Worksheet for Rotation of a Rigid Ellipsoid in Slow Flows (by D. Jiang,
[email protected] last updated Jan. 2014)
Please refer to Jiang (2007, Journal of Structural Geology 29, 189-200) and Jiang (2012, Computers & Geosciences 38, 52-61) for theoretical background. 5 a 3 2
The state of the ellipsoid is given by a shape vector, like:
and an orientation specified by 3 spherical angles, written as a vector: T
x0 ( 123deg 26deg 35deg )
The flow field is defined by a velocity gradient tensor like: 0 0.3 1 L 0 0.2 0 0 0.0 0.1
Select a step length of computation, δt like:
δt 0.01
See Jiang (2012) for the choice of δt to ensure that every step of calculation corresponds to an infinitesimal deformation. Slect the total number of computation:
STEPS 3000
and the number of calculations between output states:
mm 10
This means one output state every 10 steps of calculation. There will be a total of 300 output states (STEPS/mm =300)
Orientation tensor Q & Auxiliary Functions sin x2 cos x1 a( x ) sin x 2 sin x 1 cos x 2 c( x ) a( x ) b ( x ) T
Q( x ) augment( a( x ) b ( x ) c( x ) )
sin x1 sin x3 π b ( x ) cos x 1 sin x 3 if x = 2 2 cos x 3 cos atan tan x 2 cos x 1 x3 cos x3 cos atan tan x cos x x sin x otherwise 2 1 3 3 sin atan tan x 2 cos x 1 x3 u3 u
phi( u ) acos
I identity( 3 )
theta( u )
orien( u ) augment( theta( u ) phi ( u ) )
u 2 u1
z atan
z if u 0 1
( π z) otherwise
1 2 3 orienMatrix( x ) augment orien x orien x orien x Exp( A)
ω
norme( A)
ω1
2
Rodrigues rotation
A ω
I ω1 sin( ω) ( 1 cos( ω) ) ω1
rou1( φ)
for i 1
2
STEPS
rou2( φ)
mm
for i 1
φi if φi π 2 2
2 sin
a i
a i
NaN otherwise
STEPS mm
φi if φi π 2 2
2 cos
NaN otherwise
a
a
Upper-hemisphere points
Lower-hemisphere points
1 2 2 3 4 4 5 6 6 EqArea( z) augment z rou1 z rou2 z z rou1 z rou2 z z rou1 z rou2 z
Angular velocity of ellipsoid and incremental rotation Θ( x )
D
1 2
L LT
WL D q Q( x ) T
d q D q
T
w q W q wd
for i 1 3 for j 1 3 m
i j
aj 2 ai2 aj
2
ai
2
d
i j
m w wd INCR( x )
a Q( x ) q1 Θ( x ) K1 Exp( q1 δt) a
TT
x1 orienMatrix K1 q2 Θ( x1)
K2 Exp( q2 0.5 δt) K1
TT
x2 orienMatrix K2 q3 Θ( x2)
K3 Exp( q3 0.5 δt) K2
TT
x3 orienMatrix K3 q4 Θ( x3) K4 Exp( q4 δt) K3 bb
1 T T T T q1 a 2 K2 q2 K2 K3 q3 K3 K4 q4 K4 a 6
b Exp( bb δt) a
T
orienMatrix b
T
PP ( x )
y INCR( x ) 1
a Θ( x ) for i 2 mm
i1T
y INCR y i
y AA
T mm T
x PP ( x0) 1
mx
T 1
for i 2
STEPS mm
i1T
M EqArea( AA)
x PP x i
m stack m x
T i
In the equal-area plots below, x-axis = east; y-axis = north, and z-axis = up. Dark points are in the upper hemisphere and light ones the lower hemisphere
2 M 3 M
1 M
a1-axis path
5 M 6 M
4 M
a2-axis path
8 M 9 M
7 M
a3-axis path