Document not found! Please try again

Introduction to Algorithms

2 downloads 20960 Views 307KB Size Report
Introduction to Algorithms. 6.046J/18.401J. Prof. Charles E. Leiserson. LECTURE 14. Shortest Paths I. • Properties of shortest paths. • Dijkstra's algorithm.
Introduction to Algorithms 6.046J/18.401J

LECTURE 14 Shortest Paths I • Properties of shortest paths • Dijkstra’s algorithm • Correctness • Analysis • Breadth-first search Prof. Charles E. Leiserson

Paths in graphs Consider a digraph G = (V, E) with edge-weight function w : E → R. The weight of path p = v1 → v2 → L → vk is defined to be k −1

w( p ) = ∑ w(vi , vi +1 ) . i =1

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004

L14.2

Paths in graphs Consider a digraph G = (V, E) with edge-weight function w : E → R. The weight of path p = v1 → v2 → L → vk is defined to be k −1

w( p ) = ∑ w(vi , vi +1 ) . i =1

Example:

vv11

4

vv22

–2

© 2001–4 by Charles E. Leiserson

vv33

–5

vv44

Introduction to Algorithms

1

vv55 w(p) = –2 November 1, 2004

L14.3

Shortest paths A shortest path from u to v is a path of minimum weight from u to v. The shortestpath weight from u to v is defined as δ(u, v) = min{w(p) : p is a path from u to v}. Note: δ(u, v) = ∞ if no path from u to v exists.

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004

L14.4

Optimal substructure Theorem. A subpath of a shortest path is a shortest path.

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004

L14.5

Optimal substructure Theorem. A subpath of a shortest path is a shortest path.

Proof. Cut and paste:

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004

L14.6

Optimal substructure Theorem. A subpath of a shortest path is a shortest path.

Proof. Cut and paste:

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004

L14.7

Triangle inequality Theorem. For all u, v, x ∈ V, we have δ(u, v) ≤ δ(u, x) + δ(x, v).

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004

L14.8

Triangle inequality Theorem. For all u, v, x ∈ V, we have δ(u, v) ≤ δ(u, x) + δ(x, v).

Proof. δ(u, v)

uu δ(u, x)

vv δ(x, v)

xx © 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004

L14.9

Well-definedness of shortest paths If a graph G contains a negative-weight cycle, then some shortest paths may not exist.

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004

L14.10

Well-definedness of shortest paths If a graph G contains a negative-weight cycle, then some shortest paths may not exist. Example:

… d[u] + w(u, v) then d[v] ← d[u] + w(u, v)

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004

L14.14

Dijkstra’s algorithm d[s] ← 0 for each v ∈ V – {s} do d[v] ← ∞ S←∅ Q←V ⊳ Q is a priority queue maintaining V – S while Q ≠ ∅ do u ← EXTRACT-MIN(Q) S ← S ∪ {u} for each v ∈ Adj[u] relaxation do if d[v] > d[u] + w(u, v) then d[v] ← d[u] + w(u, v) step

Implicit DECREASE-KEY © 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004

L14.15

Example of Dijkstra’s algorithm Graph with nonnegative edge weights:

10

AA

1 4 3

© 2001–4 by Charles E. Leiserson

BB

Introduction to Algorithms

CC

2 8

2

D D 7 9

EE

November 1, 2004

L14.16

Example of Dijkstra’s algorithm ∞ BB

Initialize: 10

0 AA Q: A B C D E 0







1 4 3



CC ∞

2 8

2

∞ D D 7 9

EE ∞

S: {} © 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004

L14.17

Example of Dijkstra’s algorithm “A” ← EXTRACT-MIN(Q): 10

0 AA Q: A B C D E 0







∞ BB

1 4 3



CC ∞

2 8

2

∞ D D 7 9

EE ∞

S: { A } © 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004

L14.18

Example of Dijkstra’s algorithm Relax all edges leaving A: 10

0 AA Q: A B C D E 0

∞ 10

∞ 3

∞ ∞

10 BB

1 4 3

∞ ∞

CC 3

2 8

2

∞ D D 7 9

EE ∞

S: { A } © 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004

L14.19

Example of Dijkstra’s algorithm “C” ← EXTRACT-MIN(Q): 10

0 AA Q: A B C D E 0

∞ 10

∞ 3

∞ ∞

10 BB

2 8

1 4 3

∞ ∞

CC 3

2

∞ D D 7 9

EE ∞

S: { A, C } © 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004

L14.20

Example of Dijkstra’s algorithm Relax all edges leaving C: 10

0 AA Q: A B C D E 0

∞ 10 7

∞ 3

© 2001–4 by Charles E. Leiserson

∞ ∞ 11

∞ ∞ 5

7 BB

2 8

1 4 3

CC 3

2

11 D D 7 9

EE 5

S: { A, C }

Introduction to Algorithms

November 1, 2004

L14.21

Example of Dijkstra’s algorithm “E” ← EXTRACT-MIN(Q): 10

0 AA Q: A B C D E 0

∞ 10 7

∞ 3

© 2001–4 by Charles E. Leiserson

∞ ∞ 11

∞ ∞ 5

7 BB

1 4 3

CC 3

2 8

2

11 D D 7 9

EE 5

S: { A, C, E }

Introduction to Algorithms

November 1, 2004

L14.22

Example of Dijkstra’s algorithm Relax all edges leaving E: 10

0 AA Q: A B C D E 0

∞ 10 7 7

∞ 3

© 2001–4 by Charles E. Leiserson

∞ ∞ 11 11

∞ ∞ 5

7 BB

1 4 3

CC 3

2 8

2

11 D D 7 9

EE 5

S: { A, C, E }

Introduction to Algorithms

November 1, 2004

L14.23

Example of Dijkstra’s algorithm “B” ← EXTRACT-MIN(Q): 10

0 AA Q: A B C D E 0

∞ 10 7 7

∞ 3

© 2001–4 by Charles E. Leiserson

∞ ∞ 11 11

∞ ∞ 5

7 BB

1 4 3

CC 3

2 8

11 D D 7 9

2

EE 5

S: { A, C, E, B }

Introduction to Algorithms

November 1, 2004

L14.24

Example of Dijkstra’s algorithm Relax all edges leaving B: 10

0 AA Q: A B C D E 0

∞ 10 7 7

∞ 3

© 2001–4 by Charles E. Leiserson

∞ ∞ 11 11 9

∞ ∞ 5

7 BB

1 4 3

CC 3

9 D D

2 8

7 9

2

EE 5

S: { A, C, E, B }

Introduction to Algorithms

November 1, 2004

L14.25

Example of Dijkstra’s algorithm “D” ← EXTRACT-MIN(Q): 10

0 AA Q: A B C D E 0

∞ 10 7 7

∞ 3

© 2001–4 by Charles E. Leiserson

∞ ∞ 11 11 9

∞ ∞ 5

7 BB

1 4 3

CC 3

2 8

2

9 D D 7 9

EE 5

S: { A, C, E, B, D }

Introduction to Algorithms

November 1, 2004

L14.26

Correctness — Part I Lemma. Initializing d[s] ← 0 and d[v] ← ∞ for all v ∈ V – {s} establishes d[v] ≥ δ(s, v) for all v ∈ V, and this invariant is maintained over any sequence of relaxation steps.

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004

L14.27

Correctness — Part I Lemma. Initializing d[s] ← 0 and d[v] ← ∞ for all v ∈ V – {s} establishes d[v] ≥ δ(s, v) for all v ∈ V, and this invariant is maintained over any sequence of relaxation steps. Proof. Suppose not. Let v be the first vertex for which d[v] < δ(s, v), and let u be the vertex that caused d[v] to change: d[v] = d[u] + w(u, v). Then, d[v] < δ(s, v) supposition ≤ δ(s, u) + δ(u, v) triangle inequality ≤ δ(s,u) + w(u, v) sh. path ≤ specific path ≤ d[u] + w(u, v) v is first violation Contradiction. © 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004

L14.28

Correctness — Part II Lemma. Let u be v’s predecessor on a shortest path from s to v. Then, if d[u] = δ(s, u) and edge (u, v) is relaxed, we have d[v] = δ(s, v) after the relaxation.

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004

L14.29

Correctness — Part II Lemma. Let u be v’s predecessor on a shortest path from s to v. Then, if d[u] = δ(s, u) and edge (u, v) is relaxed, we have d[v] = δ(s, v) after the relaxation. Proof. Observe that δ(s, v) = δ(s, u) + w(u, v). Suppose that d[v] > δ(s, v) before the relaxation. (Otherwise, we’re done.) Then, the test d[v] > d[u] + w(u, v) succeeds, because d[v] > δ(s, v) = δ(s, u) + w(u, v) = d[u] + w(u, v), and the algorithm sets d[v] = d[u] + w(u, v) = δ(s, v). © 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004

L14.30

Correctness — Part III Theorem. Dijkstra’s algorithm terminates with d[v] = δ(s, v) for all v ∈ V.

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004

L14.31

Correctness — Part III Theorem. Dijkstra’s algorithm terminates with d[v] = δ(s, v) for all v ∈ V. Proof. It suffices to show that d[v] = δ(s, v) for every v ∈ V when v is added to S. Suppose u is the first vertex added to S for which d[u] > δ(s, u). Let y be the first vertex in V – S along a shortest path from s to u, and let x be its predecessor:

uu S, just before adding u. © 2001–4 by Charles E. Leiserson

ss Introduction to Algorithms

xx

yy November 1, 2004

L14.32

Correctness — Part III (continued) S ss

uu xx

yy

Since u is the first vertex violating the claimed invariant, we have d[x] = δ(s, x). When x was added to S, the edge (x, y) was relaxed, which implies that d[y] = δ(s, y) ≤ δ(s, u) < d[u]. But, d[u] ≤ d[y] by our choice of u. Contradiction. © 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004

L14.33

Analysis of Dijkstra while Q ≠ ∅ do u ← EXTRACT-MIN(Q) S ← S ∪ {u} for each v ∈ Adj[u] do if d[v] > d[u] + w(u, v) then d[v] ← d[u] + w(u, v)

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004

L14.34

Analysis of Dijkstra |V | times

while Q ≠ ∅ do u ← EXTRACT-MIN(Q) S ← S ∪ {u} for each v ∈ Adj[u] do if d[v] > d[u] + w(u, v) then d[v] ← d[u] + w(u, v)

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004

L14.35

Analysis of Dijkstra |V | times

while Q ≠ ∅ do u ← EXTRACT-MIN(Q) S ← S ∪ {u} for each v ∈ Adj[u] degree(u) do if d[v] > d[u] + w(u, v) times then d[v] ← d[u] + w(u, v)

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004

L14.36

Analysis of Dijkstra |V | times

while Q ≠ ∅ do u ← EXTRACT-MIN(Q) S ← S ∪ {u} for each v ∈ Adj[u] degree(u) do if d[v] > d[u] + w(u, v) times then d[v] ← d[u] + w(u, v)

Handshaking Lemma ⇒ Θ(E) implicit DECREASE-KEY’s.

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004

L14.37

Analysis of Dijkstra |V | times

while Q ≠ ∅ do u ← EXTRACT-MIN(Q) S ← S ∪ {u} for each v ∈ Adj[u] degree(u) do if d[v] > d[u] + w(u, v) times then d[v] ← d[u] + w(u, v)

Handshaking Lemma ⇒ Θ(E) implicit DECREASE-KEY’s.

Time = Θ(V·TEXTRACT-MIN + E·TDECREASE-KEY) Note: Same formula as in the analysis of Prim’s minimum spanning tree algorithm. © 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004

L14.38

Analysis of Dijkstra (continued) Time = Θ(V)·TEXTRACT-MIN + Θ(E)·TDECREASE-KEY Q

TEXTRACT-MIN TDECREASE-KEY

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

Total

November 1, 2004

L14.39

Analysis of Dijkstra (continued) Time = Θ(V)·TEXTRACT-MIN + Θ(E)·TDECREASE-KEY Q array

TEXTRACT-MIN TDECREASE-KEY O(V)

© 2001–4 by Charles E. Leiserson

O(1)

Introduction to Algorithms

Total O(V2)

November 1, 2004

L14.40

Analysis of Dijkstra (continued) Time = Θ(V)·TEXTRACT-MIN + Θ(E)·TDECREASE-KEY Q

TEXTRACT-MIN TDECREASE-KEY

Total

array

O(V)

O(1)

O(V2)

binary heap

O(lg V)

O(lg V)

O(E lg V)

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004

L14.41

Analysis of Dijkstra (continued) Time = Θ(V)·TEXTRACT-MIN + Θ(E)·TDECREASE-KEY Q

TEXTRACT-MIN TDECREASE-KEY

Total

array

O(V)

O(1)

O(V2)

binary heap

O(lg V)

O(lg V)

O(E lg V)

Fibonacci O(lg V) heap amortized © 2001–4 by Charles E. Leiserson

O(1) O(E + V lg V) amortized worst case

Introduction to Algorithms

November 1, 2004

L14.42

Unweighted graphs Suppose that w(u, v) = 1 for all (u, v) ∈ E. Can Dijkstra’s algorithm be improved?

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004

L14.43

Unweighted graphs Suppose that w(u, v) = 1 for all (u, v) ∈ E. Can Dijkstra’s algorithm be improved? • Use a simple FIFO queue instead of a priority queue.

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004

L14.44

Unweighted graphs Suppose that w(u, v) = 1 for all (u, v) ∈ E. Can Dijkstra’s algorithm be improved? • Use a simple FIFO queue instead of a priority queue. Breadth-first search while Q ≠ ∅ do u ← DEQUEUE(Q) for each v ∈ Adj[u] do if d[v] = ∞ then d[v] ← d[u] + 1 ENQUEUE(Q, v)

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004

L14.45

Unweighted graphs Suppose that w(u, v) = 1 for all (u, v) ∈ E. Can Dijkstra’s algorithm be improved? • Use a simple FIFO queue instead of a priority queue. Breadth-first search while Q ≠ ∅ do u ← DEQUEUE(Q) for each v ∈ Adj[u] do if d[v] = ∞ then d[v] ← d[u] + 1 ENQUEUE(Q, v)

Analysis: Time = O(V + E). © 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004

L14.46

Example of breadth-first search aa

ff

hh

dd bb

gg ee

ii

cc Q: © 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004

L14.47

Example of breadth-first search 0

aa

ff

hh

dd bb

gg ee

ii

cc 0

Q: a © 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004

L14.48

Example of breadth-first search 0

aa

1

ff

hh

dd 1

bb

gg ee

ii

cc 1 1

Q: a b d © 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004

L14.49

Example of breadth-first search 0

aa

1

ff

hh

dd 1

bb

gg ee

2

cc

ii

2 1 2 2

Q: a b d c e © 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004

L14.50

Example of breadth-first search 0

aa

ff

1

hh

dd 1

bb

gg ee

2

cc

ii

2 2 2

Q: a b d c e © 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004

L14.51

Example of breadth-first search 0

aa

ff

1

hh

dd 1

bb

gg ee

2

cc

ii

2 2

Q: a b d c e © 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004

L14.52

Example of breadth-first search 0

aa

dd 1

2

bb cc

ff

1 3

hh

gg

ee

ii

2

3 3 3

Q: a b d c e g i © 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004

L14.53

Example of breadth-first search 4 0

aa

dd 1

2

bb cc

ff

1 3

hh

gg

ee

ii

2

3 3 4

Q: a b d c e g i f © 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004

L14.54

Example of breadth-first search 0

aa

1

dd 1

2

bb cc

3

4

4

ff

hh

gg

ee

ii

2

3 4 4

Q: a b d c e g i f h © 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004

L14.55

Example of breadth-first search 0

aa

1

dd 1

2

bb cc

3

4

4

ff

hh

gg

ee

ii

2

3 4

Q: a b d c e g i f h © 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004

L14.56

Example of breadth-first search 0

aa

1

dd 1

2

bb cc

3

4

4

ff

hh

gg

ee

ii

2

3

Q: a b d c e g i f h © 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004

L14.57

Example of breadth-first search 0

aa

1

dd 1

2

bb cc

3

4

4

ff

hh

gg

ee

ii

2

3

Q: a b d c e g i f h © 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004

L14.58

Correctness of BFS while Q ≠ ∅ do u ← DEQUEUE(Q) for each v ∈ Adj[u] do if d[v] = ∞ then d[v] ← d[u] + 1 ENQUEUE(Q, v)

Key idea: The FIFO Q in breadth-first search mimics the priority queue Q in Dijkstra. • Invariant: v comes after u in Q implies that d[v] = d[u] or d[v] = d[u] + 1. © 2001–4 by Charles E. Leiserson

Introduction to Algorithms

November 1, 2004

L14.59