Memo 1

324 downloads 398 Views 202KB Size Report
This memorandum consists of 15 pages. NATIONAL. SENIOR CERTIFICATE. GRADE 12. MATHEMATICS P1. FEBRUARY/MARCH 2009. MEMORANDUM. M  ...
NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P1 FEBRUARY/MARCH 2009 MEMORANDUM

MARKS: 150

This memorandum consists of 15 pages.

Copyright reserved

Please turn over

Mathematics/P1

2 NSC – Memorandum

DoE/Febr. – March 2009

QUESTION 1 1.1.1

1.1.2

1 =4 x 3x 2 − 4 x + 1 = 0 (3x − 1)( x − 1) = 0 1 x= or x = 1 3 3x +

3 standard form 3 factors 33 answers (4)

5 x ( x − 3) = 2

3 standard form 3 substitution into formula

5 x 2 − 15 x − 2 = 0

x=

− (−15) ± (−15) 2 − 4(5)(−2) 2(5)

3 265

15 ± 265 x= 10 x = 3,13 or x = – 0,13

33 answers

(5) 1.1.3

x − 2x > 3 x2 − 2x − 3 > 0

3 standard form

( x − 3)( x + 1) > 0

3 critical values

2

+



0

–1

0

+

OR

3

3 33 answers

x < – 1 or x > 3 1.2

–1

(4)

x − 3y = 1 x = 1 + 3y

(1 + 3 y ) − 2(1 + 3 y ) y + 9 y = 17

3 x = 1 + 3y 3 substitution

1 + 6 y + 9 y 2 − 2 y − 6 y 2 + 9 y 2 − 17 = 0

3 simplification

2

2

12 y 2 + 4 y − 16 = 0 3y2 + y − 4 = 0 (3 y + 4)( y − 1) = 0 4 y = − or y = 1 3 x = −3 or x = 4

Copyright reserved

3 factors 3 answers 3 3answers

(7

Please turn over

Mathematics/P1

3 NSC – Memorandum

DoE/Febr. – March 2009

OR x − 3y = 1 x −1 y= 3

⎛ x −1⎞ ⎛ x −1⎞ x − 2 x⎜ ⎟ = 17 ⎟ + 9⎜ ⎝ 3 ⎠ ⎝ 3 ⎠ ⎛ x 2 − 2x + 1⎞ 2x 2 − 2x ⎟⎟ = 17 x2 − + 9⎜⎜ 3 9 ⎝ ⎠ 2

2

2x 2 − 2x + x 2 − 2 x + 1 = 17 3 2 2 3x − 2 x + 2 x + 3 x 2 − 6 x + 3 = 51 x2 −

4 x 2 − 4 x − 48 = 0 x 2 − x − 12 = 0 ( x + 3)( x − 4) = 0 x = −3 or x = 4 4 y = − or y = 1 3 1.3

let 1234567893 = n Then 1234567893 × 1234567894 – 1234567895 × 1234567892 = n(n + 1) − (n + 2)(n − 1)

= n2 + n − n2 − n + 2 =2

3 method 3 simplification 3 answer

(3)

OR

Full marks for (3 × 4) – (5 × 2) = 2

Copyright reserved

[23]

Please turn over

Mathematics/P1

4 NSC – Memorandum

DoE/Febr. – March 2009

QUESTION 2

2.1.1

2.1.2

2.1.3

2.2

2.3

1 1 + 1× 2 2 × 3 1 1 = + 2 6 2 = 3 S2 =

1 1 1 + + 1× 2 2 × 3 3 × 4 2 1 = + 3 12 9 = 12 3 = 4

3 answer

(1)

S3 =

3 answer

(1)

1 1 1 1 S4 = + + + 1× 2 2 × 3 3 × 4 4 × 5 3 1 = + 4 20 16 = 20 3 answer 4 = 5 If n represents the number of terms then the sum will be n divided by 3 3 answer n + 1. OR n Sn = n +1 3 answer 2008 Sn = 2009

Copyright reserved

(1) (2)

(1) [6]

Please turn over

Mathematics/P1

5 NSC – Memorandum

DoE/Febr. – March 2009

QUESTION 3

3.1

(2 p − 3) − (1 − p ) = ( p + 5) − (2 p − 3) 2 p − 3 −1+ p = p + 5 − 2 p + 3 3p − 4 = − p + 8 4 p = 12 p=3

3 equating differences 3 simplification 3 answer

(3) 3.2.1

First term = 1 – p = 1 – 3 = – 2

3–2

3.2.2

−2 ;3;8 Common difference = 5

3 answer

3.3

(1) (1)

OR 3 p − 4 = 3(3) − 4 = 5 After the first term -2, all the other terms end in either a 3 or an 8. Perfect squares never end in a 3 or an 8. 33 explanation

(2) [7] QUESTION 4

4.1

4.2

6 ; 6 ; 2 ; – 6 ; – 18 ;… First difference: 0, – 4, – 8, – 12, … Therefore the next term is: – 18 – 16 = – 34 6 6 2 –6 0 –4 2a = −4

–4

Copyright reserved

(1)

–8 –4

a = −2 Tn = −2n 2 + bn + c 6 = −2 + b + c 8=b+c ...(i ) 6 = –8 + 2b + c 14 = 2b + c …(ii) (ii) – (i): 6=b ∴c=2 Tn = −2n 2 + 6n + 2 OR

3 – 34

9 a=–2

9 solving simultaneously 9b=6 9c=2 9 general term

(5)

Please turn over

Mathematics/P1

6 NSC – Memorandum

2

6

6

2

DoE/Febr. – March 2009

–6 9 a=–2

4

0

–4 2a = −4

–4 –4

–8 –4

a = −2 T0 = c = 2 T1 = −2 + b + 2 = 6 b=6 Tn = −2n 2 + 6n + 2 OR

3c=2 3 substitution 3b=6 3 general term

(5)

3obtaining differences

T2 − T1 = 0 T3 − T2 = −4 T4 − T3 = −8

3 adding both sides

M Tn − Tn −1 = −4(n − 2) = 8 − 4n Adding both sides Tn − 6 = −4[1 + 2 + 3 + ....(n − 2)] ⎡ (n − 2)(n − 1) ⎤ Tn = −4 ⎢ ⎥+6 2 ⎣ ⎦ 2 Tn = −2n + 6n + 2

4.3

3 substituting T1 = 6 3 expression for sum of terms 3simplification

(5)

− 6838 = −2n 2 + 6n + 2 − 2n 2 + 6n + 6840 = 0 n 2 − 3n − 3420 = 0

n=



(− 3)2 − 4(1)(−3420) 2

3 ± 117 2 n = 60 or n = - 57 not possible

3 standard form 3 substitution

n=

∴ T60 = −6838

Copyright reserved

3 values of n 3 answer

(4) [10]

Please turn over

Mathematics/P1

7 NSC – Memorandum

DoE/Febr. – March 2009

QUESTION 5

5.1

Area of unshaded square = 1=

1 16

15 16

31 3

1 16

3 answer

(2) 5.2

Sum of the unshaded areas of the first seven squares 1 ⎞ 1 ⎞ ⎛ ⎛ 1⎞ ⎛ = (1 − 1) + ⎜1 − ⎟ + ⎜1 − 2 ⎟ + L + ⎜1 − 6 ⎟ ⎝ 4 ⎠ ⎝ 4⎠ ⎝ 4 ⎠ 1 ⎞ ⎛ 1 1 = 7 − ⎜1 + + 2 + L + 6 ⎟ 4 ⎠ ⎝ 4 4 7 ⎛ ⎛ ⎛1⎞ ⎞⎞ ⎜ 1⎜1 − ⎜ ⎟ ⎟ ⎟ ⎜ ⎜ ⎝4⎠ ⎟⎟ ⎠⎟ = 7−⎜ ⎝ 1 ⎜ 1− ⎟ ⎜⎜ ⎟⎟ 4 ⎝ ⎠ = 7 − 1,333251953... = 5,666748047... = 5,67

3expression for sum of unshaded areas 3 simplification 3 answer

(5)

OR Sum of the unshaded areas of the first seven squares 1 ⎞ 1 ⎞ ⎛ 1⎞ ⎛ ⎛ = (1 − 1) + ⎜1 − ⎟ + ⎜1 − 2 ⎟ + L + ⎜1 − 6 ⎟ ⎝ 4⎠ ⎝ 4 ⎠ ⎝ 4 ⎠ 1 ⎞ ⎛1 1 = 6 − ⎜ + 2 +L+ 6 ⎟ 4 ⎠ ⎝4 4 6 1 ⎛⎜ ⎛ 1 ⎞ ⎞⎟ 1− ⎜ ⎟ 4 ⎜ ⎝ 4 ⎠ ⎟⎠ = 6− ⎝ 1 1− 4 = 6 − 0,332519531... = 5,666748047... = 5,67

[7]

Copyright reserved

Please turn over

Mathematics/P1

8 NSC – Memorandum

DoE/Febr. – March 2009

QUESTION 6

6.1

3b=1 3c=2 3 substitution of (0 ; 0) 3 a=2

a +2 x −1 a 0= +2 0 −1 0 = −a + 2 y=

a=2 y=

2 +2 x −1

(4)

OR ( x − 1)( y − 2) = k But g passes through the origin ∴ (−1)(−2) = k = 2

∴ ( x − 1)( y − 2) = 2

6.2

g ( x) = ( x − 1) + q 2

0 = (2,5 − 1) 2 + q 9 q=− 4 9⎞ ⎛ Turning point ⎜1 ; − ⎟ 4⎠ ⎝ 6.3

6.4

y=2 x=2 h( x) = −( x − 1) 2 +

Copyright reserved

3 equation 3 through origin 3 substitution 3 equation 3p=1 3 substitution of (2,5 ; 0) 9 3 q=− 4

(4)

3 answer

(4) 3 answer 3 answer

(2) 9 4

3 answer

(1) [11]

Please turn over

Mathematics/P1

9 NSC – Memorandum

DoE/Febr. – March 2009

QUESTION 7

7.1

7.2

7.3

Any base raised to the power 0 is 1 which means the y-intercept of the graph h( x) = a x will be (0 ; 1) therefore Q(0 ; 1) OR h(0) = a 0 = 1 ∴ Q(0 ; 1) 1 a −1 = 2 1 1 = a 2 a=2 2y = x

3 substitution 3 answer

(2) 3 interchanging x and y 3 answer (2) 3 point (0,5 ; – 1) or any other valid point 3 point (1 ; 0) 3 shape

y = log 2 x 7.4

3 y-intercept 3 any base raised to power 0 is 1 (2)

y 4

3

(3)

2

h -1 1

(2 ; 1)

x -1

O

1

2

3

4

5

6

7

8

-1

-2

-3

7.5

7.6

x > 0,5

3 reading off from graph 3 answer

∴ 2 + x log 3 = x log 2 2 ∴x = = − 11.36 log 2 3

(2) 3 equating 3 logs both sides 3 answer (3)

X

⎛2⎞ OR ⎜ ⎟ = 100 ⎝3⎠ ∴ x log (2 3 ) = 2 ∴x =

[14]

2 = − 11.36 log 2 3

Copyright reserved

Please turn over

Mathematics/P1

10 NSC – Memorandum

DoE/Febr. – March 2009

QUESTION 8 3 shape 3 amplitude

y

8.1

(2)

2

1

x -180

0

-90

90

180

270

360

-1

-2

8.2

y ∈ [−4 ; 4]

33 answer

720°

33 answer

Shift f 90° to the left to get 2cos x. ∴θ = 90° + n.360°

33 answer Accept 90°

(2) 8.3

(2) 8.4

(2) [8]

Copyright reserved

Please turn over

Mathematics/P1

11 NSC – Memorandum

DoE/Febr. – March 2009

QUESTION 9

9.1

18

i ⎞ ⎛ 2000⎜1 + ⎟ = 2860 ⎝ 12 ⎠ 18

i ⎞ ⎛ ⎜1 + ⎟ ⎝ 12 ⎠ i 1+ 12 i 12 i i

= 1,43

3 substitution

18

i ⎞ ⎛ 3 ⎜1 + ⎟ = 1,43 ⎝ 12 ⎠

= 1,020069541... = 0,020069541... = 0,24083... = 24,08%

3 i = 0,24083… 3 answer

(4) 9.2 ⎡⎛ 0,08 ⎞12 ⎤ 100 ⎢⎜1 + ⎟ − 1⎥ 12 ⎠ ⎢⎣⎝ ⎥⎦ Fv = 0,08 12 = R1 244,99

The accumulated amount is less than R1 300 required to buy the bike. Farouk will not be able to buy the bike on 1 January 2009. QUESTION 10 10.1 15 Loan = 125000 − × 125000 100 Loan = R 106 250 OR Loan = 0,85 × 125 000 Loan = R 106 250 10.2 ⎡ ⎛ 0,125 ⎞ −6×12 ⎤ ⎟ ⎢1 − ⎜1 + ⎥ 12 ⎠ ⎝ ⎢ ⎥ 106250 = x ⎢ ⎥ 0,125 ⎢ ⎥ 12 ⎢⎣ ⎥⎦

⎛ ⎛ 0,125 ⎞ −6×12 ⎞ ⎟ 1106,770833 = x⎜1 − ⎜1 + ⎟ ⎜ ⎝ ⎟ 12 ⎠ ⎝ ⎠ x = R 2104,94

3 formula 3 substitution

33 answer 3 conclusion

(5) [9]

3 answer

(1)

3 substitution 3 – 72 ⎛ 0,125 ⎞ 3⎜ ⎟ ⎝ 12 ⎠ 3 simplification

3 answer

(5) [6]

Copyright reserved

Please turn over

Mathematics/P1

12 NSC – Memorandum

DoE/Febr. – March 2009

QUESTION 11

11.1

f ( x + h) − f ( x) h →0 h 2 ( x + h) − 2( x + h) − x 2 + 2 x = lim h →0 h 2 2 x + 2 xh + h − 2 x − 2h − x 2 + 2 x = lim h →0 h 2 2 xh + h − 2h = lim h →0 h h(2 x + h − 2) = lim h →0 h = lim(2 x − 2 + h)

9 method

= 2x − 2

9 answer

f ′( x) = lim

9 substitution 9 simplification

9 factorising

h →0

(5) 11.2.1

D x [( x − 3) ] 3

2

[

= Dx x 6 − 6 x 3 + 9 = 6 x 5 − 18 x 2

]

3 simplification 33 answer

(3) 11.2.2

y=

4 x −

− 1 2

3

x 9

1 y = 4x − x3 9 3 − dy x2 = −2 x 2 − dx 3

Copyright reserved

3 power form 33 answer

(3) [11]

Please turn over

Mathematics/P1

13 NSC – Memorandum

DoE/Febr. – March 2009

QUESTION 12

12.1

3 h′( x ) 3 substitution of x = – 1 3 h′( x) = 0

h′( x) = −3 x 2 + 2ax + b h′(−1) = −3(−1) 2 + 2a(−1) + b 0 = −3 − 2 a + b 2a − b = −3 K (i) h′(2) = −3(2) 2 + 2a(2) + b 0 = −12 + 4a + b 4a + b = 12 K (ii) (ii) + (i): 6a = 9 3 a= 2 ⎛3⎞ 2⎜ ⎟ − b = −3 ∴ ⎝2⎠ b=6 OR

h(−1) = −(−1) 3 + a (−1) 2 + b(−1) = −9 2 2a − 2b = −9

∴a − b =

L (i)

3 simplification 3 substitution 3 solving simultaneously

(6)

−7 2

3 substitution of x = -1 −7 3 h(−1) = 2 3 simplification

h(2) = −(2) + a(2) 2 + b(2) = 10 4a + 2b = 18 L (ii)

3 substitution of x = 2 and h( 2) = 10 3 simplification

(i) + (ii):

3 solving simultaneously

3

6a = 9 3 a= 2

−9 ⎛3⎞ ⎜ ⎟−b = 2 ⎝ 2⎠ b=6

12.2

Average Gradient 10 − (−3,5) = 2 − (−1) 13,5 = 3 9 = 2

Copyright reserved

(6)

3 substitution

3 answer

(2)

Please turn over

Mathematics/P1

12.3

h′( x) = −3x 2 + 3 x + 6 h′(−2) = −3(−2) 2 + 3(−2) + 6 h′(−2) = −12 Point of contact (−2 ; 2) y − 2 = −12( x + 2) y = −12 x − 22

14 NSC – Memorandum

DoE/Febr. – March 2009

3 h′( x ) 3 substitution 3 gradient 3 point 3 answer

(5) 12.4

12.5

h′( x) = −3 x 2 + 3 x + 6 h ′′( x) = −6 x + 3 − 6x + 3 = 0 1 x= 2 OR −1+ 2 x= 2 1 x= 2 p > 3,5 or p < −10

9 second derivative 9=0 9 answer

(3)

33 answer

(2) [19]

Copyright reserved

Please turn over

Mathematics/P1

15 NSC – Memorandum

DoE/Febr. – March 2009

QUESTION 13

13.1

3substitution 3 simplification

AB 2 = (a 2 − 0) 2 + (a − 3) 2 AB 2 = a 4 + a 2 − 6a + 9

13.2

(2) d AB2 da d 3 AB 2 = 0 da 3 simplification 3 factorisation 3 answer

d AB 2 = 4a 3 + 2a − 6 da 0 = 4a 3 + 2a − 6

3

0 = 2a 3 + a − 3 0 = (a − 1)(2a 2 + 2a + 3) a =1 There is no real solution for 2a 2 + 2a + 3 = 0

(5) [7]

QUESTION 14

14.1

x ≥ 200 x + y ≤ 600 50 x + 100 y ≤ 45000

3 answer 3 answer 3 answer

(3) 14.2 and 14.3

3 600 3450 3 200 3 600 3 900

y 700

600

(5)

Number of trousers

500

3 feasible region

(1) 400

300

200

100

x 100

200

300

400

500

600

700

800

900

Number of white shirts

14.4

P = 30x + 40y

33 answer

14.5

Maximum at (300 ; 300)

3 search line 3 answer

(2) (2) [13]

TOTAL: 150

Copyright reserved