The Fundamental Theorem of Calculus. The Substitution Rule. Integration by
Parts. Lejla Batina. Version: autumn 2013. Calculus en Kansrekenen. 2 / 18 ...
The Definite Integral The Indefinite Integral The Fundamental Theorem of Calculus The Substitution Rule Integration by Parts
Radboud University Nijmegen
Lecture 4: Integrals and applications Lejla Batina Institute for Computing and Information Sciences – Digital Security Radboud University Nijmegen
Version: autumn 2013
Lejla Batina
Version: autumn 2013
Calculus en Kansrekenen
1 / 18
The Definite Integral The Indefinite Integral The Fundamental Theorem of Calculus The Substitution Rule Integration by Parts
Radboud University Nijmegen
Outline
The Definite Integral The Indefinite Integral The Fundamental Theorem of Calculus The Substitution Rule Integration by Parts
Lejla Batina
Version: autumn 2013
Calculus en Kansrekenen
2 / 18
The Definite Integral The Indefinite Integral The Fundamental Theorem of Calculus The Substitution Rule Integration by Parts
Radboud University Nijmegen
Intro So far: from f to f 0 : tangent line, monotonicity, extrema, ... From f 0 to f : If F (x) is a function such that F 0 (x) = f (x), which information we get about f (from F )? (x) f (x) = F 0 (x) = limh→0 F (x+h)−F h ⇒ f (x) · h ≈ F (x + h) − F (x).
So, F (x) gives some information about the surface under the graph of f .
Lejla Batina
Version: autumn 2013
Calculus en Kansrekenen
3 / 18
The Definite Integral The Indefinite Integral The Fundamental Theorem of Calculus The Substitution Rule Integration by Parts
Radboud University Nijmegen
The area problem and the definite integral Let y = f (x) be a continuous function defined on [a, b]. In order to estimate the area under y = f (x) from a to b we divide [a, b] into n subintervals: [x0 , x1 ], [x1 , x2 ], [x2 , x3 ], . . . , [xn−1 , xn ], where a = x0 , b = xn , each of length ∆x = b−a n (xi = a + i∆x, i = 0, · · · , n). The area Si of the strip between xi−1 and xi can be approximated as the area of the rectangle of width ∆x and height f (xi ∗ ), where xi ∗ ∈ [xi , xi+1 ], i = 0, · · · , n. So, the total area under the curve is closeP to the following sum: A ≈ ni=1 f (xi ∗ )∆x = f (x1 ∗ )∆x + f (x2 ∗ )∆x + . . . + f (xn ∗ )∆x. Rb P A = limn→∞ ni=1 f (xi ∗ )∆x = a f (x)dx. Lejla Batina
Version: autumn 2013
Calculus en Kansrekenen
4 / 18
The Definite Integral The Indefinite Integral The Fundamental Theorem of Calculus The Substitution Rule Integration by Parts
Radboud University Nijmegen
The evaluation theorem Theorem If f is a continuous function and F 0 (x) = f (x) (F is an Rb antiderivative of f ), then: a f (x)dx = F (b) − F (a). This value gives the area below the graph of f on [a, b].
Example Compute the following definite integrals using the evaluation theorem: R1 • 0 x 2 dx Rπ • 02 sinxdx
Lejla Batina
Version: autumn 2013
Calculus en Kansrekenen
5 / 18
The Definite Integral The Indefinite Integral The Fundamental Theorem of Calculus The Substitution Rule Integration by Parts
Radboud University Nijmegen
Properties of the definite integrals Due to linearity and interval additivity we get: Rb Rc Rb • a f (x)dx = a f (x)dx + c f (x)dx, where a < c < b Ra • a f (x)dx = 0 Rb Ra • a f (x)dx = − b f (x)dx Rb Rb Rb • a [f (x) ± g (x)]dx = a f (x)dx ± a g (x)dx Rb • c a dx = c(b − a) Rb Rb • c a f (x)dx = a c · f (x)dx Comparison: Rb
• f (x) ≥ 0 ⇒ a f (x)dx ≥ 0 Rb Rb • f (x) ≥ g (x) ⇒ a f (x)dx ≥ a g (x)dx
Rb
• m ≤ f (x) ≤ M ⇒ m(b − a) ≤ a f (x)dx ≤ M(b − a) Lejla Batina
Version: autumn 2013
Calculus en Kansrekenen
6 / 18
The Definite Integral The Indefinite Integral The Fundamental Theorem of Calculus The Substitution Rule Integration by Parts
Radboud University Nijmegen
Indefinite integrals
Definition A function F such that F 0 (x) = f (x) is called an antiderivative (or a primitive) function of f . Then for any constant C , F (x) + C is another antiderivative of f (x). The family of all antiderivatives of Rf is called indefinite integral of f and denoted as: f (x)dx = F (x) + C .
Lejla Batina
Version: autumn 2013
Calculus en Kansrekenen
7 / 18
The Definite Integral The Indefinite Integral The Fundamental Theorem of Calculus The Substitution Rule Integration by Parts
Radboud University Nijmegen
Table of indefinite integrals • • • • • • • • • • •
R 0 · dx = C R R 1 · dx = x + C , so dx = x R n n+1 x dx = xn+1 + C , n 6= −1 R 1 dx = ln |x| + C R xx e dx = e x + C R x ax a dx = lna +C R sinxdx = − cos x + C R cosxdx = sin x + C R 1 2 x dx = tan x + C R cos dx = arctan x + C 1+x 2 R dx √ = arcsin x + C 1−x 2
Lejla Batina
Version: autumn 2013
Calculus en Kansrekenen
8 / 18
The Definite Integral The Indefinite Integral The Fundamental Theorem of Calculus The Substitution Rule Integration by Parts
Radboud University Nijmegen
Examples
Example R R R (3x 5 − 2x 2 + 1)dx = 3x 5 dx − 2x 2 dx + dx = R R R 6 3 = 3 x 5 dx − 2 x 2 dx + dx = 3 x6 − 2 x3 + x + C . R 2 R R √ 3 • ( x 2 − x12 )dx = x 3 dx − x −2 dx = √ 5/3 −1 3 = x 5 − x−1 + C = 53 x x 2 + x1 + C .
•
R
3
Lejla Batina
Version: autumn 2013
Calculus en Kansrekenen
9 / 18
The Definite Integral The Indefinite Integral The Fundamental Theorem of Calculus The Substitution Rule Integration by Parts
Radboud University Nijmegen
The fundamental theorem of calculus Theorem Let f be a continuous function on [a, b]. Then: Rx 1 The function g (x) = a f (t)dt is an antiderivative of f , i.e., g 0 (x) = f (x). 2
(Evaluation theorem) If F is an antiderivative of f , i.e. Rb F 0 (x) = f (x), then a f (x)dx = F (b) − F (a).
We can rewrite it as follows: Rx d 1 dx a f (t)dt = f (x). Rb 0 2 a F (x)dx = F (b) − F (a).
Lejla Batina
Version: autumn 2013
Calculus en Kansrekenen
10 / 18
The Definite Integral The Indefinite Integral The Fundamental Theorem of Calculus The Substitution Rule Integration by Parts
Radboud University Nijmegen
Example
Example Find
d dx
R x2 0
t 3 dt.
R x2 We can solve this in two Let g (x) = 0 t 3 dt, then using the R u ways. theorem: for h(u) = 0 t 3 dt ⇒ h0 (u) = u 3 . We have g (x) = h(x 2 ), and from the chain rule: g 0 (x) = h0 (x 2 ) · 2x = (x 2 )3 · 2x = 2x 7 . R x2 8 4 2 Or directly: g (x) = 0 t 3 dt = [ t4 ]x0 = x4 , and then 7 g 0 (x) = 8x4 = 2x 7 .
Lejla Batina
Version: autumn 2013
Calculus en Kansrekenen
11 / 18
The Definite Integral The Indefinite Integral The Fundamental Theorem of Calculus The Substitution Rule Integration by Parts
Radboud University Nijmegen
The substitution rule As it holds: 0 du weRcan write: R R = u dx, f (u)u 0 dx = f (u)du = f (g (x))g 0 (x)dx, where u = g (x).
Example R cosR x3 dx = [u = x3 , du = 13 dx ⇒ dx = 3du] = cos u · 3du = = 3 cos udu = 3 sin u + C = 3 sin x3 + C . R • x sin(x 2 )dx = [u = x 2 , du = 2xdx ⇒ xdx = 12 du] R R = sin u · 21 du = 12 sin udu = − 21 cos x 2 + C . R √ • x 2 x + 1dx = [x + 1 = u, dx = du ⇒ x = u − 1] = R R 5 R 3 R 1 √ = (u − 1)2 udu = u 2 du − 2 u 2 du + u 2 du = . . . R cos √x √ dx √ √ ⇒ √ • dx = [u = x, du = 2dx = 2du] = x x x R √ = 2 cos udu = 2 sin x + C . •
R
Lejla Batina
Version: autumn 2013
Calculus en Kansrekenen
12 / 18
The Definite Integral The Indefinite Integral The Fundamental Theorem of Calculus The Substitution Rule Integration by Parts
Radboud University Nijmegen
Integration by parts Recollect the product rule for differentiation: [f (x)g (x)]0 = f 0 (x)g (x) + f (x)g 0 (x), or f (x)g 0 (x) = [f (x)g (x)]0 − f 0 (x)g (x). After integration we get: R R f (x)g 0 (x)dx = [f (x)g (x)] − f 0 (x)g (x)dx. For u = f (x), v = g (x), we get du = f 0 (x)dx and dv = g 0 (x)dx, hence: R R udv = uv − vdu. For definite integrals we have:
Lejla Batina
Version: autumn 2013
Rb a
udv = uv |ba −
Rb a
vdu
Calculus en Kansrekenen
13 / 18
The Definite Integral The Indefinite Integral The Fundamental Theorem of Calculus The Substitution Rule Integration by Parts
Radboud University Nijmegen
Examples
Example R xe x dx = [uR = x ⇒ du = dx, dv = e x dx ⇒ v = e x dx = e x ] = xe x − e x dx = xe x − e x + C . R 2 • x ln xdx = [u = ln x ⇒ du = dx , dv = xdx ⇒ v = x2 ] = x R 2 R 2 2 2 2 = x2 ln x − x2 · x1 dx = x2 ln x − 12 xdx = x2 ln x − x4 + C . •
R
Lejla Batina
Version: autumn 2013
Calculus en Kansrekenen
14 / 18
The Definite Integral The Indefinite Integral The Fundamental Theorem of Calculus The Substitution Rule Integration by Parts
Radboud University Nijmegen
Applications
• The area below y = f (x) between x = a and x = b is
A=
Rb a
f (x)dx.
• Let f (x) and g (x) are continuous functions such that
g (x) ≤ f (x) when a ≤ x ≤ b. The area between f and g and Rb x = a and x = b is A = a [f (x) − g (x)]dx. • Let f be differentiable function on [a, b]. The arc length of f
(between a and b) is: L =
Lejla Batina
Version: autumn 2013
Rbp 1 + (f 0 (x)2 )dx. a
Calculus en Kansrekenen
15 / 18
The Definite Integral The Indefinite Integral The Fundamental Theorem of Calculus The Substitution Rule Integration by Parts
Radboud University Nijmegen
Examples Example • Compute the area below y = sin2 xcosx between x1 = 0 and
x2 = π2 . R π2 R1 2 2 0 sin xcosxdx = [u = sin x ⇒ du = cos xdx] = 0 u du = 3 = u3 |10 = 13 . • Compute the area bounded by y 2 = 4x and 4x − 5y + 4 = 0.
Solution: A = 89 . • Find the length of the following curve x = 41 y 2 − 12 ln y from 2
y = 1 to y = e. x 0 (y ) = y2 − 12 · y1 = y 2y−1 . Re q R e √y 4 +2y 2 +1 R (y 2 −1)2 1 e 1 s = 1 1 + 4y 2 = 1 = 2y 2 1 (y + y )dy = 1 y2 2( 2
Lejla Batina
+ ln y )|e1 = 14 (e 2 + 1). Version: autumn 2013
Calculus en Kansrekenen
16 / 18
The Definite Integral The Indefinite Integral The Fundamental Theorem of Calculus The Substitution Rule Integration by Parts
Radboud University Nijmegen
More applications • Applications of the indefinite integral • Displacement and velocity formulas R As v = ds ⇒ s = vdt. dt so ds = vdt R d 2s a = dv adt. dt = dt 2 ⇒ v = • Voltage across Ra capacitor i = dq idt, i-current, q-charge. dt ⇒ q = • Applications of the definite integral • Computing volumes (derived by rotation) • Average value of a function
For y =R f (x) from x = a to x = b: yave = • ···
Lejla Batina
b a
f (x)dx b−a .
Version: autumn 2013
Calculus en Kansrekenen
17 / 18
The Definite Integral The Indefinite Integral The Fundamental Theorem of Calculus The Substitution Rule Integration by Parts
Examples:
Radboud University Nijmegen
from “Interactive mathematics” (www.inmath.com)
Example • A proton moves in an electric field such that its acceleration 20 (in cm2 /s) is: a(t) = − (1+2t) 2 . Find the velocity as a cm function R of time if v = 30 s when t = 0. v = R adt R du 20dt v = − (1+2t) = 10 2 = [u = 1+2t, du = 2dt] = −10 u +C . u2 cm cm For t = 0 ⇒ v (0) = 30 s so 30 = 10 + C ⇒ C = 20 s and 10 then v (t) = 1+2t + 20 cm s .
• The temperature T (in C) recorded during a day followed the
curve T = 0.001t 4 − 0.280t 2 + 25, where t are hours from noon −12 ≤ t ≤ 12. Find the average temperature during a day. R yave = Lejla Batina
12 −12
T (t)dt 24
= · · · = 15.7C .
Version: autumn 2013
Calculus en Kansrekenen
18 / 18