MEMS Overview What is MEMS?

26 downloads 326 Views 763KB Size Report
Navid Yazdi. • Micromachining & MEMS process technology. Navid Yazdi. • Micro -electro-mechanical devices & microsensors. – Inertial sensors. Navid Yazdi.
MEMS Overview SPEAKER • Andrew Mason, Asst. Professor in Electrical and Computer Engineering TOPIC • Overview of Micro-Electro-Mechanical Systems (MEMS) OUTLINE • Overview of MEMS & Microsystems Navid Yazdi • Micromachining & MEMS process technology Navid Yazdi • Micro-electro-mechanical devices & microsensors – – – –



Inertial sensors Pressure sensors Bio-sensors Shock sensors

Navid Yazdi Navid Yazdi Andrew Mason Andrew Mason

Integrated Microsystems

Andrew Mason

MEMS Overview, Prof. A. Mason

Page 1

What is MEMS? • MEMS = MicroMicro-ElectoElecto-Mechanical Systems – creation of 33-dimensional structures using integrated circuits fabrication technologies and special micromachining processes – typically done on silicon or glass (SiO2) wafers

• MEMS Devices and Structures – transducers

• microsensors and microactuators

– mechanically functional microstructures

• microfluidics: microfluidics: valves, pumps, flow channels • microengines: microengines: gears, turbines, combustion engines

• Integrated Microsystems – integrated circuitry and transducers combined to perform a task autonomously or with the aid of a host computer – MEMS components provide interface to nonnon-electrical world • sensors provide inputs from non-electronic events • actuators provide outputs to non-electronic events MEMS Overview, Prof. A. Mason

Page 2

1

Why Use MEMS? • Motivation and Benefits

– Small Size – Light Weight – Enhanced Performance & Reliability • high resolution devices

• array of devices

– Low Cost (from batch fabrication)

• Applications – – – – – – –

Automotive System Health Care Automated Manufacturing Instrumentation Environmental Monitoring & Control Consumer Products Aerospace

• MEMSMEMS-based Microsystems

– highly integrated systems – sensing – actuation – computation – control – communication

MEMS Overview, Prof. A. Mason

Page 3

Example MEMS-Based Microsystem “Micro Cluster” Environmental Monitoring Microinstrument (developed at UU-Mich in the 1990s, A. Mason, K. Wise, et. al.)

Humidity Sensor

Power Management

- Power Management

Accelerometer RF Transmitter

Interface Chips

Microcontroller

- Communication 35mm

Pressure Sensor

Integrated Features - Control - Microcontroller - RF Transceiver

- Sensing - Pressure - Humidity - Temperature - Vibration

I/O Connector

On/Off Switch 60mm

- Packaging MEMS Overview, Prof. A. Mason

Page 4

2

MEMS Fabrication Technologies • Applying Micromachining to create 3-D structures using 2-D processing 2-D IC fabrication technology

3-D structures micromachining

• Micromachining Processes – – – – – – –

bulk and surface micromachining isotropic etching anisotropic etching dissolved wafer process deep reactive ion etching anodic and fusion bonding micromolding MEMS Overview, Prof. A. Mason

Page 5

Surface vs. Bulk Micromachining Bulk Micromachining: Backside etch

Si Substrate

Bulk Micromachining: Front-side Etch pit typically polysilicon

Surface Micromachined Structure MEMS Overview, Prof. A. Mason

Si Substrate

Page 6

3

Isotropic Etching of Silicon • Isotropic etchant – etches in all directions – forms rounded pits in surface of wafer

• Most common solution – HNA: Mixture of HF, HNO3, Acetic acid (CH3COOH)

With agitation: Good reactant mass transport

Without agitation

MEMS Overview, Prof. A. Mason

Page 7

Anisotropic Etching of Silicon • Anisotropic etchant – directional-dependant etch; based on crystal planes – forms flat-surface pits in surface of wafer

• Common anisotropic etchants – EDP, KOH, TMAH (111) Surface orientation

(100) Surface orientation

54.74°

Silicon

Anisotropic wet etching using EDP, KOH: (100) surface - Etch stop on (111) plane MEMS Overview, Prof. A. Mason

Page 8

4

Anisotropic Etching: Convex vs. Concave Corners masking layer not attacked by Si etchant Concave corner Convex corner

Top View

Cantilever Beam

(100) Masking layer

(111) Buried etch stop layer (SiO2 in SOI wafers)

Side View Silicon

MEMS Overview, Prof. A. Mason

Page 9

Anisotropic Etching of Silicon: Example

bulk micromachined silicon proof mass

MEMS Overview, Prof. A. Mason

Page 10

5

Dissolved Wafer Process • Structure created by “diffusion masking layer” • heavily p-dope silicon (p++) • Dissolve bulk of silicon to release the p++ structure

Released p++ structure

P++

S ili

con

Dopant selective etch (e.g. EDP)

Silicon K.D. Wise, K. Najafi, Univ of Michigan MEMS Overview, Prof. A. Mason

Page 11

Dissolved Wafer Process Example • Shock Switch

– weighted cantilever beam with contacts that close by acceleration (shock)

• Fabrication Flow

– create anchor, weight, support beam, and contact on Si – create cavity and contact on glass – bond wafers and then dissolve the Si wafer

LPCVD layer deposition for beams

Anodic bonding glass to silicon

Dissolve silicon bulk and release structure

MEMS Overview, Prof. A. Mason

Page 12

6

Deep Reactive Ion Etching (DRIE) • Reactive Ion Etching = RIE – mechanical (ion) etching in plasma for chemical selectivity

• Deep RIE – creates high aspect ratio patterns, narrow and deep Top view

A

A

A-A cross section

mask

• Trench-Refill process

Silicon

– can fill the etched “trench” with another material MEMS Overview, Prof. A. Mason

Page 13

Glass-Si Anodic Bonding • Bonding a glass wafer to a silicon wafer – both wafer can (and generally are) patterned with structures

• Application – creating sealed cavities on a wafer surface • can be sealed in vacuum

– hermetic packaging

• Lead Transfer – need to bring the metal leads out of from sealed cavities

Need sealing Metal Interconnect

Silicon Glass MEMS Overview, Prof. A. Mason

Page 14

7

Silicon-Silicon Fusion Bonding • Two silicon wafer with/without SiO2 can be bonded • Advantages: No thermal mismatch • Needs contamination free, smooth, and flat wafers (e.g. surface roughness ~5°A) • Process Flow – – – – –

Clean wafers Make the surfaces hydrophilic (e.g. dip in Nitric Acid) Rinse-Dry Place the wafers together apply pressure H2 or N2 anneal at 800-1000°C

MEMS Overview, Prof. A. Mason

Page 15

Combined Bulk-Surface Process: Molding • • • •

Etch silicon with high aspect ratio (e.g., DRIE) Refill partially with sacrificial layer (e.g. silicon oxide) Refill completely with structural layer (e.g. polysilicon) Example: U-Mich Precision Inertial Sensor Polysilicon Electrode with Damping Holes Polysilicon Electrode Nitride Standoff

Air Gap Damping Holes

Air Gap

Silicon Proof Mass

Air Gap

Nitride Standoff

Electrode Dimple

Vertical Stiffener Vertical Stiffener

Silicon Proof Mass

N. Yazdi & K. Najafi, Transducers’97. MEMS Overview, Prof. A. Mason

Page 16

8

Combined Bulk-Surface Process: Precision Inertial Sensors

Dielectric Layer

Metal Pads

Metal Pad

A

A

Silicon Proof mass

Support Rim

Damping Holes

N. Yazdi , A. Salian & K. Najafi, MEMS’99.

MEMS Overview, Prof. A. Mason

Page 17

LIGA Process • • • •

LIGA: Lithographie, Galvanoformung, Abformung Form high aspect ratio structures on top of wafer Uses molding and electroplating Synchrotron Radiation (X-Ray) used • Features – Aspect ratio: 100:1 – Gap: 0.25µm – Size: a few millimeters uses multiple polymethyl metharylate (PMMA) layers

MEMS Overview, Prof. A. Mason

Page 18

9

LIGA Process: Example

Guckel, IEEE Proceedings, Aug. 1998. MEMS Overview, Prof. A. Mason

Page 19

Monolithic Integration of MEMS and ICs Why Monolithic? Performance: - Reduce parasitics due to interconnecting devices - Reduce noise & crosstalk

Size: - Reduce pin count - Reduce package volume

Cost: - Integration with signal-processing  better functionality - Reduce packaging cost - Self test & calibration at wafer level

MEMS Overview, Prof. A. Mason

Page 20

10

IC + MEMS Process Examples UC Berekely Integrated CMOS & surface micromachining technology • CMOS first and MEMS second • •

CMOS circuit passivated using silicon nitride Tungsten interconnects for CMOS

J. Bustillo, R. Howe, R. Muller, IEEE Proceedings Aug. 98

• Sandia Integrated CMOS & surface micromachining technology – MEMS first in recessed cavity – CMOS second after planarization

J. Smith et. al., IEDM’95 MEMS Overview, Prof. A. Mason

Page 21

MEMS Examples Neural Recording Probes • Monolithic

Integration of Wafer-Dissolved Process and IC Technology

OUTPUT LEADS

P++ RIM

INTERCONNECTING LEADS

SIGNAL PROCESSING CIRCUITRY

RECORDING/STIMULATING SITES

- Neural probes with signal processing circuitry - P++ shanks - P++ rim and timed etch to protect Najafi, active circuitry Wise, JSSC-21 (6), May 1986 SUPPORTING SILICON SUBSTRATE

MEMS Overview, Prof. A. Mason

Page 22

11

Example: Capacitive Accelerometer Suspension

Vertical accelerometer

Suspension

Anchor

Mass

Anchor

Substrate

Substrate

Conductive Electrode

(a)

Cs Sense Capacitance

(b)

One of the sense Bidirectional capacitor elements Sense Fingers

Anchors

Mass

Anchors

Mass Mass

Cs

Lateral Suspensions accelerometer (a)

Bidirectional Sense Fingers

Substrate Suspensions (b)

MEMS Overview, Prof. A. Mason

Page 23

Example: Z-Axis Torsional Accelerometer Torque produced by the mass

Anchor

A'

Support beam

Anchor

wm

T

T

C Fixed Sense Fingers

Inertial Element Support posts on glass

A Glass Substrate

Selvakumar, Najafi, JMEMS 1998.

Anchor

Torsional suspension

Mass plate

Sense fingers

MEMS Overview, Prof. A. Mason

Page 24

12

Capacitive Accelerometer 3-Axis Monolithic Surface Micromachined Accelerometer Analog Devices ADXL50 Sense & Feedback Interdigitated Fingers

Proofmass

Suspension

Courtesy of Lemkin, Boser, Trasnducers’97.

Courtesy of Kevin Chau, Analog Devices Inc.

MEMS Overview, Prof. A. Mason

Page 25

All-Silicon Micro-G Accelerometer Metal Pads Damping Holes Anchor Dielectric

A

Silicon Proofmass

Top View

Polysilicon Top/Bottom Polysilicon Electrode Stiffeners

A

Proofmass Suspension Beams A-A Cross-Sectional View

Stiffened Polysilicon Electrode

Proofmass

Frame

Stiffened Polysilicon Electrode

Proofmass

MEMS Overview, Prof. A. Mason

Page 26

13

MEMS Gyroscopes GM & UM Ring Gyroscope

Draper’s Tuning Fork Gyroscope Perforated masses (tines)

Drive Combs

Suspension

Electrodes

Ring structure

MEMS Overview, Prof. A. Mason

Page 27

Capacitive Pressure Sensors Consists of two components:

• Fixed electrode • Flexible diaphragm forming a moving electrode • Sealed vacuum cavity between the two electrodes Diaphragm (Upper electrode)

Lower electrode

Silicon P++ Si Ti/Pt/Au Poly-Si

Tab Contact

SiO2/Si3N4/SiO2 External lead for Glass Substrate glass electrode

A. Chavan, K.D. Wise, Transducers’97

MEMS Overview, Prof. A. Mason

Page 28

14

Integrated Microsystems Architecture • Flexible Architectures – reconfigurable • new/different sensors can be added

– sensor bus

Power Management Chip Telemetry

Humidity Sensor

Accelerometer Transducer Array

Pressure Transducer Array

EPROM RAM Crystal SCI

Temp Sensor

SPI Wired I/O Port

MCU

Timer

Analog Interface

Analog Interface

Bus Interface

Bus Interface

A/D

Digital Interface Bus Interface

Battery

Capacitive Sensor Interface Chips Sensor Bus

MEMS Overview, Prof. A. Mason

Page 29

Microsystem Component: Interface Circuit • Generic capacitive sensor interface – sensor readout – sensor bus communication – programmable operation –useful for range of sensors Element Select

Cf

Digital Gain Control

Charge Integrator

Variable Gain Amp

fs

Sensor1

MUX

Sensor2

Sample & Hold Temperature Sensor

Sensor5 Programmable Reference Capacitor

Sensor6

Self-Test DAC

MUX

Digital Control

b2 b1 b0

Element Select

Bus Interface Address Command Data Register Decoder Latch

Self-Test Command

Sensor Bus MEMS Overview, Prof. A. Mason

Page 30

15

Microsystem Component: Shock switch • System wake-up switch – allows events to be captured while system is in sleep mode – useful for system-level power management – implements several shock thresholds Suspension B eam

Silicon Anchor Support Altar Air Gap

Cantilevered Mass

Iner tial Mass

Metal Pads & Interconnect Symm etric Contacts

MEMS Overview, Prof. A. Mason

Page 31

16