

40

20

C

0

0

50

100

150

200

250

300

350

0 0.0

400

1.0

1.5

Small Large

80

60 R2 = 0.746

40

20

0

2.5

3.0

100

80 R2 = 0.693

60

40

0

C. calcitrans S. costatum T. lutea P. tricornutum T. suecica

20

D

B 20

2.0

SA/V

100

80

60

0.5

Cell biovolume (µm3)

100

0

80

A

400

50

Total biovolume (µL)

80

150

200

Small Large

Small Large

Percent inhibition (%)

250

H. ostrearia C. calcitrans S. costatum P. tricornutum T. suecica T. lutea

A

Percent inhibition (%)

Cell density (cell mL-1 x 104)

800

100

Percent inhibition (%)

Ø  Growth   kine-cs   of   different   species   of   microalgae   Ø  Percent  inhibi-on  (I %)  of  microalgal   cul-vated  in  batch  (A,  B)  and  semi-­‐con-nuous  (C,  D)   target  species  tested   mode,   expressed   as   cell   concentra-on   (A,   C)   (104   in  co-­‐culture  with   cell  mL-­‐1),  and  total  biomass  biovolume  (B,D)  (µL).     HO  was  significantly   correlated  with  the   cell  biovolume  (A),   total  surface  area   (B),  surface  to   volume  ra-o  (C)  and   marennine   concentra-on  (D).    

Percent inhibition (%)

100

50

100

150

200

250

300

350

0 0.0

400

0.5

1.5

[EMn] (mg L-1)

Total surface area (µm2)

40

1.0

10 20

6

8

10

0

12

0

2

4

6

8

10

12

14

2.0

16

Time (days)

Time (days)

Ø  Percent   growth   inhibi-on   (I%)   in   co-­‐culture   HO+CC   and  HO+SC  were  60%  higher  compared  to  HO+PT   Ø  Highest   EMn   concentra-on   was   observed   in   co-­‐ culture  of  HO+SC   Percent inhibition (%)

100

A

a a

80

c

60 b b

40

20

CC+HO

SC+HO

PT+HO

TS+HO

TL+HO

[EMn] (mg L-1)

0

2.0

B a

1.5 a

a,b

Ø  Pooled  EMn   concentra-on  in  co-­‐ culture  with  HO  at   different  irradiances   as  a  func-on  of   growth  rate  (A)  and   irradiance  (B).     Ø  Cell  density  (C)  and   percent  inhibi-on   (D)  as  func-on  of   EMn.    

A

1.5 R2 = 0.098

1.0

0.5

C R2 = 0.767

1.5

1.0

0.5

0.0 0.0

0.2

0.4

0.6

0.0

0.8

0

2

Growth rate (day-1) 2.0

1.0 b,c

4

6

8

10

Cell density (cell mL-1 x 104) 2.0

B

1.5 R2 = 0.866

1.0

D

20 100 500

1.5

R2 = 0.767

1.0

0.5

0.5

0.0

0.0 50

c

0.5

0.0

2.0

[EMn] (mg L-1)

4

[EMn] (mg L-1)

2

[EMn] (mg L-1)

0

[EMn] (mg L-1)

0

0

100

200

300

400

500

Irradiance (µmol photon m-2 s-1) CC+HO

SC+HO

PT+HO

TS+HO

600

60

70

80

90

100

Percent inhibition (%)

TL+HO

Co-culture species tested

Conclusion   Ø  H.  ostrearia  can  influence  growth  of  microalgae  species  relevant  for   Ø  aquaculture  through  allelopathic  interac-ons  in  co-­‐culture  system     Ø  The   magnitude   of   this   allelopathic   effect   is   species-­‐dependent,   S.   costatum,  C.  calcitrans  and  T.  lutea  revealed  as  vulnerable  species  

A   mixture   of   H.   ostrearia   and   insensi-ve   species   such   as   P.   tricornutum   and   T.   suecica   is   recommended   to   circumvent   allelopathic   interac-ons   between   phytoplankton   used   as   feed   for   animals