used in engineering, has been applied to numerical weather prediction by. Ghil et al. ... for ksl, 2. the upper and l o w e r layers, respectively: is the velocity vector ...
Kalman Filtering for a Two-Layer, Two-Dimensional Shallow-Water Model N 3 a- 7 12 5 4
(YA'jA-C2-186741) KALMAN F I L T E K I h G FOR A T h3- 9 I MENS I OW AL SHALL OW- WATER T H9- L A Y F R MOCEL (California U n i v . ) 12 p
,
ilncl a s 00/47
a292230
Ricardo Todling and Michael Ghil
Department of Atmospheric Sciences and Institute of Geophysics and Planetary Physics, University of California, LO3
Angeles,
CA
90024-1565 (U.S.A.)
-7
m OJ
I
Preliminary D r a f t
September 1988
-
s--.
..
%-.
t
Introduction
1.
During the last decade interest in data assimilation for the atmosphere and oceans has increased. This interest can be attributed to the increase in the number and accurancy of data available. In meteorology many methods have been
used
for
data
(Bengtsson et al., used
in
assimilation;
statistical,
and
empirical
1981; Ghil, 1988). A particularly promising method, widely
engineering,
Ghil et al.
variational,
has been applied to numerical weather prediction by
(1981). This method, Kalman
(19601, provides the best procedure
for sequentially assimilating data into a dynamic model, under a set of reasonable assumptions (Jazwinski, 1970; Gelb 1974; Ghil, 1988).
In the study of Ghil et
al.
(19811, further refined by Cohn
(1982),
the model atmosphere was governed by a one-dimensional set of shallow-water equations. This model includes some
interesting features of the large-scale
atmospheric and oceanic system, in particular the two time-scale behavior of slow Rossby waves and fast Poincar; waves (Pedlosky, 1987; Ghil and Childress, 1987). In order for the sequential filter to provide an estimate of the slowlyevolving state of the system, the gain matrix was multiplied by a projection matrix onto the slow-wave subspace, giving rise to a modification of the standard Kalman filter. This modification is fairly general and does not depend on the model atmosphere being considered, but it might be too complicated to be applied to an operational numerical weather prediction model.
A
comparison
between the operational procedures of optimal interpolation (Of) and the modified Kalman filter was made. Cohn (1982) showed the advantages of the latter and suggested how to improve the 01 procedure so as to perform almost as well as the modified Kalman filter. A summary of this improved 01 is given in Cohn
*
8
er a l . (1981).
more
A
realistic
cczsidered a
model
two-dimensional
was
studied by
(2-D),
Parrish
single layer
and
Cohn
(1985).
shallow-water
model
They on an
f - p l a n e and showed t h a t t h e Kalman f i l t e r can be implemented i n two dimensions. Tke r e s u l t s f o r t h e f o r e c a s t e r r o r c o r r e l a t i o n s a r e markedly d i f f e r e n t from
t h o s e o b t a i n e d by 01, l e a d i n g t o a v e r y d i f f e r e n t weighting of o b s e r v a t i o n s .
P a r r i s h and Cohn (1985) u s e d an ingenuous idea t o make t h e implementation
of t h e f i l t e r f e a s i b l e f o r a system of flow e q u a t i o n s . I n what f o l l o w s , w e u s e t h e i r a l g o r i t h m f o r an even m o r e r e a l i s t i c model,
i. e.,
w e consider a two-
l a y e r , 2-D shallow-water model on a b e t a p l a n e .
Two-layer purposes.
shallow-water
Takacs
(19861,
models
have
been
widely
used
for
different
c o n s i d e r e d such a model on t h e s p h e r e i n order t o
compare i t s r e s u l t s w i t h t h o s e of t h e Goddard Laboratory f o r Atmospheres (GLA) fourth
order
General C i r c u l a t i o n Model,
S i n t o n and Mechoso (19841,
and better
understand
s t u d i e d t h e n o n l i n e a r e v o l u t i o n of
the
latter.
f r o n t a l waves
w i t h a s i m i l a r model.
The main f e a t u r e of t h i s model which i n t e r e s t s u s is its a b i l i t y t o exhibit
b a r o c l i n i c i n s t a b i l i t y . T h i s p r o p e r t y was s t u d i e d by Pedlosky (1963) 8 who gave i n s t a b i l i t y c o n d i t i o n s . The performance of t h e Kalman f i l t e r i n t h e p r e s e n c e
of numerical i n s t a b i l i t y i n t h e barotropic v o r t i c i t y e q u a t i o n w a s s t u d i e d by Miller (1986). T h e main question t o be answered h e r e i s weather t h e f i l t e r a l -
lcws
s u f f i c i e n t l y a c c u r a t e t r a c k i n g of t h e atmospheric s t a t e i n t h e p r e s e n c e
of rapid b a r o c l i n i c developments.
-4-
4
2 . N o d e l Description
The atmosphere is t r e a t e d as a system w i t h two shallow l a y e r s of i n v i s c i d , constant-density
immiscible f l u i d s . I n t h e 2-D c a s e t h e e q u a t i o n s for such a
system are,
(2.l a )
k s l , 2.
for
vector,
the
upper
and
layers,
0 , is t h e g e o p o t e n t i a l , f i s
c o n s t a n t s , a l = l , a2= p,/p2,
These there
lower
equations
can
i s given by
the
velocity
t h e C o r i o l i s parameter and t h e
a's a r e
where p is d e n s i t y .
now
be
linearized
i s no wind i n t h e y - d i r e c t i o n ,
x-direction
is
respectively:
Uk=
4 (y),
about
i. e.,
for e a c h
Vkr
state
a basic 0,
layer.
in
and t h e wind
On
a
beta
4S0N, t h e 2-D e q u a t i o n s (2.1) a r e given e x p l i c i t l y by,
(2.2b)
which
i n the
plane
at
y p o i n t eastward and northward, r e s p e c t i v e l y , while U,,
where x and
v,
and
0,
are t h e perturbation f i e l d s .
In order t o w r i t e System ( 2 . 2 ) i n a vector-matrix the notation
+
W f
( U1,
V1,
81 , U t ,
V2,
)T
form one can introduce
and then,
( 2.3a)
where
4 8 and
c are
UIO
0
A
and
=
given by
a 1 0
0
1
0
0
0
UlO
0
0
UlO
$ , O
0
0
a 2 U , 0
1
0
0
0
0
y
0
0
0
0 , o
o y
I
(2.3b)
t
0
c c -
-(f-uly)
0
0
0
0
f
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
O
f
0
0
0
0
0
0
0
0
To s o l v e system (2.3)
(2.3d)
0
'(f'U2Y)
w e u s e t h e Richtmyer two-step v e r s i o n of t h e Lax-
k'er.2roff scheme (see Richtmyer and Morton, 1967; G h i l e t a l . , step
to
the
finite-difference
expression
for
arr, k
f
1981). The f i r s t
&[( i - 1) AX, ( j - 1) Ay, kAt )
(see Appendix C i n P a r r i s h and Cohn, 1985) a t an intermediate l o c a t i o n ,
for i=1,2* ...,I and j=1,2
with
X
and
,..., J-1,
Y being the
The averaging operators
where
east-west
px and
and
north-south
extents,
respectively.
cl, a r e g i v e n by
(2.6a)
and t h e o p e r a t o r Lj i s d e f i n e d a s
(2.81
w i t h Ax=
dl /AX and
a,=
AIIAy.
T h e second s t e p u s e s t h e
i n t e r m e d i a t e values t o compute t h e s t a t e v a r i a b l e s
a t t h e next t i m e l e v e l
for i = l , Z ,
... , I
and j = 2 , 3 , . . . ,J-1.
Based on (2.91 it is p o s s i b l e t o c o n s t r u c t
t h e dynamics m a t r i x Y, which is needed i n t h e Kalman f i l t e r scheme.
The bound-
a r y c o n d i t i o n s can be i n c l u d e d i n t h e formulation of Y. It i s i m p o t t a n t t o notice that,
i n o r d e r t o o b t a i n b a t o c l i n i c i n s t a b i l i t y t h e free upper s u r f a c e
and the i n t e r f a c e between t h e two l a y e r s of f l u i d must have nonzero mean slopes.
3.
The Kalman Filter
V e r y good and c l e a r p r e s e n t a t i o n s of t h e Kalman f i l t e r i n g p r o c e d u r e can
!
be
6
f o u n d i n many p l a c e s : Jazwinski ( 1 9 7 0 1 , g i v e s a good mathematical d e s c r i p t i o n w h i l e Gelb
(1974) or Brown
(19831, a r e more a p p l i c a t i o n - o r i e n t e d .
The Kalman
f i z t e r as a p p l i e d t o numerical weather p r e d i c t i o n i s presented by G h i l e t a l . (1981). I n t h i s s e c t i o n w e r e c a p i t u l a t e b r i e f l y t h e e s s e n t i a l s .
Let us consider a d i s c r e t e l i n e a r system, g i v e n i n v e c t o r n o t a t i o n by
for
the
discrete times
senting the
g(k)
is a
true
k
=
s t a t e of
random n-vector
1,2,
...,
where
t h e system, which
i#t(k)
Y is
i s white
the
in
i s t h e n-vector nxn
repre-
dynamics m a t r i x
and
t i m e and unbiased w i t h
co-
superscript
the
variance Q(k):
The
symbol
E
t r a n s p o s e and 6,,
denotes
the
expectation,
the
T
denotes
is t h e Kronecker delta.
D i s c r e t e l i n e a r o b s e r v a t i o n s a r e described by
w h e r e s ( k ) i s a p-vector
interpolations
ing
for
and
s t a t e variables;
of o b s e r v a t i o n s ,
and
go(k)
for
any
and H ( k )
conversion
is a random p-vector,
matrix R ( k ) , d e s c r i b i n g o b s e r v a t i o n e r r o r ,
is a pxn m a t r i x account-
between
observed
unbaised with
variables covariance
a n d assumed t o be u n c o r r e l a t e d with
-Y-
%
+
t h e model e r r o r bt ( k ) :
(3.4a,b)
The Kalman f i l t e r f o r t h e system described above i s t h e following set of
equations :
ef ( k )
=
Pf(k) =
K(k)
=
Y(k-l)da (k-1)
,
( 3 . Sa)
+
Y(k-l)Pa(k-l)q(k-l)
Q(k-1)
(3.5b)
I
,
P f ( k ) H T ( k ) [ H(k)Pf(k)HT(k) + R(k)]’l
(3.5c)
(3.5d)
da(k)
+
df(k)
... .
for
k
and
analyzed
quantities,
the
evolution
of
=
1,2#3#
observations,
the
do(k)
K(k)[
H(k)df(k)]
superscripts
The
that
physical
repectively.
-
is,
system
itself above
(3.5e)
and
quantities
introduced
K
”f”
,
“a” that
and
is
stand
are
those
for
due
simply
dependent
the Kahn
forecast
gain
on
to the
matrix,
which r e f e r s t o t h e weight w i t h which o b s e r v a t i o n s and f o r e c a s t are combined
to g i v e t h e f i n a l r e s u l t , and P i s t h e e r r o r c o v a r i a n c e matrix,
Pfta(k)
=
E
[
[ df a ( k )-Qt ( k ) ] [ df a ( k ) -dt e
f o r t h e f o r e c a s t and analyzed f i e l d s , t e p e c t i v e l y .
( k )]
] .
(3.6)
AcknowledgeItEtnt8. S p e c i a l thanks go t o D r . Dale Boggs who wrote a streaml i n e d code f o r t h e s i n g l e - l a y e r v e r s i o n .
Dick Dee
i n v a l u a b l e h e l p with t h e t e c h n i c a l d e t a i l s .
and Stephen Cohn p r o v i d e d
T h i s work was s u p p o r t e d by NASA
g r a c t s NAG 5-947 and NAG 5-713.
References M. G h i l and E. Kallen (eds.) , 1981: Dynamic Wteorology:
Bengtsson, L.,
Data Assimilation Methods. Springer-Verlag,
Brown, R. G.,
N e w York, 330 pp.
1983: Introduction t o Random Signal Analysis and lCalmap
Filtering, John Wiley, New York, 347 pp.
Cohn, S. E.,
1982: Methods of Sequential Estimation for Determining
I n i t i a l Data in Numericallteather Prediction. Ph.D. t h e s i s , Courant I n s t i t u t e of Mathematical Sciences, NYU, New York, NY 10012, 183 pp.
Cohn, S. E., M. Ghil and E. Isaacson, 1981: Optha1 Interpolation and
the It.-
Filter. F i f t h Conference on Numerical Weather Pre-
d i c t i o n , p r e p r i n t volume, h e r . Meteor. SOC., Boston, pp. 3642.
G e l b , A.,
1974: Applied Optimal Estimation.
374 pp.
Cambridge, MA, MIT P r e s s ,
I
Ghil, M., S. Cohn, J. Tavantzis, K. Buke and E. Isaacson, 1981: Applications of estimation theory to nmaerical weather prediction.
Dynamic Meteorology: Data Assimilation Methods, L. Bengtsson, M. Ghil and E. Kallen (eds.), Springer-Verlag, New York, PP.
139-224.
Ghil, M., and S. Childress, 1987: Topics in GeOphy8iCal Fluid
m d C 8 :
Atmospheric Dynamics, Dynamo Theory and C l i m a t e Dynamics. Springer
Verlag, New York, 485 pp.
Ghil, M., 1988: Xeteorological Data Assimilation for Oceanographers. Part I: Description and Theoretical Framework. Dyn. Atmos.
Oceans, submitted.
Jazwinski, A. H., 1970: Stochastic Processes and Filtering Theory. Academic Press, New York, 376 pp.
K a h n , R. E., 1960: A New Approach to Linear Filtering and Prediction Problems. Trans. ASME, Ser. D, J. Basic Eng., 82, 35-45.
Parrish, D. F. and S. E. Cohn, 1985: AKalman Filter for
8
--Dimen-
aional Shallow-Water Model: Formulation and Preliarinrry E q e rimenta. Office Note 304, National Meteorological Center,
Washington DC 20233, 64 pp.
Uiller, R. M., 1986: Toward the Application of the Xalman Filter t o Regional Open Ocean Modelling.
J. Phys. Oceanogr., 16, 72-86.
..
.e
Pedlosky, J., 1963: B a r o c l i n i c Instability in Two-Layer Systems. Tellus, 15, 20-25.
Pedlosky, J., 1987: GeophysfCal Fluid D y n a m i c s . Springer Verlag, New York, 624 pp.
Richtmayer, R. D. and K. W. Morton, 1967: D i f f e r e n c e Methods for InitialValue P r o b l m , (2nd ed.). Wiley-Interscience, New York, 405pp.
Sinton, D. M. and C. R. Mechoso, 1984: Nonlinear Evolution of Frontal Waves. J. Atmos. Sci., 14, No. 24, pp. 3501-3517.
Takacs, L. L., 1986: Documentation of the Goddard Laboratory for Atmospheres F o u r t h - O r d e r --Layer
S h a l l o w Water Modal.
Goddard Modelling and Simulation Branch, Goddard Space Flight Center, Greenbelt, Maryland 20771, 79 pp.