Lecture Notes in Mathematics

4 downloads 0 Views 173KB Size Report
R. Abraham and J. Robbin, Transversal Mappings and Flows, Benjamin Inc.,. New York ... 133-164. M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds, Bull.
REFERENCES I.

R. Abraham and J. Robbin, Transversal Mappings and Flows, Benjamin I n c . , New York, 1967, pp. 120-131.

2.

R. Abraham and S. Smale, Nongenericity of Axiom A and a - S t a b i l i t y , Global A n a l y s i s - P r o c . Symp. in Pure Math., vol. 14, AMS, Providence, R . I . , 1970.

3.

D. Anosov, Geodesic Flows on Closed Riemann Manifolds with Negative Curvature, Proc. of the Stecklov Inst. of Math., No. 90 (1967). English t r a n s l a t i o n , AMS, Providence, R . I . , 1969.

4.

D. Anosov and Ya. S i n a i , Some Smooth Ergodic Systems, Upseki Mat. Nauk 22, No. 5 (1967), 103-167. English t r a n s l a t i o n , Russian Math. Surveys 22,

5.

V. Arnold and A. Avez, Probl~mes Ergodique de la M~chanique Classique, GauthierV i l l a r s , Paris, 1967, pp. 7-8.

6.

L. Auslander and R. MacKenzie, Introduction to Differentiable Manifolds~ McGraw-Hill, New York, 1963, p. 184.

7.

G.D. B i r k h o f f , Dynamical Systems, AMS, Providence, R . I . , 1927.

8.

N. Bogoliubov and Y. Mitropolsky, Asymptotic Methods in the Theory of Nonlinear Oscillations, Gordon and Breach, New York, 1961, Chapters 5, 64

9.

,

I0.

R. Bowen, Periodic Orbits for Hyperbolic Flows, Amero J. Math. 94 (1972), 1-37.

II.

D. C h i l l i n g w o r t h , unpublished.

12.

J. Dieudonn~, Foundations of ModernAnalysis, Academic Press, New York, 1960, p. 157.

13.

So D i l i b e r t o , Perturbation Theorems f o r Periodic Surfaces I , I I , Rend. Cir. Mat. Palermo 9, 10 (1960-61), 265-299, 111-161.

14.

N. Fenichel, Persistence and Smoothness of I n v a r i a n t Manifolds of Flows, Indiana U n i v e r s i t y Math. J. 21 (1971-72), 193-226.

15.

A. G o t t l i e b , Converses to the a - S t a b i l i t y and I n v a r i a n t Lamination Theorem, Trans. Amer. Math. Soc. 202 (1975), 369-383.

16.

J. Hadamard, Sur l ' i t & r a t i o n et les solutions asymptotiques des ~quations d i f f ~ r e n t i e l l e s , B u l l . Soc. Math. France 29 (1901), 224-228.

17.

J. Hale, Integral Manifolds of Perturbed D i f f e r e n t i a l Systems, Ann. Math. 73 (1961), 496-531.

18. 19. 20.

The Methods of Integral Manifolds in Nonlinear Mechanics, Contributions to D i f f e r e n t i a l Equations 2 (1963), 123-196.

, On the Method of Krylov-Bogoliubov-Metropolsky for the Existence of Integral Manifolds, Bol. Soc. Mex. (1960). , Ordinary Differential Equations,

Interscience, New York, p. 121.

P. Hartman, Ordinary Differential Equations, John Wiley and Sons, New York, 1964.

146 21.

M. Hirsch, F o l i a t i o n s and Noncompact Transformation Groups, B u l l . AMS 76 (1970), 1020-1023.

22.

M. Hirsch and C. Pugh, Stable Manifolds and Hyperbolic Sets, Proc. Symp. in Pure Math., vol. 14, AMS, Providence, R . I . , 1970, pp. 133-164.

23.

M. Hirsch, C. Pugh and M. Shub, I n v a r i a n t Manifolds, B u l l . AMS 76 (1970), 1015-1019.

24.

M. Hirsch, J. Palis, C. Pugh and M. Shub, Neighborhoods of Hyperbolic Sets, Inv. Math. 9 (1970), 121-134.

25.

R. Holmes, A Formula for the Spectral Radius of an Operator, Amer. Math. Monthly 75 (1968), 163-166.

26.

M. I r w i n , A C l a s s i f i c a t i o n of Elementary Cycles, Topology 9 (1970), 35-48.

27.

, On the Stable Manifold Theorem, B u l l . London Math. Soc. 2 (1970), 196-198.

28.

A. Kelley, The Stable, Center-Stable, Center, Center-Unstable, Unstable Mani~ folds. An appendix in Transversal Mappings and Flows by R. Abraham and J. Robbin, Benjamin, New York, 1967.

29.

I. Kupka, S t a b i l i t ~ des vari#t&sinvariantes d'un champ de vecteurs pour les petites perturbations, C.R. Acad. Sc. Paris 258 (1964), 4197-4200.

30.

W. Kyner, I n v a r i a n t Manifolds, Rend. Cir. Mat. Palermo 10 (1961), 98-100.

31.

S. Lang, Introduction to Differentiable Manifolds, Interscience Publishers, New York, 1962, p. I02.

32.

R. Ma~, Persistent Manifolds are Normally Hyperbolic, B u l l . Amer. Math. Soc. 80 (1974), 90-91.

33.

J. Munkres, Elementary Differential Topology, Annals of Math. Studies, Princeton U n i v e r s i t y Press, Princeton, N.J., 1963, pp. 37-42.

34.

K. Nomizu, Lie Groups and D i f f e r e n t i a l Geometry, Math. Soc. Japan, 1956.

35.

J. Palis, On Morse Smale Dynamical Systems, Topology 8 (1969), 385-405.

36.

W. Parry, Dynamical Systems on Nilmanifolds, B u l l . London Math. Soc. 2 (1970), 37-40.

37.

O. Perron, Uber S t a b i l i t ~ t und asymptotisches Verhalten der Integrale von Differentialgleichungssystemen, Math. Z. 29 (1928), 129-160.

38.

, Uber S t a b i l i t ~ t und asymptotisches Verhalten der L~sungen eines Systems endlicher Differenzengleichungen, J. Reine Angew. Math. 161 (1929), 41-64.

39.

, Die S t a b i l i t ~ t s f r a g e bei D i f f e r e n t i a l g l e i c h u n g e n , Math. Z. 32 (1930), 703-728.

40.

C. Pugh, I n v a r i a n t Manifolds, Actes, Congr~s Intern. Math., 1970, Tome 2, 925-928.

41.

C. Pugh and M. Shub, L i n e a r i z a t i o n of Normally Hyperbolic Diffeomorphisms and Flows, Inv. Math. 1o (1970), 187-198.

42.

, The a - S t a b i l i t y Theorem for Flows, Inv. Math. 11 (1970), 150-158.

147 43.

,

Axiom A Actions, Inventiones Math. 29 (1975), 7-38.

44.

F. Riesz and B. Sz.-Nagy, F u n c t i o n a l A n a l y s i s , Frederick Ungar, New York, 1955.

45.

J. Robbin, A Structural S t a b i l i t y Theorem, Ann. of Math. 94 (1971), 447-493.

46.

R.C. Robinson, Structured S t a b i l i t y , preprint, Northwestern University, Evanston, I I I .

47.

R. Sacker, A Perturbation Theorem for Invariant Riemannian Manifolds, Proc. Symp. at Univ. of Puerto Rico, edited by J. Hale and J. LaSalle, Academic Press, 1967, pp. 43-54.

48.

S. Smale, D i f f e r e n t i a l Dynamical Systems, Bull. AMS 73 (1967), 747-817.

49.

F. Takens, P a r t i a l l y Hyperbolic Fixed Points, Topology 10 (1971), 133-147.

50.

R.F. Williams, One Dimensional Nonwandering Sets, Topology 6 (1967), 473-487.

Index Page adapted Finsler

...............................

69

addable vectors

...............................

88

backward p - a s y m p t o t i c Banach b u n d l e

85, 88

......................................

equivariant

fibration

contraction

Finsler

22 II

...........................

137

.........................

30, 31, 80

....................................

flattening

chart

foliation

......................................

graph t r a n s f o r m Grassmannian lamination

..............................

leaf

immersion

.................................

graph t r a n s f o r m

17,

jet

III,

Lyapunov s t a b l e ,

68 17 26, 27

......................

132

............................. unstable

132

....................

65

.................................

nonwandering set

3

............................

normal h y p e r b o l i c i t y r-contractive

..................... .........................

115 115

..............................

maximal

25 74

.........................

product structure

normally

61

................................. ................................

minimum norm

115

.............................

conjugacy

locally

91

............................

leaf

Lipschitz

8 , 68, 69

...............................

forward p-asymptotic

local

137

..................................

.....................................

linear

III

.........................

connector

fiber

8

............................

fibration

Cr - u n i f o r m centrum

61

.................................

branched lamination Cr - r e g u l a r

..........................

136 3,

4, 69, 116 82

149

Page overflowing

..............................

30

plaquation

..............................

72

plaque

.................................

plaque-expansive

.........................

pre-foliation

.............................

pre-lamination

..............................

pseudo-hyperbolic pseudo-orbit

.................................

self

coherent

self

tangent

shadowing sharpness

............................

If6 61 61 53 ll6

................................

61

...............................

68

................................. .....................................

slope of a section

.............................

smoothable lamination

..........................

stable, strong stable, strong unstable manifold ................................ structural

62, 72

stability

.......................

117, 133 30 29 123

39, 60 ll5

topological

transitivity

..................

139

topological

~-stability

....................

136

unbranched

.................................

unique path lifting unstable manifold well

branched

a-stability

........................ ...........................

................................ ..................................

III 127 39, 60 III 136